高弹性和黏弹性
- 格式:pdf
- 大小:834.51 KB
- 文档页数:83
粘弹性名词解释粘弹性就是物体受力产生形变后,恢复原状的难易程度。
即有“滞后”特点的“弹性”,在受外力作用下发生变形(受力),产生新应力(形变)时会“滞后”一段时间。
反映这种滞后性的量称为粘弹性系数。
弹性表征一个物体或系统抵抗变形的能力。
在粘弹性力学中,将其定义为当外界作用力去掉时,材料可以回复到原始状态的能力,即:n(牛顿) =弹性极限以上解释说明了实验中所得到的粘弹性系数都是与几何因素相关的,属于材料力学范畴。
下面介绍一下当受到粘性或弹性应力的作用时,材料内部会引起应变,外部引起应力。
内外应力的差别叫做应变,在弹性力学中,应变是衡量材料力学性能的重要指标之一。
在材料力学中,应变计算方法分为应变硬化法和粘弹性法两种。
本论文以粘弹性、复变函数和数学建模为主线,首先讨论了粘弹性中关于应变集中的问题;然后引入复变函数来研究应力分布情况,根据具体问题来选择相应的函数类型和应用;最后利用数学建模方法分析并解决了涉及物理规律的计算问题。
我们认为,目前的物理现象多采用数学模型进行描述。
将这些数学模型的解析解输入计算机后,由于计算机的存储容量有限,常常不能完全求解出该物理现象的精确解。
因此,使用数值方法来求解物理问题比较经济、方便,从而推动了物理现象数值模拟的发展。
对于弹性、粘性与流体运动之间的关系,将其简单归纳为:将粘性大小作为系数,根据流体速度的变化而自动调节变形,并依此获得良好的物理效果;而流体速度增大时,必须增大变形才能维持流体的运动。
从本质上讲,我们是希望粘弹性系数的大小跟随着流体的速度大小而改变,这样粘弹性系数也会跟随着流体速度的变化而发生变化,从而可以获得更好的物理效果。
而且在研究各种物理现象时,能够预测系数变化的情况,是非常有意义的。
总而言之,粘弹性理论体系已经初步形成,基本满足了人们对粘弹性的需求,但尚存在着许多不足之处,还有待进一步探讨。
我国科技工作者将继续对粘弹性体系进行深入地探讨,为未来的研究提供更加充实的理论基础,争取在不远的将来取得更大的进展。
物体的粘弹性名词解释物体的粘弹性是指物体在受力后能够具有一定的变形,并且在去除外力后能够恢复到原有形状和大小的性质。
这种性质常见于许多材料和物质,如橡胶、黏土、塑料等。
粘弹性的具体表现包括两个方面:粘性和弹性。
粘性是指物体在受力下会出现持续性的变形和流动现象。
当外力作用于物体时,物体各部分间的分子或原子发生相对位移,导致物体的形态发生改变。
在外力去除后,物体会经过一段时间才能恢复到原始状态。
这是因为物体内部的分子或原子需要一定的时间来重新排列和重新组合,以恢复原有的结构。
橡胶是一个常见的具有粘性的材料,当我们拉伸一块橡胶时,它会发生可见的变形,并且橡胶大小变大,拉伸结束后,橡胶会慢慢恢复到原始长度和形状。
而弹性是指物体在受力下发生变形后能够迅速恢复到原有形状和大小的性质。
当外力作用于物体时,物体内部的原子或分子会发生相对位移,导致物体发生形变。
然而,一旦外力去除,物体会立即恢复到原有的形状和大小,这是因为物体内部的分子或原子能够自行重新排列和重新组合,以恢复原有的结构。
弹簧是一个典型的具有弹性的物体,当我们把弹簧压缩或拉伸时,它会发生可见的变形,但一旦释放压力,弹簧会立即恢复到原始状态。
粘弹性是指物体同时具有粘性和弹性的性质。
粘弹性物体在受力后既会发生形变,又会恢复到原有形状和大小。
这种性质可以通过应力松弛实验来进行观察和研究。
在应力松弛实验中,物体在受到外力后,会出现初始的形变,然后随着时间的流逝逐渐恢复到较小的变形。
这是因为物体内部的分子或原子在受力后会发生位移,导致物体产生粘性的流动,但随着时间的推移,分子或原子会重新排列和重新组合,恢复到原始结构,这个过程称为应力松弛。
粘弹性在工程和科学领域具有广泛的应用。
在材料工程中,理解和掌握材料的粘弹性能够帮助工程师设计和生产具有特定性能的材料。
在机械制造领域,合理利用物体的粘弹性能够改善产品的寿命和耐久性。
在生物医学领域,理解生物组织的粘弹性能够为疾病的诊断和治疗提供有力的支持。
粘弹性名词解释粘弹性指在外力作用下,材料能发生变形而不被破坏的性质。
粘弹性名词解释:“粘”指流体粘度的变化,例如稀薄水流等;“弹”指流体弹性,例如高弹性材料等。
