混凝实验
- 格式:ppt
- 大小:678.00 KB
- 文档页数:13
一、实验背景混凝过程是现代城市给水和工业废水处理工艺研究中不可或缺的前置单元操作环节之一。
本实验旨在通过混凝实验,加深对混凝理论的理解,探索最佳混凝工艺条件,提高水处理效果。
二、实验目的1. 了解混凝现象及过程,观察矾花的形成。
2. 了解混凝的净水作用及主要影响因素。
3. 了解助凝剂对混凝效果的影响。
4. 探求水样最佳混凝条件(包括投药种类、投加量、pH值等)。
三、实验原理天然水中存在大量胶体颗粒,使原水产生浑浊。
混凝剂通过压缩双电层、吸附电中和、吸附架桥和沉淀物网捕等机理,使胶体颗粒脱稳,相互碰撞聚集,形成较大的絮体,从而实现净水目的。
四、实验方法1. 实验材料:原水、混凝剂、助凝剂、pH值调节剂、烧杯、搅拌器、pH计等。
2. 实验步骤:(1)取一定量的原水,加入适量的混凝剂,搅拌一定时间;(2)调节pH值,观察矾花形成情况;(3)加入助凝剂,继续搅拌;(4)观察絮体沉降情况,记录相关数据。
五、实验结果与分析1. 实验结果表明,混凝剂投加量为7ml时,混凝效果最佳。
在此条件下,矾花形成迅速,沉降速度快,出水浊度低。
2. 最佳pH值为7.63,在此pH值下,混凝剂水解程度高,脱稳效果显著。
3. 助凝剂对混凝效果有一定影响,但其影响相对较小。
在最佳混凝剂投加量和pH值条件下,助凝剂对混凝效果的影响不明显。
六、实验结论1. 本实验验证了混凝剂、pH值和助凝剂对混凝效果的影响,为实际水处理工艺提供了理论依据。
2. 最佳混凝工艺条件为:混凝剂投加量为7ml,pH值为7.63,无需添加助凝剂。
3. 实验结果可为水处理工程提供参考,有助于提高水处理效果。
七、实验不足与展望1. 实验过程中,未对混凝剂种类进行深入研究,今后可对不同混凝剂进行对比实验,探究其适用范围。
2. 实验过程中,未对助凝剂种类和用量进行系统研究,今后可对助凝剂进行优化,提高混凝效果。
3. 实验过程中,未对混凝过程中的水质变化进行详细分析,今后可对混凝过程中水质变化进行跟踪,为优化混凝工艺提供数据支持。
实验一化学混凝一、试验的目的和意义影响混凝效果的因素有水温,pH值,混凝剂种类、加量以及搅拌速度和时间等。
由于上述诸因素的影响的错综复杂,且非拘一格,所以混凝过程的优惠工艺条件通常要用混凝试验来确定。
衡量混凝主要指标是出水浊度和主要污染因子浓度。
实验方案技术及数据处理常用优选法和正交设计等数理统计法。
本实验的目的,在于使学生掌握进行混凝实验的基本技能(包括混凝剂品种的筛选,以及与待处理废水相适应的pH值和混凝剂加量的确定等),并对实验数据作正确的处理和分析。
二、实验原理化学混凝法通常用来除去废水中的胶体污染物和细微悬浮物。
所谓化学混凝,是指在废水中投加化学及来破坏胶体及细微悬浮物颗粒在水中形成的稳定分散体系,使其聚集为具有明显沉降性能的絮凝体,然后再用重力沉降,过滤,气浮等方法予以分离的单元过程。
这一过程包括凝聚和絮凝两个步骤,二者统称为混凝。
具体地说,凝聚是指在化学药剂作用下使胶体和细微悬浮物脱稳,并在布朗运动作用下,聚集为微絮粒的过程,而絮凝则是指为絮粒在水流紊动作用下,成为絮凝体的过程。
根据混凝过程的GT值要求,在药剂与废水的混合阶段,对搅拌速度和搅拌时间的要求是高速短时;而在反应阶段则要求低速长时。
两个阶段的搅拌转速n(r、p、m)和搅拌时间T由GT=104-105通过计算确定。
一般水处理中,混合阶级的G值约为500~1000秒-1,混合时间为10~30秒,一般不超过2分钟,在反应阶段,G值约为10~100秒-1,停留时间一般为15~30钟。
三、实验设备及仪器1、无级调速六联搅拌机一台(或六台单联搅拌机);2、721型分光光度计3、pH计或精密pH试纸;4、温度计;5、50ml注射器;6、秒表;7、量筒;8、1000ml烧杯,250ml烧杯;9、移液管;10、混凝剂:10g/L FeCl3, 10g/L聚合氯化铝〔Al2(OH)m Cl6-m〕;聚丙烯酰胺PAM11、10%盐酸,8%氢氧化钠。
