电动机三种典型振动故障诊断
- 格式:doc
- 大小:594.50 KB
- 文档页数:9
根据声音判别电动机故障的方法电动机在正常运行或出现故障时会发出不同的声响。
从事电气维护保运工作多年的老电工,一般都遇到过各种各样的电动机故障,所以有经验的老电工听听电动机运行的声音,便可根据经验判断出电动机的故障所在。
1、“嗡嗡”的电磁噪声电动机“嗡嗡”的电磁噪声,主要是由于气隙中磁场产生周期性变化的径向力或不平衡的磁拉力使定、转子铁芯伸缩和振动引起的。
电磁噪声的大小与定子铁芯结构刚度有密切关系,对于一些接近铁芯自然振动频率的力波,即使其振幅不大,也可能产生严重噪声。
2、很大的“嗡嗡”声这种声音主要是由于电动机三相电流不平衡造成的,因为电流不平衡会产生与负载有关的两倍电源频率的电磁噪声,遇到这种情况应立即停机,排除故障后再投入运行。
3、时高时低的“嗡嗡”声电动机转速变慢,振动加剧,同时发出时高时低的“嗡嗡”声,这多是鼠笼型转子断条,或者绕线型转子绕组接头断开所造成的。
4、低沉的吼叫声电动机带负荷运行时电源电压过低或负荷过重、定子绕组首末端接线错误、电动机缺相都会使电动机难以启动、转速变慢,同时发出低沉的吼叫声。
5、“嘶嘶”或“噼啪”的放电声电动机定子绕组轻微接触不良或绝缘损坏漏电时,会产生轻微的“嘶嘶”放电声,严重时会发出“噼啪、噼啪”的放电声。
6、轴承室发出的“咝咝”声这是轴承缺少润滑脂发出的声音,加注润滑脂后声音会明显减小或消失,一般不是故障,电动机可继续运行。
7、轴承室发出的“嘎吱、嘎吱”声这是轴承内滚柱的不规则运动产生的声音,它与轴承的间隙、润滑脂的状态有关。
如果电动机只有这种声音而无其他不正常现象,且加注润滑脂后声音明显减小或消失,一般也不是故障,电动机可继续运行。
8、“叮叮当当”的声音这是机械机构发出的声音。
可能是连轴器或皮带轮与轴之间松动、键或键槽磨损所致。
也可能是风叶碰撞风罩或风罩内有杂物时发出的撞击声。
9、“嚓嚓”的碰撞声当电动机定子与转子相擦时,会产生刺耳的“嚓嚓”碰撞声。
这多是因为轴承松动、损坏、磨损过大,或者轴承端盖磨损造成轴承跑套所致。
电动机的振动分析与故障诊断电动机在工业生产中扮演着重要的角色,但长期使用和不良操作可能导致其振动和故障。
本文将探讨电动机振动的原因以及故障的诊断方法,并提供解决这些问题的建议。
一、振动分析1. 振动的原因电动机振动的原因可能包括以下几个方面:a. 不平衡负载:不平衡负载可能是由于旋转部件的不均匀质量分布引起的,导致电动机产生振动。
b. 轴承故障:电动机的轴承在长期使用后可能会磨损、断裂或过度磨损,这会导致振动。
c. 轴偏心:轴偏心可能是由于组装问题或轴的变形引起的,会导致电动机产生振动。
d. 磁场不均匀:电动机的磁场不均匀可能与电磁线圈的设计和制造有关,这也会导致振动。
e. 失衡转子:电动机转子的失衡可能会导致振动,特别是在高速旋转时更容易出现问题。
2. 振动的影响电动机的振动不仅会影响机器的正常运行,还可能导致以下问题:a. 能源浪费:振动会导致电动机能量的损失,从而引起额外的能源消耗。
b. 设备损坏:持续的振动会导致电动机零部件的磨损加剧,甚至可能引起断裂或脱落。
c. 噪音污染:振动使电动机产生噪音,如果超过了正常水平,可能会引起噪音污染。
二、故障诊断1. 振动系统监测为了正确地诊断电动机振动问题,可以使用振动监测系统来采集数据并进行分析。
这些系统通常包括振动传感器、数据采集器和分析软件。
2. 数据分析通过收集到的振动数据进行分析,可以找到故障的迹象和原因。
常见的数据分析方法包括:a. 频谱分析:将振动信号转换成频谱图,通过分析频谱图可以确定故障频率和振动幅值。
b. 轨迹分析:通过绘制轴承振动的运动轨迹图,可以确定轴承的故障类型。
c. 时域分析:对振动信号进行时间域分析,可以了解振动信号的波形和振动特征。
3. 故障诊断根据分析结果,可以判断电动机的故障类型,并采取相应的修复措施。
常见的故障类型包括轴承故障、不平衡、磁场不均匀等。
