算法与数据结构 单链表的创建
- 格式:doc
- 大小:74.50 KB
- 文档页数:9
湖南第一师范学院信息科学与工程系实验报告课程名称:数据结构与算法成绩评定:实验项目名称:单链表的基本操作指导教师:学生姓名:沈丽桃学号: 10403080118 专业班级: 10教育技术实验项目类型:验证实验地点:科B305 实验时间: 2011 年 10 月20 日一、实验目的与要求:实验目的:实现线性链表的创建、查找、插入、删除与输出。
基本原理:单链表的基本操作二、实验环境:(硬件环境、软件环境)1.硬件环境:奔ⅣPC。
2.软件环境:Windows XP 操作系统,TC2.0或VC++。
三、实验内容:(原理、操作步骤、程序代码等)#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct celltype{int element;struct celltype*next;};typedef int position;void main(){struct celltype*head,*p;int x,choice;void INSERT(int x,struct celltype*p);void LOCATE(int x,struct celltype*p);void DELETE(int x,struct celltype*p);p=(struct celltype*)malloc(sizeof(struct celltype));head=p;p->element=0;p->next=NULL;printf(“Please option:1:Insert 2:Locate 3:Delete\n”);printf(“Please choose:”);scanf(“%d”,&choice);switch(choice)case 1:printf(“Please input a node:”);scanf(“%d”,&x);p=head;INSERT(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->element);printf(“\n”);break;case 2:printf(“Please input the data you want to locate:”); scanf(“%d”,&x);p=head;LOCATE(x,p);break;case 3:printf(“Please input the data you want to delete:”); scanf(“%d”,&x);DELETE(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->next);printf(“\n”);break;}void INSERT(int x,struct celltype*p){struct celltype*t,*q;q=(struct celltype*)malloc(sizeof(struct celltype)); q->next=x;while((x>p->element)&&(p!=NULL)){t=p;p=p->next;}if((x>p->element)&&(p->next!=NULL)){p->next=q;q->next=NULL;}else{q->next=p;t->next=q;}}void LOCATE(int x,struct celltype*p){while(p->next!=NULL)if(p->next->element==x)printf(“the number %d is in %d\n”,x,p);else printf(“the number not exist!\n”);}void DELETE(int x,struct celltype*p){while((p->element!=x)&&(p->next!=NULL)){t=p;p=p->next;}if(p->element==x)t->next=p->next}error C2018:unknown character ’Oxal’error C2065:’Please’:undeclared identifiererror C4024:’printf’:different types for formal and actual parameter 1error C4047:’function’:’const*differs in levers of indirection from ’int’error C2146:syntaxerror:missing’)’before identifier’option’error C2017:illegal escape sequenceerror C2059:syntax error:’)’error C2143:syntax error:missing’)’before’%’出现了很多错误,主要是因为printf里的一对双引号不是英文状态下的。
数据结构与算法——单链表的实现及原理1. 单链表的原理 链表是线性表的链式存储⽅式,逻辑上相邻的数据在计算机内的存储位置不必须相邻,那么怎么表⽰逻辑上的相邻关系呢?可以给每个元素附加⼀个指针域,指向下⼀个元素的存储位置。