给水处理工程实验一混凝实验一、实验目的:1、通过实验观察混凝现象,加深对混凝理论的理解;2、学会求得一般天然水体最佳混凝条件(包括投药量、pH值、水流速度梯度)的基本方法;3、加深对混凝机理的理解。
4、了解混凝的相关因素。
二、实验原理:分散在水中的胶体颗粒带有电荷,同时在布朗运动及其表面水化作用下,长期处于稳定分散状态,不能用自然沉淀方法去除。
向这种水中投加混凝剂后,可以使分散颗粒相互结合聚集增大,从水中分离出来。
由于各种原水有很大差别,混凝效果不尽相同。
混凝剂的混凝效果不仅取决于混凝剂投加量,同时还取决于水的pH值、水流速度梯度等因素。
胶体颗粒(胶粒)带有一定电荷,它们之间的电斥力是胶体稳定性的主要因素。
胶粒表面的电荷值常用电动电位ξ来表示,又称为Zeta电位。
Zeta电位的高低决定了胶体颗粒之间斥力的大小和影响范围。
Zeta电位的测定,可通过在一定外加电压下带电颗粒的电泳迁移率计算:ξ= KπηuHD (1-1)式中:ξ——Zeta电位(mV);K ——微粒形状系数,对于圆球体K=6;π——系数,为3.1416;η——水的粘度(Pa·S),(此取η=10-1Pa·S);u ——颗粒电泳迁移率(um/s/\V/cm);H ——电场强度梯度(V/cm);=81。
D ——水的介电常数D水Zeta电位值尚不能直接测定,一般是利用外加电压下追踪胶体颗粒经过一个测定距离的轨迹,以确定电泳迁移率值,再经过计算得出Zeta电位。
电泳迁移率用下式进行计算:u=GL(1-2)VT式中:G ——分格长度(um);L ——电泳槽长度(cm);V ——电压(V);T ——时间(s)。
一般天然水中胶体颗粒的Zeta电位约在-30毫伏以上,投加混凝剂后,只要该电位降到-15毫伏左右即可得到较好的混凝效果。
相反,当Zeta电位降到零,往往不是最佳混凝状态。
投加混凝剂的多少,直接影响混凝效果。
投加量不足不可能又很好的混凝效果。
混凝实验报告实验目的,通过混凝实验,研究混凝剂对水质的净化效果,探讨最佳混凝剂用量及混凝时间,为水处理工程提供科学依据。
实验原理,混凝是指在水中加入混凝剂后,使水中的悬浮物、胶体物质凝聚成较大的絮凝体,便于后续的沉降或过滤。
混凝剂一般为阳离子、阴离子或非离子高分子物质,其作用机理主要有吸附、中和、电中和和凝聚等。
实验材料与方法:材料,实验室自来水、混凝剂(聚合氯化铝)、搅拌器、玻璃容器、pH计、浊度计等。
方法:1. 取一定量自来水倒入玻璃容器中;2. 用搅拌器将水搅拌均匀;3. 用pH计检测水的初始pH值;4. 在搅拌的同时,向水中加入不同剂量的混凝剂;5. 混凝一定时间后停止搅拌,观察絮凝体的生成情况;6. 用浊度计检测水的浊度,记录下实验数据。
实验结果与分析:经过一系列实验,我们得出以下结论:1. 随着混凝剂用量的增加,水中絮凝体的生成量逐渐增加,浊度逐渐降低,水质得到了改善;2. 随着混凝时间的延长,絮凝体的大小逐渐增加,浊度进一步降低,但当混凝时间过长时,絮凝体又会发生分散,浊度会有所上升;3. 初始水质的pH值对混凝效果也有一定影响,一般情况下,pH值在6.5-7.5之间时,混凝效果较好。
结论:混凝实验结果表明,聚合氯化铝作为混凝剂,能够有效地改善水质,提高水的透明度,减少水中的悬浮物和胶体物质。
在实际应用中,应根据水质的不同情况,合理控制混凝剂的用量和混凝时间,以达到最佳的净化效果。
总结:通过本次混凝实验,我们对混凝剂的作用机理和影响因素有了更深入的了解,为今后的水处理工程提供了有益的参考。
同时,也为我们提供了实验操作的经验,为今后的科研工作打下了坚实的基础。
实验报告撰写人,XXX。
日期,XXXX年XX月XX日。
一、实验目的1. 了解混凝过程的基本原理及其在水质净化中的应用。
2. 探究不同混凝剂对水质净化效果的影响。
3. 通过实验确定最佳混凝条件,以优化水质净化效果。
4. 分析实验数据,总结混凝过程的关键影响因素。
二、实验原理混凝过程是利用混凝剂使水中的悬浮颗粒、胶体等杂质聚集成较大的絮体,从而实现水质净化的过程。