三、解决方案1. 平衡校正对于因不平衡而引起的振动,可以采用平衡校正的方法来解决问题。
电机震动常见于转子不对中包括轴系不对中和轴承不对中两种情况。
轴系不对中是指转子联接后各转子的轴线不在同一条直线上。
轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。
通常所讲不对中多指轴系不对中。
不对中的振动特征:(I)最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;(2)平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主;(3)不对中在联轴节两端径向振动的相位差接近180度;(4)对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度案例:某卧式高速泵振动达16.0mm∕s,由振动频谱图可以看出,50Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。
再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。
O2004006008001,000UOO1,4001,6001,8002.000解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。
检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。
机械存在松动时,极小的不平衡或不对中都会导致很大的振动。
通常有三种类型的机械松动。
第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为l×o第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除IX外,还存在相当大的2X分量,有时还激发出1/2X 和3X振动分量。
第三种类型的松动是由于部件间不合适的配合引起的,产生许多振动谐波分量,如IX、2X、……,nX,有时也会产生1/2X、1/3X、……等分数谐波分量。
这时的松动通常是轴承盖里轴瓦的松动、过大的轴承间隙、或者转轴上零部件存在松动。
油田电动机振动分析及检修应用油田电动机是油田生产中的重要设备之一,其运行稳定性对生产效率和安全性具有重要影响。
随着电动机使用年限的增长,振动问题逐渐成为了油田电动机运行过程中的一个常见故障,需要及时分析振动原因并进行检修维护。
本文将着重探讨油田电动机振动分析及检修应用。
一、油田电动机振动原因分析1. 不平衡振动:不平衡振动是油田电动机常见的振动故障,一般是由于电动机转子质量不等、安装不平衡或转子动平衡破坏等原因引起的。
这种振动通常呈周期性,且振幅较大,严重时可能导致设备损坏。
2. 磨损振动:油田电动机在长时间运行后,由于轴承、齿轮等零部件的磨损,可能会产生磨损振动。
这种振动通常呈现渐增的趋势,对设备的损害程度较大。
3. 谐振振动:谐振振动是由于设备固有频率与外界激振频率相符合而引起的振动。
在油田环境中,由于井口震动、井下冲击等因素可能导致谐振振动现象。
4. 强迫振动:强迫振动是由外界周期性激振引起的振动现象,油田电动机位于振动环境较为恶劣的地区,可能会受到地震、爆破等外力的激振影响。
二、油田电动机振动检修应用1. 振动测量与分析:通过振动测量仪器对油田电动机进行振动测试,并对振动频谱进行分析,可以快速准确地确定振动故障的类型和原因。
2. 轴承检修:轴承是引起油田电动机振动的关键部件,一旦轴承损坏,会导致严重的振动问题。
定期检查轴承的润滑状态和磨损程度,并及时更换磨损严重的轴承,可以有效减少振动故障的发生。
3. 动平衡检修:当发现油田电动机存在不平衡振动问题时,需要进行动平衡检修。
通过加重或去重的方式,调整转子的质量分布,使得电动机在运转过程中达到较低的振动水平。
