七年级数学数轴教案
- 格式:doc
- 大小:74.50 KB
- 文档页数:3
人教版七年级上册数学数轴教案七年级上册数学数轴教学设计(四篇)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇一【学习目标】1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.【基础知识精讲】1.数轴三要素及数轴画法(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.图2—1(2)正数大于0,负数小于0,正数大于负数.图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数.如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.如:-3和3,11和-,-3.2和+3.2…… 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.(3)相反数是它本身的数是0.说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.【学习方法指导】[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.解答:图2—4 -3<-111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是…()图2—5 a.m>0,n<0 b.m>0,n>0 c.m<0,n<0 d.m <0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n 即n<0.解答:m>0,n<0.选a.[例3]数轴上距离原点3个单位长度的数是_____.点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.记住:类似的题目答案一般会有两个数.解答:+3和-3 [例4]填空:(1)-5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点a和b,它们两点间的距离是5,则这两个数分别是_____和_____.点拨:画出数轴,表示出a和b.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.图2—6 解答:+2.5和-2.5.[例6]比较大小(1)0_____-(2)-1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2图2—7(3)>(正数大于负数)【拓展训练】求下列各数的相反数.(1)-(+7)(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)人教版七年级上册数学数轴教案七年级上册数学数轴教学设计篇二人教版七年级数学上册数轴说课稿一:教材分析:本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
1.2数轴第1课时数轴1.掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来;能说出数轴上已知点所表示的数;2.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法;3.使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.重点正确掌握数轴画法和用数轴上的点表示有理数.难点有理数和数轴上的点的对应关系.一、导入新课1.请大家看,这是一支温度计(展示温度计图片),它的用途大家是知道的,但是你会读温度计吗?请同学们读出此时温度计所显示的温度.这样看来,液面所在的刻度就表示此时的温度,这说明温度计上的刻度与一些有理数建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.2.在一条东西方向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.二、探究新知1.观察温度计的刻度规律,你能发现什么?学生观察温度计,从温度计上发现:刻度有正有负也有0.结合有理数包含正数、零和负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O表示,由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向,正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢?知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)2.这样能用来表示全体有理数的图形我们就找到了,我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向和单位长度)于是:规定了原点、正方向和单位长度的直线叫做数轴.归纳数轴的规范画法:(1)三要素:原点、正方向和单位长度;(2)刻度要在直线上,且是细短线;数字在下,字母在上.3.动手操作、感受数轴的画法、巩固对数轴的认识.教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.三、课堂练习1.判断下列图形哪些是数轴?2.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:1.5, 0, 2, -2, 2.5.3.如图:写出数轴上的点A,B,C,D,E,F表示的有理数.四、课堂小结1.数轴的三要素是什么?2.在数轴上,正数和负数分别是怎样排列的?五、课后作业教材第16页习题第2,3,4题.本节课从生活中的实际入手,由温度计的具体形象,引出数轴的概念,总结归纳出数轴的三要素和数轴上数字的排列规律.要求学生学会画出数轴,学会在数轴上表示出有理数,初步渗透数形结合的思想.第2课时在数轴上比较数的大小1.通过观察数轴上点的位置关系,初步学会利用数轴比较有理数的大小;2.初步认识图形和数量的对应关系.重点负数和零的大小比较.