如图所⽰: 从图中可以看出,每个结点包含两个域:数据域和指针域,指针域存储下⼀个结点的地址,因此指针指向的类型也是结点类型链表的核⼼要素:Ø 每个节点由数据域和指针域组成 Ø 指针域指向下⼀个节点的内存地址。
1.1 结构体定义1 Typedef struct LinkNode2 {3 ElemType data; //节点中存放数据的类型4struct LinkNode* next; //节点中存放下⼀节点的指针5 }LinkList, LinkNode;2. 单链表初始化链表的节点均单向指向下⼀个节点,形成⼀条单向访问的数据链1//单链表的初始化2 typedef struct _LinkNode3 {4int data; //结点的数据域5struct _LinkNode* next; //结点的指针域6 }LinkNode, LinkList; //链表节点、链表78bool InitList(LinkList*& L) //构造⼀个空的单链表 L9 {10 L = new LinkNode; //⽣成新结点作为头结点,⽤头指针 L 指向头结点11if(!L)return false; //⽣成结点失败12 L->next=NULL; //头结点的指针域置空13return true;14 }3. 单链表增加元素 - 单链表前插法插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
1//前插法2bool ListInsert_front(LinkList * &L, LinkNode * node) //参数1 链表指针参数2 要插⼊的节点元素3 {4if (!L || !node) return false; //如果列表或节点为空返回 false5 node->next = L->next; //将头节点指向节点1的地址赋值给要插⼊节点的指针域,使要插⼊的节点先与后部相连6 L->next = node; //将插⼊节点的地址赋值给头结点的指针域,使要插⼊节点与头结点相连78return true;9 }4. 单链表增加元素 - 单链表尾插法1//尾插法2bool ListInsert_back(LinkList*& L, LinkNode* node)3 {4 LinkNode* last = NULL; //创建空指针,5if (!L || !node) return false; //如果列表或节点为空返回 false67 last = L;8while (last->next) last = last->next; //使⽤ last 找到最后⼀个节点910 node->next = NULL; //要插⼊节点由于在尾部,指针域置为 NULL11 last->next = node; //将要插⼊节点的地址赋值给之前的尾部节点的指针域,将要插⼊节点放置到尾部12return true;13 }5. 单链表增加元素 - 单链表任意位置插⼊插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。
数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。
实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。
利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。
然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。
2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。
3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。
要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。
4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。
首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。
5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。
6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。
实验一链表的建立及基本操作方法实现一、【实验目的】1、理解和掌握单链表的类型定义方法和结点生成方法。
2、掌握利用头插法和尾插法建立单链表和显示单链表元素的算法。
3、掌握单链表的查找(按序号)算法。
4、掌握单链表的插入、删除算法。
二、【实验内容】1、利用头插法和尾插法建立一个无头结点单链表,并从屏幕显示单链表元素列表。
2、利用头插法和尾插法建立一个有头结点单链表,并从屏幕显示单链表元素列表。
3、将测试数据结果用截图的方式粘贴在程序代码后面。
重点和难点:尾插法和头插法建立单链表的区别。
建立带头结点和无头结点单链表的区别。