黏弹性体指的是由分子间力维系的弹性体。
大多数粘弹性体具有正的压缩性能,但也有些粘弹性体不具有正的压缩性能,它们的压缩行为是由分子间的相互作用维系的。
粘弹性体主要有弹性固体、粘性液体和弹塑性材料等类型。
理想粘弹性体内部各个部分之间完全没有分子间作用力,处于完全无应力状态。
实际上很难找到这样的粘弹性体。
粘弹性材料的弹性模量E( n/mm2)是指该材料在静载荷作用下达到屈服状态,并在载荷去除后仍能保持屈服状态时的最小弹性模量,是衡量材料抵抗弹性变形的能力大小的参数。
E值越大,说明材料的抗变形能力越大。
当E>G时,材料受载后几乎全部被弹回,材料呈现弹性;当E<G时,材料仅发生弹性变形而不产生裂纹,此时材料称为弹性材料。
E不能测得,需要通过力学试验获得。
E一般在高聚物的手册中可以查到。
塑料的E在10~50kPa。
橡胶则更小,在100~3000kPa。
例如, PVC的E约为0.5mPa, SBR为2.1mPa。
1、在一定条件下,某种材料可能承受的最大负荷与该材料的E值之比称为该材料的强度极限。
对于同一种材料,强度极限与其弹性模量有关。
一般认为,增加E值,可以提高材料的强度极限,但同时要求材料的弹性模量也要增大。
2、材料的E值不但取决于材料的E 值,还取决于材料的热性质和尺寸。
因为材料的尺寸不同,热性质也不同,对E的影响也就不同。
对于热固性材料,材料的尺寸愈大, E 愈小。
2、当外加载荷不超过屈服极限时,材料不发生屈服,并保持在原来的形状和尺寸上,即保持静弹性。
此时的负荷与该材料的弹性模量E成正比。
当超过屈服极限时,材料就会发生屈服,在静载荷去除后还保持其原有的形状和尺寸,只是其变形不能恢复了。
如果材料经受的负荷大于其弹性模量的3倍,材料就会发生明显的塑性变形,这时的负荷与该材料的弹性模量E成反比。
abaqus橡胶材料定义一、概述Abaqus是一种广泛使用的有限元分析软件,可以用于模拟各种工程问题。
其中,橡胶材料在工程中应用广泛,因此在Abaqus中定义橡胶材料是非常重要的。
本文将详细介绍如何在Abaqus中定义橡胶材料,包括材料参数的设置和实例应用。
二、材料参数设置1. 橡胶材料的特性橡胶是一种高弹性和高可变形性的聚合物材料。
在应力作用下,它可以发生大变形而不会破裂。
因此,在定义橡胶材料时需要考虑以下特性:(1)非线性弹性:橡胶具有非线性弹性行为,在大变形下表现更为明显。
(2)黏弹性:橡胶具有黏弹性行为,在应力作用下会发生时间依赖的变形。
(3)疲劳寿命:由于其高可变形性,橡胶易受到疲劳损伤。
2. 材料参数设置在Abaqus中定义橡胶材料时需要设置以下参数:(1)密度rho:单位为kg/m^3。
(2)泊松比nu:泊松比是材料的一个基本参数,表示材料在拉伸或压缩时横向收缩或膨胀的程度。
对于橡胶材料,通常取值为0.49。
(3)Young's模量E:Young's模量是材料的刚度参数,表示单位应力下单位应变的比值。
对于橡胶材料,通常取值范围为0.1-10MPa。
(4)损伤参数:由于橡胶易受到疲劳损伤,因此需要设置相应的损伤参数。
三、实例应用下面以一个简单的拉伸试验为例介绍如何在Abaqus中定义橡胶材料。
1. 模型建立首先,在Abaqus中新建一个模型,并创建一个草图来定义试件几何形状。
然后,使用拉伸工具将试件进行拉伸并设置荷载大小和方向。
2. 材料定义接下来,在Abaqus中定义橡胶材料。
选择“Materials”菜单,在弹出窗口中选择“Elastic”类型,并输入上述所提到的密度、泊松比和Young's模量等参数。
此外,还需要设置相应的损伤参数。
选择“Damage and Failure”菜单,在弹出窗口中选择“Ductile Damage”类型,并设置相应的参数。
3. 模拟分析最后,在Abaqus中进行模拟分析。
高分子物理课内实践——聚合物的高弹性和黏弹性一、高弹性:非晶态聚合物在玻璃化温度以上时处于高弹态。
高弹态的高分子链段有足够的自由体积可以活动,当它们受到外力后,柔性的高分子链可以伸展或蜷曲,能产生很大的形变,甚至超过百分之几百,但不是所有的聚合物都如此。
如果将高弹态的聚合物进行化学交联,形成交联网络,它的特点是受外力后能产生很大的形变,但不导致高分子链之间产生滑移,因此外力除去后形变会完全回复,这种大形变的可逆性称为高弹性。