难点如何启发学生自己得到有理数的大小比较的方法,并认识其合理性.一、导入新课在小学,我们已知学会比较两个正数的大小,那么,引进负数后,怎样比较两个有理数的大小呢?例如:1与-2哪个大?-1与0哪个大?-3与-4哪个大?二、探究新知1.探寻规律(教材P17探索)(1)请任意写出两个正数,在下面的数轴上画出表示它们的点.你所写的两个数是________>________,观察在数轴上表示它们的点,我们可以发现,较大的数的对应点在较小的数的对应点的________边.(2)生活中,同学们能判断两个气温的高低吗?①某日哈尔滨的气温为-9 ℃,泉州的气温为12 ℃,该日________的气温较高;②把温度计如下图横放,我们可以发现,________的气温会显示在右边.2.总结规律(教材P17概括)规律1:把温度计横过来放,就像一条数轴,类似于气温的高低,我们可以知道,在数轴上表示的两个数,右边的数总________左边的数.规律2:从数轴上可以发现,表示正数的点都在原点的________,表示负数的点都在原点的________,所以,我们说:正数都________零,负数都________零,正数都比负数________.3.用“>”、“<”或“=”填空:1________-2;-1________0;-3________-4.三、课堂练习1.判断下列各数是否存在?如果存在,把它们写出来.(1)最小的正整数:________,_________________;(2)最小的负整数:________,________________;(3)最大的正整数:________,_____________________;(4)最小的整数:________,______________________________.2.如图所示的是数a,b在数轴上的位置,下列判断正确的一项是()A.a<0B.a>1C.b>-1 D.b<-1四、课堂小结1.在数轴上表示的数大小是怎样排列的?2.怎样利用数轴比较两个负数的大小?五、课后作业教材第19页习题2.2第5,6题.教师引导学生通过结合有理数在数轴上的位置,发现正数、零和负数在数轴上的位置关系,确定了正数、零和负数的大小比较法则,并能通过数轴来比较任意两个非确定数的大小,尤其是要注意掌握比较两个负数的大小.。
《数轴》七年级数学教案(精选6篇)《数轴》七年级数学教案1教学目标1.了解数轴的概念和数轴的画法,掌握数轴的三要素;2.会用数轴上的点表示有理数,会利用数轴比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议一、重点、难点分析本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。
难点是正确理解有理数与数轴上点的对应关系。
数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础二、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的。
重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
《数轴》七年级数学教案2教学目标:1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。
重点难点:1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。
2、有理数和数轴上的的点的对应关系。
教学方法:合作探究交流学法指导:观察归纳概括教学过程:一、情景引入:(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。
人教版七年级数学上册数轴教案一、教学目标:1. 让学生理解数轴的概念,掌握数轴的基本性质。
2. 培养学生借助数轴进行有理数的计算和解决问题能力。
3. 渗透数形结合的数学思想,提高学生的逻辑思维能力。
二、教学内容:1. 数轴的定义及表示方法。
2. 数轴上点的特点及坐标表示。
3. 数轴上的距离和方向。
4. 数轴在有理数计算中的应用。
三、教学重点与难点:1. 重点:数轴的概念、性质及应用。
2. 难点:数轴上点的坐标表示,数轴在有理数计算中的应用。
四、教学方法:1. 采用自主学习、合作探究的教学方法,让学生在实践中掌握数轴的知识。
2. 利用多媒体课件,直观展示数轴的特点和应用,提高学生的学习兴趣。
3. 通过例题和练习,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 引入:讲解数轴的定义及表示方法,让学生初步认识数轴。
2. 新课:讲解数轴上点的特点及坐标表示,引导学生掌握数轴的基本性质。
3. 应用:讲解数轴在有理数计算中的应用,让学生学会借助数轴解决问题。
4. 练习:布置练习题,让学生巩固所学知识。
5. 小结:总结本节课的主要内容,强调数轴的概念和应用。
6. 作业:布置课后作业,巩固所学知识。
六、教学策略与方法1. 采用问题驱动的教学方法,引导学生主动探究数轴的性质。
2. 通过小组讨论,培养学生合作学习的意识,提高学生的沟通能力。
3. 利用实物模型或电子课件,直观展示数轴的动态变化,增强学生的空间想象力。
4. 设计具有层次性的练习题,满足不同学生的学习需求,让每个学生都能在实践中提高自己的能力。
七、教学评价1. 课堂表现评价:关注学生在课堂上的参与程度、提问回答、合作交流等情况,了解学生的学习状态。
2. 练习题评价:通过学生完成的练习题,评估学生对数轴知识的掌握程度。
3. 课后作业评价:检查学生课后作业的完成情况,了解学生对数轴知识的巩固程度。
4. 学生自我评价:鼓励学生反思自己的学习过程,发现自身不足,提高自我学习能力。
数学数轴教案(优秀4篇)篇一:初一数学数轴教案篇一教学目的使学生灵活应用解方程的一般步骤,提高综合解题能力。
重点、难点1、重点:灵活应用解题步骤。
2、难点:在“灵活”二字上下功夫。
教学过程:一、一、复习1、一元一次方程的解题步骤。
2、分数的基本性质。
二、新授例1.解方程(见课本)分析:此方程的分母是小数,如果能把各分母化为整数,那么就可以用前面学过的方法求解了。
那么怎样化简呢?引导学生分析,并求出方程的解。
交流体会。
例2.解方程(见课本)例3:已知公式V=中,V=120、D=100、∏=3.14,求n的值。