4. 谐振振动控制:谐振振动一旦发生,可能会对设备造成严重破坏,因此需要对设备进行谐振振动分析和控制。
靠近谐振频率,应采取适当的措施来减小设备的振动响应。
5. 振动消除:对于受到外界强迫振动影响的电动机,可以采取隔离措施来减小外界振动对电动机的影响,如采用减振支架、减振垫等措施。
电动机振动异常的识别和诊断来源:亚泰光电一直以来,振动检测都是发电机和感应电机状态检测的主要手段,通过分析转子的振动信号来获取设备的诊断信息。
引起电动机振动的原因很多,产生振动的部位和振动的特征又各不相同。
如果能够把电动机各种故障原因引起的振动特征和有关因素加以研究分析,将有助于电动机振动异常的识别和诊断。
电动机典型故障分析1、转子条断裂或松动等故障转子条或段环断裂、转子条与端环接触不良以及转子铁芯短路均产生1倍转速频率的振动及其两侧的极通过频率边带。
此外,这些故障常产生转频的二、三、四、五阶段谐波两侧的极通过频率边带。
转子条通过频率及其谐波频率两侧的2FL边带说明转子条存在松动或脱开的情况。
转子条松动与端环间引起的电弧常显示出很高幅值的2RBPF且伴随2FL边带,但是1RBPF频率的振动增幅不增大。
转子热弯曲可能导致转子与定子碰磨,产生越来越大的电磁力和不平衡力,生成更多的热量,促使转子更加弯曲。
转子热弯曲时,转速频率的振值随时间延长而增大,振幅值受定子电流的影响较明显,振动特征类似与转子不平衡。
热弯曲故障明显时,同一转子的两侧轴承向1*相位差约180°。
同侧轴承轴向的上与下、左与右的相位差为180°。
2、轴承故障诊断频谱轴承故障主要是由于负载过重、润滑不良、加工装配质量不佳、轴电流、异物进入等原因,引起轴承磨损、表面剥落、腐蚀、碎裂、锈蚀胶合等现象。
轴承出现故障后,将会引起电动机的异常振动。
此外,当电动机转子质量分布不均匀或与拖动负载装置轴心不对中时,转子重心将产生偏移,该重心偏移在转子旋转时会产生单边离心力以及不对称电磁拉力,从而引起转子支撑力的变化,这种变化将导致机械振动,使轴承系统疲劳直至产生各种轴承故障。
轴承故障有一组独特的故障频率,据此可识别轴承问题。
在电流频谱中这些故障频率峰值的存在指示轴承故障,劣化的程度根据这些峰的幅值评估大小。
3、转子不平衡电动机转子质量分布不均匀时,将产生重心偏移,不平衡重量在电动机旋转时产生单边离心力,引起变化的支撑力,产生机械振动。
电动机振动原因和故障的处理1振动原因电动机振动的原因主要有三个方面,电磁方面、机械方面、机电混合方面。
电磁方面的原因:1)电源方面:三相电压不平衡,三相电动机缺运行。
2)定子方面:定子铁心变椭圆、偏心、松动,定子绕组发生断线、接地击穿、匝间短路、接线错误、三相电流不平衡。
例如:纸厂4号机排风机电机检修前发现定子铁心有红色粉末,怀疑定子铁心有松动现象,但未处理试转后,电机发出刺耳尖叫声,更换一台定子后故障排除。
3)转子故障,转子铁心变椭圆、偏心、松动。
转子短路环和笼条开焊、断裂。
绕线式转子三相绕级不平衡,绕组发生断线、接地、匝间击穿、接线错误、电刷接触不良等。
机械方面原因:1)电机本身方面:转子不平衡、转轴弯曲、滑环变形定转子气隙不匀、定转子磁力中心不一致。
轴承故障:基础安装不良、机械机构强度不够、共振、地脚螺丝松动、电机风扇损坏。
由于轴承原因引起的振动就更多,轴承运行接近使用寿命时,电机振动就开始逐渐增大,并且可以听到轴承运行的杂音,这时可能发生研轴、研盖和出现扫膛的现象。
2)与联轴器配合方面,联轴器损坏,联轴器连接不良,联轴器找中心不准,负载机械不平衡系统共振。
例如:1号机1号污水泵电机,运行中振动一直偏大,电机检查无任何问题,空载也一切正常,检查出现电机找正中心差太多,钳工重新进行找正后,电机振动消除。
机电混合原因:1)电动振动往往是气隙不匀,引起单边电磁拉力,而单边电磁拉力又使气隙进一步增大,机电混合作用表现为电机振动。