它是相对于普弹性而言的。
所谓普弹性就是金属或其他无机材料的属性,即在力场作用下,应力与应变成正比,服从胡克定律,且形变量甚小,仅为千分之几或更小。
高弹态高聚物的弹性形变则数值很大,可达百分之几或更大,在绝热拉伸或压缩过程中,处于高弹态的高聚物(如橡胶)的温度能上升,金属的温度则下降。
在平衡状态时,橡胶的弹性模量与温度成正比,而金属的模量则与温度成反比。
高弹态是聚合物特有的基于链段运动的一种力学状态,高弹性是高分子材料极其重要的性能,其中尤以橡胶类物质的弹性最大。
它有如下特征:1.弹性模量很小而形变量很大。
由于热运动的作用,这种分子会不断的改变着自己的形状,就会显示出形变量比较大的特点,当外力作用对抗回缩力的时候形变就会自发回复,造成形变的可逆性,由于回缩力不大,在外力不大的时候就会可能发生比较大的形变,所以其弹性的模量表现比较小;2.弹性模量随温度的升高而增加。
在外力的作用下,这种回缩力与温度也有很大关系,会随着温度的升高,分子的热运动就会出现加强,回缩力也就会增大,弹性模量也就出现增加,弹性形变就会变小;3.泊松比大;4.形变需要时间。
由于在受到压力压缩的时候,形变就会总是随着时间的发展达到最大,随着压力的下降而消失。
不管是克服分子之间的作用力以及内摩擦力,还是从一种平衡的状态过渡到外力相适应的平衡状态,形变都是在外力作用之后所引起的,所以发生形变是需要时间的;5.形变时有热效应。
玻璃态、高弹态和黏流态对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。
非晶聚物有三种力学状态,它们是玻璃态、高弹态和粘流态。
在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。
我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。
高弹态(rubbery state):链段运动但整个分子链不产生移动。
此时受较小的力就可发生很大的形变(100~1000%),外力除去后形变可完全恢复,称为高弹形变。
高弹态是高分子所特有的力学状态。
相对分子质量很大的晶态聚合物达到后还不能流动,而是先进入高弹态,在升温到后才会进入黏流态,于是有两个转变。
高聚物的玻璃态、高弹态和黏流态是指当对它施加一个恒定的压力时,这些制品的形变状态与温度变化的关系。
在较低温度环境时,高聚物呈刚性固体态,在外力作用下只有很小的形变,与玻璃相似,所以称这种状态为玻璃态。
如果把这个环境温度升髙至一定温度,则其在外力作用下,形状会有明显的变化,在一定的温度区问内,形态变化相对稳定,这个状态称为高弹态。
如果温度继续升高,则形变量随温度的升高逐渐增加,直至变为黏性流体,这时其形状已不能恢复,这个状态即为黏流态。
一般把玻璃态向高弹态的转变叫做玻璃化转变,形态转变过程的温度区间称为玻璃化温度;高弹态向黏流态转变,这个转变过程区间的温度称为黏流温度。
玻璃化温度;glass transition temperature 高聚物由高弹态转变为玻璃态的温度。
通常用Tg表示。
没有很固定的数值,往往随着测定的方法和条件而改变。
高聚物的一种重要的工艺指标。
橡胶降噪原理主要基于其黏弹性和内阻尼。
橡胶是一种黏弹性材料,既有高弹态又有高黏态,因此其弹性和黏性都较高。
在受到外部作用力时,橡胶分子链构象发生变化,从而产生弹性形变,释放能量。
同时,橡胶分子间相互作用会妨碍分子链的运动,表现出黏性特点,这种黏性内阻尼可以消耗振动能量,从而达到减振降噪的效果。
此外,粒子阻尼橡胶是一种采用高分子材料与金属碎片、矿物粉末等颗粒物质混合而成的复合材料。
其减振降噪技术原理主要包括粘滞阻尼和吸声降噪。
粘滞阻尼是指材料在振动过程中,内部颗粒材料沿着不同方向发生相对位移时产生的阻力,阻碍了材料的振动,从而起到减振的效果。
同时,粒子阻尼橡胶具有类似于海绵的空气结构,能够吸收噪声。
这种材料还具有较高的机械强度和稳定性,能够满足机械设备在不同工况下的减振降噪需要。
综上所述,橡胶的黏弹性和内阻尼是实现降噪的主要机制,而粒子阻尼橡胶则通过其特殊的材料结构和空气结构实现了更高效的减振降噪效果。