(保留整数)分析:在公式中,V、D、∏都已知,只要把它们的值代入公式,就可以得到关于n的一元一次方程。
三、巩固练习。
根据公式V=V0+at,填写下列表中的空格。
V V0 a t0 2 848 3 1415 5 476 13 7四、小结。
若方程的分母是小数,应先利用分数的性质,把分子、分母同时扩大若干倍,此时分子要作为一个整体,需要补上括号,注意不是去分母,不能把方程其余的项也扩大若干倍。
五、作业。
教科书第13页第3题篇二:知识结构篇二有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方〖〗向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
篇三:初一数学数轴教案篇三教学目的1、了解一元一次方程的概念。
2、掌握含有括号的一元一次方程的解法。
重点、难点1、重点:解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。
初一数学数轴教案(11篇)初一数学数轴教案篇1教学目标1.使同学正确理解数轴的意义,把握数轴的三要素;2.使同学学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使同学初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确把握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从同学原有认知结构提出问题1.学校里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待同学回答后,老师指出,这就是我们本节课所要学习的内容——数轴.二、讲授新课让同学观看挂图——放大的温度计,同时老师赐予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.详细方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假如所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问同学:在数轴上,已知一点P表示数-5,假如数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?假如单位长度转变呢?假如直线的正方向转变呢?通过上述提问,向同学指出:数轴的三要素——原点、正方向和单位长度,缺一不行.三、运用举例变式练习例1画一个数轴,并在数轴上画出表示以下各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最终引导同学得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导同学阅读教材后指出:数轴是特别重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们讨论问题供应了新的方法.本节课要求同学们能把握数轴的三要素,正确地画出数轴,在此还要提示同学们,全部的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再讨论.五、作业1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.以下各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};初一数学数轴教案篇2教学目的:理解一元一次方程解简洁应用题的方法和步骤;并会列一元一次方程解简洁应用题。
北师大版数学七年级上册2.2《数轴》教案一. 教材分析《数轴》是北师大版数学七年级上册第二章第二节的内容。
数轴是数学中的重要概念,是实数与几何之间联系的桥梁。
通过数轴,学生可以直观地理解实数的大小关系、相反数、绝对值等概念。
本节内容为学生提供了数形结合的工具,为后续的代数运算和函数学习打下基础。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对相反数、绝对值有一定的了解。
但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。
此外,学生可能对数轴上点的表示方法、实数的分类等知识点有疑问,需要教师进行解释和引导。
三. 教学目标1.知识与技能:使学生了解数轴的定义、特点,学会在数轴上表示实数,理解数轴与实数的关系。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力。
四. 教学重难点1.重点:数轴的定义、特点,数轴上点的表示方法。
2.难点:数轴与实数的关系,实数的分类。
五. 教学方法采用问题驱动、合作探究的教学方法。
通过设置问题,引导学生观察、操作、思考,培养学生数形结合的思维方式。
同时,鼓励学生互相交流、讨论,提高学生的合作能力。
六. 教学准备1.准备数轴教具和实物模型,以便学生直观地理解数轴。
2.准备练习题和测试题,以便巩固所学知识。
七. 教学过程1.导入(5分钟)利用数轴教具和实物模型,引导学生观察数轴的特点,提问:“数轴是什么?”、“数轴有什么作用?”等问题,激发学生的兴趣,引发学生的思考。
2.呈现(10分钟)教师通过讲解和演示,介绍数轴的定义、特点,以及数轴上点的表示方法。
同时,引导学生理解数轴与实数的关系,解释实数的分类。
3.操练(10分钟)学生分组进行数轴操作,包括在数轴上表示给定的实数、判断两个实数的大小关系等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和分析,巩固数轴知识。
七年级上册数学数轴教案4篇七班级上册数学数轴教案1教学目标1,把握数轴的概念,理解数轴上的点和有理数的对应关系; 2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会依据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数学问重点教学过程〔师生活动〕设计理念设置情境引入课题老师通过实例、课件演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?〔多媒体出示3幅图,三个温度分别为零上、零度和零下〕问题2:在一条东西向的公路上,有一个汽车站,汽车站东3 m 和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.〔小组商量,沟通合作,动手操作〕创设问题情境,激发同学的学习热忱,发觉生活中的数学点表示数的感性熟悉。