带头结点和无头结点单链表元素显示方法的区别三、【算法思想】1) 利用头插法和尾插法建立一个无头结点单链表链表无头结点,则在创建链表时,初始化链表指针L=NULL。
当用头插法插入元素时,首先要判断头指针是否为空,若为空,则直接将新结点赋给L,新结点next指向空,即L=p,p->next=NULL,若表中已经有元素了,则将新结点的next指向首结点,然后将新结点赋给L即(p->next=L,L=p)。
当用尾插法插入元素时,首先设置一个尾指针tailPointer以便随时指向最后一个结点,初始化tailPointer和头指针一样即tailPointer=L。
插入元素时,首先判断链表是否为空,若为空,则直接将新结点赋给L即L=p,若不为空,else将最后一个元素的next指向新结点即tailPointer->next=p,然后跳出这个if,else语句,将新结点next指向空,并且将tailPointer指向新结点即p->next=NULL,tailPointer=p。
2) 利用头插法和尾插法建立一个有头结点单链表链表有头结点,则在创建链表时,初始化链表指针L->next = NULL。
与无头结点区别在于,判断链表为空是根据L->next是否为空。
用头插法插入元素时,要判断链表是否为空,若为空则将新结点next指向空,作为表尾,若不为空,则直接插入,将新结点next指向头结点next的指向,再将头结点next指向新结点即p->next=L->next,L->next=p。
实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。
2015-2016学年第二学期《算法与数据结构》课程实验报告专业软件工程学生姓名成晓伟班级软件141学号1410075094实验学时16实验教师徐秀芳信息工程学院实验一单链表的基本操作一、实验目的1.熟悉C语言上机环境,进一步掌握C语言的基本结构及特点。
2.掌握线性表的各种物理存储表示和C语言实现。
3.掌握单链表的各种主要操作的C语言实现。
4.通过实验理解线性表中的单链表存储表示与实现。
二、主要仪器及耗材普通计算机三、实验内容与要求1、用C语言编写一个单链表基本操作测试程序。
(1)初始化单链表(2)创建单链表(3)求单链表长度(4)输出单链表中每一个结点元素(5)指定位置插入某个元素(6)查找第i个结点元素的值(7)查找值为e 的结点,并返回该结点指针(8)删除第i个结点(9)销毁单链表2、实验要求(1)程序中用户可以选择上述基本操作。
程序启动后,在屏幕上可以菜单形式显示不同功能,当按下不同数字后完成指定的功能,按其他键,则显示错误后重新选择。
(2)要求用线性表的顺序存储结构,带头结点的单链表存储结构分别实现。
(3)主函数实现对基本操作功能的调用。
3、主要代码(1)初始化单链表LinkList *InitList(){ //创建一个空链表,初始化线性表LinkList *L;L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;return L;}(2)创建单链表//头插法void CreateListF(LinkList *L){LinkList *s;int i=1,a=0;while(1){printf("输入第%d个元素(0表示终止)",i++);scanf("%d",&a);if(a==0)break;s=(LinkList *)malloc(sizeof(LinkList));s->data=a;s->next=L->next;L->next=s;}}(3)求链表长度int ListLength(LinkList *L){ //求链表长度int n=0;LinkList *p=L;while(p->next!=NULL){p=p->next;n++;}return(n);}(4)在指定位置插入元素int InsertList(LinkList *L,int i,ElemType e){LinkList *p=L,*s;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找出要插入的位置的前一个位置if(p==NULL){return 0;}else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;p->next=s;return 1;}}(5)输出链表void DispList(LinkList *L){ //输出链表LinkList *p=L->next;while(p!=NULL){printf("%d",p->data);p=p->next;}printf("\n");}(6)查找链表中指定元素int GetElem(LinkList *L,int i){ //查找链表中指定元素LinkList *p=L;int j=0;while(j<i&&p!=NULL){j++;p=p->next;}if(p==NULL){return 0;}else{return p->data;}}(7)查找值是e的结点并返回该指针LinkList *LocateElem(LinkList *L,ElemType e){ //查找值是e的结点并返回该指针int i=1;LinkList *p=L;while(p!