2)电机轴向串动,由于转子本身重力或安装水平以及磁力中心不对引起的电磁拉力造成电机轴向串动,引起电机振动加大,严重情况轴瓦磨损,使轴瓦温度迅速升高。
2振动原因查找要想消除电动机振动,首先要查清产生振动的原因,只有找到振动的原因,才能采取针对性措施,消除电动机振动。
1)电动机未停机之前,用测振表检查各部份振动情况,对于振动较大部位按垂直水平轴向三个方面详细测试振动数值,如果是地脚螺丝松动或轴承端盖螺丝松动,则可直接坚固,坚固后在测其振动大小,观察是否有消除或减轻。
电机振动故障诊断方法山西防爆电机(集团)有限公司周秀明(Shanxi Explosion-proof Motor (Group) Co., LTD Zhou xiuming)摘要:提出了分析诊断振动故障的三个步骤。
并归纳出电机在各种运行条件下振动故障的信号特征,为分析处理振动故障提供了操作性极强的诊断方法。
Abstract:Presents three steps of an analysis and diagnosis of libration fault, and sums up under different operating conditions the signal characteristics of the libration fault of the motor, provides a strong diagnostic methods in operation for analyse and dispose the fault.关键词:电机振动故障诊断key-words: motor libration fault diagnosis生产过程中,常常会遇到电机的振动问题。
在处理振动故障时,遵循科学的诊断方法和诊断技术是非常重要的,否则事倍功半,甚至一筹莫展。
振动故障一般具有综合性和复杂性,分析处理起来往往有一定难度。
所以,处理振动故障时,必须思路清晰、步骤明确、找出特征、针对处理。
我们在长期的工作实践中,总结出了一套电机振动故障的分析处理方法,现作一简单介绍。
一.振动故障的分类:1.按性质分类:突发性、渐进性、原发性2.按程度分类:轻微、一般、严重3.按历时分类:间断、持续4.按部位分类:转子、轴承、壳体、基础5.按责任分类:人为、自然6.按频率分类:特低频、低频、中频、高频二.分析诊断的三个步骤:1.对信号特征作出识别,得出表面原因(一次原因)。
可跟踪故障的变化和发展。
2.对信号特征作出机理性阐述,得出深层次原因(二次原因)。
电动机三种典型振动故障诊断电动机三种典型振动故障的诊断1 引言某造纸厂一台电动机先后出现了三种典型的振动故障:(1) 基础刚性差;(2) 电气故障;(3) 滚动轴承损坏。
现将诊断分析及处理过程进行简单的描述和总结:此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。
电动机运行时振动较大,基础平台上感觉共振强烈。
没有发现其他异常。
电动机结构型式及技术参数如下:三相绕线型异步电动机型号:yr710-6 额定功率:2000kw额定转速:991r/min 工作频率:50hz额定电压:10kv极数:6滚动轴承:联轴节端nu244c3; 6244c3末端: nu244c3 (fag)针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析:2 电动机基础刚性弱的诊断过程2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。
首先,断开联轴节,进行电动机单试。
测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座水平、垂直方向的工频(1×n)振动相位角。
将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。
之后,重新找正对中,带负荷运行进行测试,测试内容同上。