点表示数的理性熟悉。
合作沟通探究新知老师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让同学在商量的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必需满意什么条件?从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特殊强调数轴三要求。
从嬉戏中学数学做嬉戏:老师预备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,如今请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,假如规定第3个同学为原点,嬉戏还能进行吗?同学嬉戏体验,对数轴概念的理解查找规律归纳结论问题3:1,你能举出一些在现实生活中用直线表示数的实际例子吗? 2,假如给你一些数,你能相应地在数轴上找出它们的精确位置吗?假如给你数轴上的点,你能读出它所表示的数吗?3,哪些数在原点的左边,哪些数在原点的右边,由此你会发觉什么规律?4,每个数到原点的距离是多少?由此你会发觉了什么规律?〔小组商量,沟通归纳〕归纳出一般结论,教科书第12的归纳。
数轴教案(最新8篇)初一数学数轴教案篇一教学目的:(一)知识点目标:1、了解正数和负数是怎样产生的。
2、知道什么是正数和负数。
3、理解数0表示的量的意义。
(二)能力训练目标:1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2、会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:引入新课:1、活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:1、自然数的产生、分数的产生。
2、章头图。
问题见教材。
让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。
根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。
展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
七年级数学《数轴》教案三篇规定了原点,正方向和单位长度的直线叫数轴。
其中,原点、正方向和单位长度称为数轴的三要素。
下面就是我给大家带来的七年级数学《数轴》教案三篇,希望能帮助到大家!七年级数学教案1一、教学目标【知识与技能】了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点【教学重点】数轴的三要素,用数轴上的点表示有理数。
【教学难点】数形结合的思想方法。
三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。
我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?七年级数学教案2一、教学内容分析1.2有理数1.2.2数轴。
人教版初中七年级上册数学数轴教案一、教学目标1.掌握数轴的定义和基本性质;2.了解数轴上整数点的名称;3.学会在数轴上表示正数、负数及零;4.掌握在数轴上求相反数和绝对值的方法;5.能够应用数轴知识解决实际问题。
二、教学重难点1.数轴的定义和基本性质;2.数轴上整数点的名称;3.在数轴上表示正数、负数及零;4.求相反数和绝对值的方法;5.应用数轴知识解决实际问题。
三、教学内容及方法1. 教学内容•数轴的定义和基本性质;•数轴上整数点的名称;•在数轴上表示正数、负数及零;•求相反数和绝对值的方法;•应用数轴知识解决实际问题。
2. 教学方法•演示法;•演练法;•合作学习法;•交互式教学法。
四、教学流程1. 讲解数轴的定义和基本性质1.讲解数轴的定义;2.展示数轴的模型,讲解其基本性质,如:有方向性,长度相等的线段所在曲线是一条直线等;3.演示以数轴作为空间坐标系的使用。
2. 学习数轴上整数点的名称1.讲解数轴上整数点的名称;2.展示数轴模型,演示如何对整数点进行命名。
3. 学习在数轴上表示正数、负数及零1.讲解如何在数轴上表示正数、负数及零;2.通过例题演示如何在数轴上表示具体的正数、负数和零。
4. 掌握求相反数和绝对值的方法1.讲解如何求一个数的相反数和绝对值;2.通过例题演示如何求具体数的相反数和绝对值。
5. 应用数轴知识解决实际问题1.讲解如何应用数轴知识解决实际问题;2.通过例题演示如何应用数轴知识解决实际问题。
五、教学评价1.在教学过程中,老师要注意及时对学生的掌握程度进行评价;2.学生要积极参与课堂互动,自评、互评、师评相结合;3.结合现代信息技术手段,让学生在课后更好地进行自主评价和巩固。
六、教学反思数轴作为数学中的重要工具,在数学学习中具有非常重要的地位。
因此,本节课的教学内容涵盖了数轴基础知识的讲解,同时通过例题让学生理解掌握了数轴的相关知识。
在教学方法方面,本节课采用演示法、演练法、合作学习法、交互式教学法等多种方法,让学生能够深入理解数轴相关知识点,并在实践中逐步掌握解决实际问题的方法。
《数轴》数学教案
标题:《数轴》
一、教学目标:
1. 让学生理解数轴的概念和作用。
2. 学习如何在数轴上表示实数,并能进行简单的加减运算。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点:
重点:理解和掌握数轴的概念,能在数轴上正确表示实数并进行简单运算。
难点:理解数轴的正负方向,以及数轴上的距离与数值大小的关系。
三、教学过程:
(一)引入新课
通过生活中的实例,如温度计、地图等引出数轴的概念,让学生初步了解数轴的作用。
(二)讲解新知
1. 定义数轴:数轴是一个具有原点、正方向和单位长度的直线。