=NULL)if(p->data==e) return p;}if(p==NULL){return NULL;}}(8)删除元素int ListDelete(LinkList *L,int i,ElemType *e){ //删除元素LinkList *p=L,*q;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找到要删除元素地址的前一个地址if(p==NULL){ return 0;} //不能删除else{q=p->next;*e=q->data;p->next=q->next;free(q); //删除成功return 1;}}(9)销毁链表void DestroyList(LinkList *L){//销毁链表LinkList *pre=L,*p=L->next;while(p!=NULL){free(pre);pre=p;p=pre->next;}free(pre);}main函数:int main(){LinkList *L;ElemType e;int i;L=InitList();CreateListF(L);DispList(L);printf("输入要查找的元素位置:\n");scanf("%d",&i);e=GetElem(L,i);printf("%d\n",e);printf("单链表长度为:%d\n",ListLength(L));printf("输入要删除元素的位置:");scanf("%d",&i);if (i>ListLength(L)){printf("超出范围重新输入");scanf("%d",&i);}if(ListDelete(L,i,&e)==0){printf("未找到元素\n");}else DispList(L);printf("输入插入元素的位置和值:");scanf("%d%d",&i,&e);InsertList(L,i,e);DispList(L);return 0;}4、测试数据及测试结果输入:23 56 12 28 45输出:四、注意事项1、存储结构定义和基本操作尽可能用头文件实现。
实验一创建链表和链表操作一、实验目的掌握线性表的基本操作:插入、删除、查找、以及线性表合并等操作在顺序存储结构和链式存储结构上的实现。
二、实验内容:1. 创建单链表2.在链表上进行插入、删除操作;3.设计一个程序,用两个单链表分别表示两个集合,并求出这两个集合的并集。
四、测试数据:∙(3,9,5,6,11,8);在5之前插入4,7,并删除11∙求集合{1,12,8,6,4,9}和{2,5,12,7,4}的并集五、概要设计:本操作应完成如下功能:(1)创建链表说明:分配一定的空间,根据给定的链表长度输入值,创建链表。
(2)合并链表说明:将两个链表合并为一个链表只需修改链表头、尾指针即可实现。
(3)在链表中插入值说明:将给定的值插入到指定位置上,只需修改插入位置的前后结点的指针即可。
(4)在链表中删除值说明:将指定位置的值删除,只需修改删除位置的前后结点的指针即可。
六、详细设计:源代码:#include<stdio.h>#include<conio.h>#include<stdlib.h>#include<iostream.h>#define OK 1#define ERROR 0#define OVERFLOW 0//线性链表的存储结构,一个结点typedef struct LNode{int data; // 数据域struct LNode *next; // 指针域}LNode,*LinkList; //结点结构类型和指向结点的指针类型int TraverseList_L(LinkList L) //遍历单链表{LinkList p;p=L->next;while(p){printf("-->%d",p->data);p=p->next;}return OK;}//尾插法创建的带头结点的单链表。
void CreateList_L(LinkList &L,int &n){L=(LinkList)malloc(sizeof (LNode));//建立一个空链表L。
《程序设计、算法与数据结构(一)》教学大纲课程编号:0812000217课程名称:程序设计、算法与数据结构(一)英文名称:Programming,Algorithm and Data Structure I学分:3 课程性质:必修总学时:48 其中,讲授48学时,实验0学时,上机0学时,实训0学时适用专业:网络工程建议开设学期: 1先修课程:无开课单位:计算机与通信工程学院一、课程简介《程序设计、算法与数据结构(一)》是计算机科学与技术、软件工程、网络工程、通信工程专业基础课程,是课程群的启蒙课,也是学生进入大学后的第一门程序设计类课程,其目的是以C语言程序设计为基础,使学生熟悉C程序设计的基本语法,通过大量的编程练习,引导学生进入程序设计的殿堂,培养学生基本的数据结构和算法分析能力,为后续课程的学习打下基础。
二、课程目标与毕业要求依据2017培养方案中的毕业要求,考虑本课程与专业毕业要求的支撑关系,制定本课程学习目标。
课程目标1:通过程序三种基本控制结构,函数等知识点的学习,要求学生掌握结构化程序设计的基本思想,深入领会自顶向下、逐步求精的设计方法,识别网络工程项目的设计与开发过程中功能模块划分的问题。