测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。
图1图2 振动数据侧视图图3 俯视振动数据图图4 电动机m1-h点振动频谱图(2001年08月21日)电动机振幅径向方向大,轴向方向小。
由图4可见。
电动机单试时m1-h点振动频谱图可以看出工频成分是振动的主要频率成分,高次谐波成分不明显,可排除存在松动碰磨以及对中问题的可能性;50hz、100hz等市电频率的谐波成分峰值较小,而且,在电动机断电瞬间的前后变化不明显,通频幅值也无明显降低,由此可排除电磁激振力存在的可能性; 初步怀疑不平衡是主要的激振力。
电动机三种典型振动故障的诊断
1 引言
某造纸厂一台电动机先后出现了三种典型的振动故障:
(1) 基础刚性差;
(2) 电气故障;
(3) 滚动轴承损坏。
现将诊断分析及处理过程进行简单的描述和总结:
此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。
电动机运行时振动较大,基础平台上感觉共振强烈。
没有发现其他异常。
电动机结构型式及技术参数如下:
三相绕线型异步电动机
型号:yr710-6 额定功率:2000kw
额定转速:991r/min 工作频率:50hz
额定电压:10kv
极数:6
滚动轴承:联轴节端nu244c3; 6244c3
末端: nu244c3 (fag)
针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析:
2 电动机基础刚性弱的诊断过程
2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。
首先,
断开联轴节,进行电动机单试。
测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座
水平、垂直方向的工频(1×n)振动相位角。
将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。
之后,重新找正对中,带负荷运行进行测试,测试内容同上。
测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。
图1
图2 振动数据侧视图
图3 俯视振动数据图
图4 电动机m1-h点振动频谱图(2001年08月21日)
电动机振幅径向方向大,轴向方向小。
由图4可见。
电动机单试时m1-h点振动频谱图可以看出工频成分是振动的主要频率成分,高次谐波成分不明显,可排除存在松动碰磨以及对中问题的可能性;50hz、100hz等市电频率的谐波成分峰值较小,而且,在电动机断电瞬间的前后变化不明显,通频幅值也无明显降低,由此可排除电磁激振力存在的可能性; 初步怀疑不平衡是主要的激振力。
为了能够准确的找出引发电动机异常工频振动的故障原因,有必要参考各测点振动相位。
通过表1可以看出,电动机轴承座在水平垂直两方向的振动相位是精确相同的,而不是通常不平衡状态下的相位差90°,这说明电动机的振动是一种定向振动,而不是单纯的不平衡[1]。
经检查,电动机各地脚螺栓均未发现松动迹象,基础台板及支撑柱的振幅与电动机几乎相等,说明基础并未吸收电动机的振动,而是同电动机一同作定向振动,这就反映出支撑基础较为
薄弱,刚性不足(据了解,此电动机为临时增加的设备,基础的设计建造并未依据有关的标准进行),容易在电动机振动激振力的作用下,发生受迫振动,反过来又加剧电动机的振动。
在这种情况下长期运行容易造成电动机及基础的损坏,所以立即停机进行处理。
厂方增加了混凝土中间支撑柱,以加强基础的刚性。
表2列出了基础加固后电动机各点振动数据,可以看出,经过基础加固后,电动机定向振动的现象消失,振动状况明显改善。
3 电动机电磁故障的诊断过程
此后电动机连续运转三个月后,因内部零件松动脱落而烧损。
经电动机制造厂家检修后开车,振动较大。