2. 在数轴上表示实数:规定原点左边为负方向,右边为正方向;原点左边的点表示负数,原点右边的点表示正数,原点表示0。
3. 数轴上的距离与数值大小的关系:数轴上两个点的距离等于这两个点所表示的数的差的绝对值。
(三)课堂练习
设计一些数轴上的表示和计算问题,让学生在实际操作中加深对数轴的理解和应用。
(四)归纳总结
引导学生总结本节课的学习内容,强调数轴的重要性和使用方法。
(五)布置作业
设计一些相关的习题,让学生在家进一步巩固和提高。
四、教学反思:
回顾整个教学过程,分析学生的学习情况,找出教学的优点和不足,以便在以后的教学中改进。
《数轴》教学设计通用12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《数轴》教学设计通用12篇《数轴》教学设计篇1一、教学内容分析1.2有理数1.2.2数轴。
初中数学数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。
2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
3. 在数与形结合的过程中,体会数学学习的乐趣。
教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。
2. 数形结合的思想方法。
教学准备:1. 数轴的教具。
2. 有关数轴的实际例子。
教学过程:一、引入新课1. 利用温度计的例子,引导学生思考数学中是否有类似的表示数的工具。
2. 提出问题:在现实生活中,我们经常需要表示具有相反意义的量,比如向东和向西,向上和向下,那么在数学中,我们如何表示这些具有相反意义的量呢?二、探索新知1. 引导学生思考如何用数来表示东西向马路上杨树、柳树、汽车站牌三者之间的位置关系。
2. 学生分组讨论,画出表示这些位置关系的图。
3. 提问:在图中,如何用数来表示这些物体的位置?0代表什么?数的符号的实际意义是什么?4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下条件:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
三、巩固新知1. 让学生尝试用数轴来解决一些实际问题,如:小明从家出发,向东走了5公里,然后又向西走了3公里,最终停在了哪里?2. 学生独立完成,教师巡回指导。
四、拓展延伸1. 引导学生思考:数轴上的点是否唯一对应一个有理数?如果有理数是否都可以用数轴上的点来表示?2. 学生分组讨论,教师参与其中,给予指导。
五、总结1. 让学生回顾本节课所学的内容,总结数轴的概念和作用。
2. 强调数形结合的思想方法在数学学习中的重要性。
教学反思:本节课通过温度计的例子引入数轴的概念,让学生能够直观地理解数轴的意义。
在探索新知环节,让学生分组讨论,画出表示位置关系的图,有利于培养学生的动手能力和团队协作能力。
1.2.1数轴、相反数与绝对值
学习目标
1、了解数轴的概念和数轴的画法,掌握数轴的三要素;
2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;
3、初步了解数形结合的思想方法,培养相互联系的观点。
重点:正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。
难点:正确理解有理数与数轴上点的对应关系。
学习过程
一、复习回顾
什么是正数、负数、有理数?
二、自主探究
1、你知道温度计吗?温度计的形状是什么?它上面的刻度和数字有什么样的特点?
2、数轴的概念
定义:规定了原点、正方向和单位长度的直线叫做数轴。
这里包含两个内容:
(1)数轴的三要素:原点、正方向、单位长度缺一不可。
原点用“O”表示,正方向向右,单位长度一般为1。
(2)这三个要素都是规定的。
3、数轴的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,
3…各点。
具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
4、数轴定义的理解
(1)规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.
(2)所有的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示下列各数的点(如图2).
A 点表示-4;
B 点表示-1.5;
O 点表示0; C 点表示3.5;
D 点表示6.
5.用数轴比较有理数的大小
从上面的例子不难看出,在数轴上表示的两个数,右边的数总比
左边的数大,又从正数和负数在数轴上的位置,可以知道:
(1)在数轴上表示的两数,右边的数总比左边的数大。
(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都
小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“
”
的写法,正确应写成“
”。
拓展:
(1)因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用0>a ,表示是正数;反之,知道是正数也可以表示为0>a 。
(2)同理,0<a 表示是负数;反之是负数也可以表示为0<a 。
三、随堂练习
1、 画一个数轴,并在数轴上画出表示下列各数的点:
2、指出数轴上A ,B ,C ,D ,E 各点分别表示什么数.
四、小结
1、数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之
间的内在联系,为我们研究问题提供了新的方法.
2、本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、当堂训练
1、在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2、在下面数轴上,A,B,C,D各点分别表示什么数?
3、判断下列数轴画法的正误,并说明理由。
(1)(2)(3)(4)(5)
0 1
-1
-2 2
0 1 2
-1
-2
0 1
-2
-1 2
1 2
-1
-2 3
0 1
-1
-2 2。