(支持毕业要求 2.1能运用数学、自然科学及网络工程的基本原理,识别和判断网络工程问题的关键环节。
)课程目标2:在程序设计C语言后阶段学习过程中,针对成绩管理信息系统大作业的要求,将同学分组了解系统功能与应用背景,对具体的开发任务进行分工联调并编程实现。
通过系统实现强化个体的角色意识和团队意识。
(支撑毕业要求9.1:能够理解多学科背景下的团队中每个角色的定位与责任,具有团队合作意识,能够胜任个体、团队成员的角色任务。
)课程目标3:通过学习标准的C语言程序设计语法,运用函数、线性表、字符串、链表等基本知识,通过学习算法的描述方法,使学生能将实际问题转换成计算机描述的算法问题,培养学生运用程序算法的描述方法进行交流的能力。
实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
- 1 -实验一:实现单链表各种基本运算的算法一、 实验目的1、 掌握单链表存储结构的类型定义;2、 实现单链表各种基本运算的算法。
二、 实验环境1、 Windows 操作系统;2、 Visual C++ 6.0三、 实验内容实现单链表各种基本运算的算法。
四、 概要设计1.存储结构的类型定义:Typedef struct LNode{ElemType data;Struct LNode *next;}LinkList;2.单链表示意图:3.项目组成图:4.algo2_2.cpp 的程序文件包含的函数原型及功能:InitList(LinkList *&L) 初始化单链表LDestroyList(LinkList *&L) 释放单链表LListEmpty(LinkList *L)判断单链表L 是否为空表ListLength(LinkList *L)返回单链表L 的元素个数DispList(LinkList *L)输出单链表LGetElem(LinkList *L,int i,ElemType &e)获取单链表L 的第i 个元素LocateElem(LinkList *L,ElemType e)在单链表L 中查找元素eListInsert(LinkList *&L,int i,ElemType e)在单链表L 中的第i 个位置上插入元素e…… head a 1 a 2 a 3 a n ∧ListDelete(LinkList *&L,int i,ElemType &e)在单链表L中删除第i个元素5.exp2_2.cpp程序文件简介:InitList(LinkList *&L) 初始化单链表LDestroyList(LinkList *&L) 释放单链表LListEmpty(LinkList *L) 判断单链表L是否为空表ListLength(LinkList *L) 返回单链表L的元素个数DispList(LinkList *L) 输出单链表LGetElem(LinkList *L,int i,ElemType &e) 获取单链表L的第i个元素LocateElem(LinkList *L,ElemType e) 在单链表L中查找元素eListInsert(LinkList *&L,int i,ElemType e) 在单链表L中的第i个位置上插入元素e ListDelete(LinkList *&L,int i,ElemType &e) 在单链表L中删除第i个元素6.proj2-2的项目的模块结构:在文件algo2-2中,(1)定义单链表结构类型;(2)初始化单链表(3)定义释放单链表的函数(4)定义判断单链表是否为空的函数(5)定义返回单链表元素个数的函数(6)定义输出单链表的函数(7)定义获取第i个元素的函数(8)定义查找元素的函数(9)定义插入元素的函数(10)定义删除元素的函数在文件exp2-2中分别调用algo2-2中所定义的函数7.函数调用关系图:五、详细设计源代码清单见附录。
1. 概述在计算机科学中,链表是一种常见的数据结构,它由一系列结点组成,每个结点包含数据和指向下一个结点的指针。
单链表是其中一种形式,它只有一个指向下一个结点的指针。
在实际开发中,我们经常需要统计链表的长度,也就是结点的个数。
本文将介绍如何使用C语言编写一个求单链表表长n的算法。
2. 单链表数据结构在C语言中,我们可以使用结构体来表示单链表的结点,定义如下:```ctypedef struct Node {int data;struct Node* next;} Node;```其中,data表示结点中存储的数据,next是指向下一个结点的指针。
我们可以使用这个结构体来创建单链表。
3. 求单链表表长n的算法为了求单链表的表长n,我们需要遍历整个链表并统计结点的个数。
下面是一个使用C语言实现的求表长算法的示例代码:```cint lengthOfLinkedList(Node* head) {int count = 0;Node* current = head;while(current != NULL) {count++;current = current->next;}return count;}```在这段代码中,我们使用了一个循环来遍历链表,每经过一个结点就将计数器加1。
当遍历结束时,计数器的值就是链表的表长n。
