电磁环境和电磁波传播模型.
- 格式:ppt
- 大小:2.02 MB
- 文档页数:42
电磁波传播与电磁环境控制电磁波传播是一种普遍存在于自然界和人造环境中的现象。
它们是一种电磁辐射,与光波、射线和声波一起被认为是日常生活中最普遍的形式之一。
电磁波的能量可以通过许多介质和环境传播,例如水、大气和建筑材料等。
这种能量传播在无线通信、卫星技术、雷达系统、遥感数据和医学成像等许多应用中都发挥着重要作用。
然而,电磁波辐射也可能对人类健康和环境造成负面影响。
对大多数人来说,暴露于电磁波辐射水平的最高安全限值之内是安全的。
然而,那些长期暴露在较高的电磁辐射水平下,可能会出现头痛、失眠、视力模糊和其他相关健康问题。
在事先评估和控制电磁环境方面,需要了解电磁波如何在不同介质和环境中传播,以及如何通过防护手段来保护生命和财产的安全。
电磁波在空气中和其他介质中传播的速度有所不同。
在真空中,电磁波速度为光速,大约为每秒299,792,458米。
然而,电磁波在不同介质中传播的速度不同,取决于介质中的介电常数和磁通量。
在水中,电磁波的传播速度仅为真空中光速的3/4,并且在更密集的介质中,传播速度可能会更慢。
这些因素影响了电磁波在不同媒介和环境中的传播规律。
在日常生活中,人们常常受到许多不同类型的电磁波辐射。
例如,电视、手机、微波炉和计算机等电子设备都会产生电磁波。
此外,电力线、通信工具和雷达系统等设施也会产生大量的电磁波。
在大多数情况下,这些设备使用微弱的电磁波,对人类健康和环境没有任何危害。
但是,电磁波的强度和频率可能对生命、健康和环境造成威胁。
为此,人们需要采取措施来评估和控制电磁环境。
在某些情况下,可以通过使用防护设备、使用屏蔽材料或在辐射源周围施加屏蔽来减小电磁辐射的强度。
例如,在医疗图像设备中,屏蔽可以用于防止电磁波对患者和医务人员造成伤害。
此外,在工作场所和家庭中,屏蔽也可用于减轻电磁波对人体和设备的影响。
另一种控制电磁环境的方法是尽可能减小电磁辐射的来源。
这可以通过在设计和开发电子设备时考虑减少电磁波辐射、使用更低频率的电磁波、使用更弱的电磁波以及在设备工作时采取措施来实现。
电磁波的传播与吸收知识点总结电磁波是由电场和磁场相互作用而产生的一种辐射能量,其传播与吸收具有一定的特点和规律。
本文将对电磁波的传播与吸收相关知识点进行总结,并深入探讨其机制与应用。
一、电磁波的传播方式电磁波的传播方式分为三种:地面传播、大气传播和空间传播。
1. 地面传播地面传播是指电磁波在地面上传播的方式,主要通过地面的反射和绕射来实现。
反射是指当电磁波遇到物体表面时,部分能量被物体表面反射回去;绕射是指当电磁波遇到物体边缘时,会绕过物体障碍物的边缘而传播。
2. 大气传播大气传播是指电磁波在地球大气层中传播的方式,主要通过大气层的吸收和散射来实现。
大气层对不同波长的电磁波有不同的吸收特性,例如电离层对较短波长的电磁波具有强烈吸收能力,而较长波长的电磁波相对较容易穿透。
3. 空间传播空间传播是指电磁波在真空中传播的方式,由于真空中没有物体存在,所以电磁波可以自由传播。
在空间传播中,电磁波保持其波动特性,传播速度为光速。
二、电磁波的吸收机制电磁波在传播过程中会被物体吸收,吸收的机制主要包括反射、散射和吸收。
1. 反射当电磁波遇到物体边界时,部分能量会被物体表面反射回去,反射的能量与入射能量有关系。
反射率越高,物体对电磁波的吸收越小。
2. 散射散射是指电磁波遇到物体表面或物体内部的不均匀介质时,会发生方向改变。
散射会使电磁波重新分布,一部分能量被吸收,一部分被散射出去。