2002年1月6日对电动机作振动分析,进行与前次相同的测试,发现振动随负荷的增加而增加,周围楼板共振明显,中间支撑柱振幅较大。
分析采集的振动数据发现:
参考图4(2001年8月21日对电动机测试时采集的m1-h点的振动频谱图),当时电动机振动工频幅值较高,其他频率幅值较小,无电磁方面的异常。
图5为2002年1月6日采集的m1-h点的振动频谱图,此时通频幅值较前次增大,出现二倍频(33.10hz)并且幅值最高,同时出现了较多的高频成分。
图5 电动机m1-h点振动频谱(2002年01月06日)
50hz、100hz等市电频率及其谐波成分峰值较小,而且,在电动机断电瞬间前后的变化不明显,通频幅值也无明显降低,由此可排除市电频率干扰的可能性。
为了判断二倍频产生的原因,利用entek data pactm 1500数据采集器的停车瀑布图采集功能,作出电动机断电过程振动频谱瀑布图(图略)。
由此可以明显的看出电动机断电前后振动的变化。
在断电瞬间,峰值一直较高的二倍频立即大幅度减小(见图6),这说明二倍频不是由机械原因产生的,而是由电磁原因产生的,可能的原因有定子绕组不对称、磁极绕组存在匝间断路、气隙不均匀等[2]。
二倍频是此电动机振动的主要振动频率,在楼板上主要的振动频率也是二倍频,楼板是受此频率的激励而发生共振(见图7呈现出典型的拍振波形,明显的看出电动机与楼板的共振),如果消除或减弱了此振动频率成分,就能避免或减轻基础的共振,所以消除二倍频是减小电动机振动的关键。
图6 电动机m1-h点断电过程33.10hz频率峰值趋势图
图7 电动机周围楼板的振动时域波形图
为了能够准确的找出电动机电气故障,有必要对振动频谱进行细化分析。
图8为m1-h点振动的真细化频谱图,明显看到工频及二倍频的两侧都有边频出现,经计算,边频为电动机转子偏心产生的频率(pp)对各倍频的调制而出现的,这是电动机转子偏心典型的故障图谱。
图
中,pp为电动机转子偏心产生的频率,lf为市电频率50hz,rpm为电动机的工频。
图9为50hz左右频谱的放大显示,由此可以判断出此电动机目前还存在明显的转子偏心缺陷。
图8 电动机m1-h点振动真细化频谱图
图9 电动机m1-h点振动频谱局部放大图
4 电动机轴承故障的诊断过程
与此同时,特别针对此电动机的滚动轴承进行测试和分析,应用entek公司特有的振动尖峰能量(gse)频谱技术及分析软件odyssey附带丰富的滚动轴承库数据,发现了电动机轴承的损坏故障。
图10是对m1-h点所作的振动尖峰能量频谱,其中发现了轴承的故障特征频率峰值:保持架故障特征频率ftf、轴承内圈故障特征频率bpir的存在,图11为m2-h点的峰值振动尖峰能
量频谱,同样发现了轴承的故障特征频率峰值,说明电动机的轴承已经发生了损伤。
对此,建议更换电动机轴承,对电动机进行检查和检修,加强基础支撑的刚性。
图10 m1-h点振动尖峰能量频谱图(gse)
图11 m2-h点振动尖峰能量频谱图(gse)
但由于生产的需要,厂方没有更换轴承,而是继续监护运行。
两天后此电动机联锁停车,经拆检,发现联轴节侧轴承损坏,轴承内圈破裂,断裂的碎块将电动机卡死,造成停车。
5 结束语
在对电动机进行振动故障诊断过程中, 应注意下几点:
(1) 细致认真的日常检测和维护是防止电动机故障的有效手段;
(2) 利用振动相位可以区分表现近似的故障,如不平衡、基础刚性弱和对中不良等;
(3) 分析电动机断电惰走振动频谱瀑布图是一个区分电磁故障与机械故障的重要手段;
(4) 当谱图中出现工频的高次谐波频率成分时,有时与市电频率及其倍频相当的接近,应对50hz、100hz作细化处理,如果电动机有电气方面的故障,就会在此频率两边出现边频,只有通过细化处理才能够清晰的显示出来;
(5) 对于采用滚动轴承的电动机,对轴承作尖峰能量(gse)幅值和频谱分析是判断轴承故障的有力手段;
(6) 应尽量采用多种检测手段对电动机故障进行分析,诸如噪声诊断,电流频谱诊断,温度检测,油液磨屑检测等。
经过多角度的分析,能够全面准确的判断电动机故障的原因。