4. 算法示例现在让我们来看一个使用上述算法的示例。
假设我们有一个包含5个结点的单链表:```Node 1 -> Node 2 -> Node 3 -> Node 4 -> Node 5 -> NULL ```我们可以使用以下代码来求这个链表的表长:```cNode* head = createLinkedList(); // 假设createLinkedList()是一个创建单链表的函数int length = lengthOfLinkedList(head);printf("The length of the linked list is: d\n", length);```在这个示例中,我们首先创建了一个包含5个结点的单链表,然后使用lengthOfLinkedList函数求链表的表长n,并将结果打印出来。
本题目要求利用尾插法建立单链表。
标题:深入探讨:利用尾插法建立单链表的方法与应用一、引言在数据结构与算法领域,单链表是一种基本数据结构,它由若干个节点组成,每个节点包含存储数据的部分和指向下一个节点的指针。
而本文将深入探讨利用尾插法建立单链表的方法与应用,帮助读者更全面地理解这一重要概念。
二、尾插法建立单链表1. 概念介绍尾插法是一种用于建立单链表的方法,其基本思想是从链表的尾部开始插入新的节点。
具体而言,我们首先找到链表的尾节点,然后将新节点插入到尾节点之后,最后更新尾节点的指针。
通过这种方式,可以逐渐建立起一个完整的单链表。
2. 算法步骤(1)初始化:设定头节点,并将尾指针指向头节点。
(2)循环插入:逐个读取数据,创建新节点,并将新节点插入到尾节点之后,更新尾指针。
(3)结束条件:当读取完所有数据时,建立完成。
3. 代码示例以下是用C语言实现尾插法建立单链表的简单示例代码:```c#include <stdio.h>#include <stdlib.h>typedef struct Node {int data;struct Node *next;} Node;Node* createList(int arr[], int n) {Node *head = (Node *)malloc(sizeof(Node));head->next = NULL;Node *tail = head;for (int i = 0; i < n; i++) {Node *newNode = (Node *)malloc(sizeof(Node)); newNode->data = arr[i];newNode->next = NULL;tail->next = newNode;tail = newNode;}return head;}void printList(Node* head) {Node *p = head->next;while (p != NULL) {printf("%d ", p->data);p = p->next;}}int main() {int arr[] = {1, 2, 3, 4, 5};int n = sizeof(arr) / sizeof(arr[0]); Node *head = createList(arr, n); printList(head);return 0;}```三、尾插法建立单链表的应用1. 数据输入尾插法建立单链表常用于动态读取一系列数据并创建相应的链表。
单链表的建立、增加元素、删除元素、查找元素算法
单链表是一种常用的数据结构,由一个个节点构成,每个节点包含一个数据域和一个指向下一个节点的指针。
本文将介绍单链表的建立、增加元素、删除元素、查找元素算法。
一、单链表的建立
单链表的建立需要创建一个头结点,它不存储数据,只有一个指针域指向第一个节点。
接下来,我们用一个循环语句不断读入数据,创建新节点并将其插入到链表中。
二、单链表的增加元素
单链表的增加元素有两种情况,一种是在链表头插入新节点,另一种是在链表尾插入新节点。
在头部插入新节点时,需要先创建新节点,将它的指针域指向原来的头结点,再让头结点指向新节点;在尾部插入新节点时,需要先遍历整个链表找到最后一个节点,再将新节点插入到最后一个节点的后面。
三、单链表的删除元素
单链表的删除元素也有两种情况,一种是删除链表头的节点,另一种是删除链表中指定位置的节点。
在删除头结点时,需要先找到头结点的下一个节点,将其指针域赋给头结点,然后释放原来的头结点;在删除指定位置的节点时,需要先找到该节点的前一个节点,将前一个节点的指针域指向该节点的下一个节点,然后释放要删除的节点。
四、单链表的查找元素
单链表的查找元素有两种情况,一种是查找指定位置的节点,另
一种是查找指定数据域的节点。
在查找指定位置的节点时,需要遍历整个链表找到该位置的节点;在查找指定数据域的节点时,需要遍历整个链表找到数据域与目标值相等的节点。
Matlab中常用的数据结构和算法MATLAB是一款被广泛应用于科学计算和工程领域的高级数值分析软件。
在进行数据处理和算法设计时,掌握常用的数据结构和算法是非常重要的。
本文将介绍MATLAB中常用的数据结构和算法,帮助读者更好地理解和使用这些工具。
1. 数组(Array)数组是MATLAB中最基本且常用的数据结构之一。
它是一种存储相同类型元素的容器,可以是一维、二维或多维的。