3. 吸收吸收是指电磁波被物体吸收转化为其他形式能量的过程,被吸收的能量会转化为热能、化学能等。
物体的吸收能力与其材料特性有关,不同的物体对电磁波的吸收程度有所差异。
三、电磁波传播与吸收的应用电磁波的传播与吸收机制广泛应用于通信、无线电、雷达、遥感等领域。
1. 通信电磁波的传播性质是无线通信的基础,通过电磁波的传播,可以实现无线电话、无线网络、卫星通信等。
不同频段的电磁波具有不同的传播特性,可以根据需求选择合适的频段进行通信。
2. 无线电无线电是利用电磁波传播信息的技术,通过调制和解调的方式将信息转化为电磁波,并利用电磁波的传播特性进行无线通信。
电磁波传播的三级损耗模型
1、电磁波传播损耗预测目的
掌握基站周围所有地点处接收信号的平均强度及变化特点,以便为网络覆盖的研究以及整个网络设计提供基础。
2、方法
根据测试数据分析归纳出基于不同环境的经验模型,在此基础上对模型进行校正,使其更加接近实际,更准确
3、确定传播环境的主要因素
(1)自然地形(高山、丘陵、平原、水域等)
(2)人工建筑的数量、高度、分布和材料特性
(3)该地区的植被特征
(4)天气状况
(5)自然和人为的电磁噪声状况
(6)系统的工作频率和移动台运动等因素
4、常用的几种室外电波传播损耗预测模型
(1)Hata模型
广泛使用的一种适用于宏蜂窝的中值路径损耗预测的传播模型。
根据应用频率的不同,分为Okumura-Hata模型和COST 231Hata模型。
(2)CCIR模型;
(3)LEE模型;
(4)COST 231 Walfisch-Ikegami模型。
电磁波传播模式及概念
电磁波传播是指电磁场在空间中的传递过程。
电磁波是由电场和磁场交替变化的波动组成,其传播方式主要有以下几种:
1、空间传播:电磁波在自由空间(无介质)中传播,如无线通信、雷达、光通信等应用中的电磁波传播。
2、导播传播:电磁波在特定介质中传播,如光纤通信中的光波、无线电波在空气、水等介质中的传播。
3、折射:电磁波从一种介质进入另一种介质时,由于介质密度、电导率等特性不同,传播速度发生变化,导致传播方向改变。
4、反射:电磁波遇到物体表面时,部分能量被反射,形成反射波。
如雷达探测、无线通信中的信号反射等。
5、衍射:电磁波遇到障碍物或通过狭缝时,波前发生弯曲,形成衍射现象。
衍射分为菲涅耳衍射和夫琅禾费衍射两类。
6、干涉:当两个或多个电磁波在同一空间叠加时,根据波的相位差产生干涉现象,表现为亮暗相间的干涉条纹。
电磁波的概念:
电磁波是由电场和磁场交替变化的波动组成,二者互相垂直。
在任何介质中,电磁波的传播速度都与该介质的性质有关。
在真空中,电磁波的传播速度等于光速(约为3×10^8 米/秒)。
根据波长的不同,电磁波可分为无线电波、微波、红外光、可见光、紫外光、X射线、γ射线等。
我们日常生活中遇到的无线通信、广播电视、光通信等均依
赖于电磁波的传播。
电磁波传播过程中可能受到环境、介质、设备等因素的影响,如衰减、反射、折射等。
为了实现高效、稳定的电磁波传播,科学家和工程师们进行了大量研究和实践。
无线电波的传播模型分析无线电通信是人类社会发展进程中的一项重要成就,也是21世纪信息科学的重要组成部分,使用了无线电波传播技术。
无线电波是以电磁场的形式传输的,具有广泛的覆盖范围,便捷性和实时性等诸多优点。
本文将从无线电波的传播模型分析来介绍无线电通信中的传播特性和影响因素。
一、无线电波的传播模型无线电波作为电磁波,传播模型主要分为两种类型:地面波和空间波。
1.地面波地面波也叫地波,是在地球表面与大气继电器的相互作用下产生的,主要依靠短波的反射和散射。
它的传播方式具有一定的局限性,主要适用于频率较低的波段,例如中、低频的AM广播。
由于地波的传播距离有限,因此它的应用范围受到限制。
2.空间波空间波是指在大气层高度以上发送无线电信号产生的波,主要依靠大气继电器的传播方式。
空间波分为直接波、反射波和绕射波。
其中,直接波是指在天线发射的无线电波沿着一条直线传播到达接收方,主要应用于近距离的通信;反射波是指无线电波在大气层中反射,从而到达接收方;绕射波则是指无线电波在距离障碍物一定距离处发生弯曲而传输到接收方。
由于空间波传播距离远,因此被广泛应用于广播、卫星通信和移动通信等领域。
二、无线电波传播特性的影响因素1.频率无线电波向外辐射是以电磁场的形式进行的,不同频率的波对传输距离、传输损耗等有着直接的影响。
频率低的电磁波,因其波长长,具有较好的穿透性,不易受到障碍物的阻碍,有利于传播距离较远的环境;高频无线电波因其波长短,具有更弱的穿透性,主要适用于短距离传输。
根据频率的不同,无线电波传输的特性也会有所区别。
2.天线高度和功率天线是信息传输的重要载体,其高度和功率决定了无线电波的传输效果。
天线高度可以影响电波的传播距离和传输覆盖面积,高天线通信的距离更远,更通畅;天线功率的大小则决定了无线电信号传输的能力,功率越大,传输的距离越远。
在实际应用中,高度和功率的大小应该结合实际情况进行权衡,以达到最佳效果。
3.障碍物和地形无线电波的传输受到障碍物和地形的影响。
无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。
电磁波传播模型及参数估计方法研究随着科技的不断发展,人类对电磁波的利用也越来越广泛。
电磁波的传播模型和参数估计方法则成为了研究电磁波技术的重要内容。
本文将从理论与实践两个角度,分别探讨电磁波传播模型及参数估计方法的研究现状和未来趋势。
一、电磁波传播模型研究现状电磁波传播模型是描述电磁波在空气、自由空间、海水、建筑物等介质中传播特性的数学模型。
传播模型主要包括三个部分:信号源模型、传播通道模型和接收机模型。
其中传播通道模型是指对电磁波在传播通道中各种干扰和衰减等因素的建模和预测。
目前电磁波传播模型主要有两种:一种是物理模型,它通过建立计算机模型,模拟电磁波的传播规律;另一种是统计模型,它通过对采集到的实测数据进行统计分析,来推导出电磁波的传播模型。
物理模型主要基于传输线理论、辐射场理论等基础理论,通过对无线通信环境的建模计算,提供传播损耗、时延、多径传播等参数。
但是物理模型在真实场景中的适用性存在一定的局限性,因为真实环境中的电磁波传播特征非常复杂,且随环境、时间的变化而经常发生变化,具有一定的随机性。
而统计模型主要依靠实际采集的数据,对数据进行统计分析,构建历史数据库,利用数据分析、机器学习等技术得到高精度的传播模型,适用范围广,具有较好的实际应用前景。
二、电磁波参数估计方法研究现状电磁波参数估计方法是指利用统计学、数学分析等手段,对电磁波的传播距离、传播速度、折射率、频率响应等参数进行估计和推导的技术方法。
电磁波参数估计方法主要包括三类:最小二乘法、波束形成法和卡尔曼滤波法。
最小二乘法是一种应用最广泛的参数求解方法,它通过求解误差平方和最小的线性方程组来得到最优解,适用范围广,但精度有限。
波束形成法通过利用多个天线接收信号后,对信号进行加权和相位校正等处理,从而实现对信号方向性的提高和参数估计精度的提高。
波束形成法可以在固定天线数的情况下提高接收信号的信噪比,但是需要消耗大量的计算资源。
卡尔曼滤波法是指对状态量进行预测和估计,并实时更新和调节状态量的方法,适用于非线性和信号噪声较大的情况,但容易受到系统模型误差的影响。