创建数组的方法非常简单,可以通过直接赋值或者使用内置函数来创建。
数组的操作也非常方便,包括索引、切片、修改元素等。
2. 矩阵(Matrix)在MATLAB中,矩阵也是一种常用的数据结构。
与数组相比,矩阵是一个二维的表格,其中的元素可以进行更多的数学计算。
MATLAB提供了丰富的矩阵运算函数,包括矩阵加法、乘法、转置等。
使用矩阵进行线性代数计算时,能够大大简化计算过程。
3. 结构体(Struct)结构体是一种将不同类型数据组合在一起的数据结构。
在MATLAB中,结构体可以简化对复杂数据的表示和操作。
创建结构体时,需要指定不同字段的名称和类型。
可以通过"."操作符来访问结构体中的字段,进行读取、修改等操作。
4. 单链表(Linked List)单链表是一个由节点组成的数据结构,每个节点包含了数据和指向下一个节点的指针。
与数组不同,单链表的内存分配不连续,可以动态添加和删除节点。
在MATLAB中,单链表可以通过自定义类的方式来实现。
使用单链表可以高效地进行插入和删除操作,并且不需要事先指定容量。
5. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只允许在栈顶进行插入和删除操作。
在MATLAB中,可以使用数组或者单链表来实现栈。
栈常用于递归算法、括号匹配等问题的求解。
MATLAB提供了相关的函数,如push和pop操作,方便进行栈的操作。
6. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,允许在队尾插入元素,在队头删除元素。
数据结构之单链表头插法,尾插法数据结构之单链表头插法,尾插法单链表是中的⼀种,单链表的头插法也称前插法。
链表也是线性表的⼀种,与顺序表不同的是,它在内存中不是连续存放的。
在C语⾔中,链表是通过指针相关实现的。
⽽单链表是链表的其中⼀种,关于单链表就是其节点中有数据域和只有⼀个指向下个节点的指针域。
创建单链表的⽅法有两种,分别是头插法和尾插法。
所谓头插法,就是按节点的逆序⽅法逐渐将结点插⼊到链表的头部。
反之尾插法就是按节点的顺序逐渐将节点插⼊到链表的尾部。
相对来说,头插法要⽐尾插法算法简单,但是最后产⽣的链表是逆序的,即第⼀个输⼊的节点实际是链表的最后⼀个节点。
⽽为了习惯,通常⽤尾插法来创建链表。
下⾯的代码就是实现了头插法和尾插法创建头节点//创建头结点Node* Create_List (){//创建头结点Node* list = (Node*) malloc(sizeof(Node) / sizeof(char));if (NULL == list) //检验创建是否成功{return FALSE;}list->next = NULL;return list;}头插法// 头插法int Insert_Last (Node* h, LinkData data){// 判断数据传⼊是否正确if (NULL == h){return FALSE;}// 创建新结点并判断创建是否成功Node* node = (Node*) malloc(sizeof(Node) / sizeof(char));if (NULL == node){return FALSE;}// 给结点成员变量赋值node->data = data;node->next = h->next; // 和头指针的不同:node->next = *h;// 让新结点变为链表的第⼀个节点h->next = node;return TRUE;}尾插法//尾插int Insert_Last(Node* h, LinkData data){if (NULL == h){return FALSE;}// 创建新结点并判断创建是否成功Node* node = (Node*) malloc(sizeof(Node) / sizeof(char));if (NULL == node){return FALSE;}// 给结点成员变量赋值node->data = data;node->next = NULL;// 让新结点变为链表的最后⼀个节点Node* tmp = h;while(tmp->next){tmp = tmp->next;}//找到链表的尾节点并令尾节点指向nodetmp->next = node;return TRUE;}扩充中间插⼊//中间插⼊法int Insert_Pos(Node *h, int pos, LinkData data){//判断链表是否存在if (NULL == h){return FALSE;}Node* tmp = h;int i;for (i = 0; i < pos - 1; i++){if (NULL == tmp){break;}tmp = tmp->next;}//判断tmp是否存在if (NULL == tmp){printf ("插⼊位置越界");return FALSE;}Node* node = (Node*) malloc(sizeof(Node) / sizeof(char)); if (NULL == node){return FALSE;}node->data = data;node->next = tmp->next;tmp->next = node;return TRUE;}。