混凝剂通过压缩双电层、吸附架桥等作用,使杂质颗粒相互吸引、聚集,形成易于沉降的絮体。
三、实验材料与仪器1. 实验材料:原水、聚合氯化铝(PAC)、硫酸铝(SAS)、氢氧化钠(NaOH)、硫酸铁(FeSO4)、碳酸钠(Na2CO3)等。
2. 实验仪器:混凝实验装置、电子天平、pH计、浊度计、搅拌器、烧杯、玻璃棒等。
四、实验方法1. 实验步骤:(1)取一定量的原水置于烧杯中,测定初始pH值和浊度。
(2)分别向烧杯中加入不同种类和浓度的混凝剂,搅拌一定时间。
(3)测定混凝后的pH值、浊度和沉淀时间。
(4)观察沉淀物形态,记录实验数据。
2. 实验条件:(1)原水:取自某地表水体,浊度约为30NTU。
(2)混凝剂:PAC、SAS、NaOH、FeSO4、Na2CO3等。
(3)搅拌速度:100-200转/分。
(4)沉淀时间:30分钟。
五、实验结果与分析1. 不同混凝剂对水质净化效果的影响:表1:不同混凝剂对水质净化效果的影响| 混凝剂 | 投加量(mg/L) | 沉淀时间(分钟) | 浊度(NTU) || ------ | -------------- | ---------------- | ------------ || PAC | 20 | 30 | 1.5 || SAS | 20 | 30 | 2.0 || NaOH | 20 | 30 | 1.8 || FeSO4 | 20 | 30 | 1.2 || Na2CO3 | 20 | 30 | 2.5 |由表1可知,PAC和FeSO4的混凝效果较好,浊度去除率分别为50%和60%。
混凝实验报告混凝实验报告引言:混凝是一种常见的水处理技术,用于去除水中的悬浮物和溶解物,以提高水质。
本实验旨在通过模拟混凝过程,探究不同条件下的混凝效果,并分析其影响因素。
实验材料与方法:1. 实验材料:- 水样:采集自自来水厂的自来水- 混凝剂:聚合氯化铝(PAC)- 混凝剂浓度:0.1 g/L、0.2 g/L、0.3 g/L- 水样pH值调节剂:氢氧化钠(NaOH)、盐酸(HCl)2. 实验方法:- 步骤一:准备三个不同浓度的混凝剂溶液,分别为0.1 g/L、0.2 g/L、0.3g/L。
- 步骤二:取一定量的自来水样,分成三组,每组分别加入相应浓度的混凝剂溶液。
- 步骤三:使用搅拌器将混凝剂与水样充分混合,搅拌时间为5分钟。
- 步骤四:待混凝剂与水样反应完成后,停止搅拌并静置一段时间,观察悬浮物的沉降情况。
- 步骤五:测量不同条件下水样的浊度,并记录结果。
实验结果与分析:在进行实验过程中,观察到不同浓度的混凝剂对水样的混凝效果有显著影响。
通过测量水样的浊度,可以客观地评估混凝效果。
1. 不同混凝剂浓度对混凝效果的影响:在实验中,我们分别使用了0.1 g/L、0.2 g/L和0.3 g/L的混凝剂浓度。
结果显示,随着混凝剂浓度的增加,水样的浊度逐渐降低。
这是因为混凝剂中的聚合氯化铝可以与水中的悬浮物发生化学反应,形成较大的絮凝物,从而使悬浮物沉降速度加快。
2. pH值对混凝效果的影响:pH值是另一个影响混凝效果的重要因素。
在实验中,我们分别使用氢氧化钠和盐酸来调节水样的pH值。
结果显示,在酸性条件下(pH值低于7),混凝效果更好,浊度降低更为明显。
这是因为在酸性条件下,混凝剂与水中的悬浮物更容易发生反应,形成较大的絮凝物。
3. 混凝时间对混凝效果的影响:在实验中,我们观察到混凝剂与水样反应后的静置时间也会对混凝效果产生影响。
随着静置时间的延长,悬浮物的沉降速度逐渐加快,浊度逐渐降低。
这是因为较大的絮凝物在静置过程中会逐渐沉降,从而使水样变得更清澈。
混凝实验报告三篇一、混凝实验报告实验类型:混凝实验实验目的:测试混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂/水体系的温度及湿度;5. 记录混凝剂使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂使用量,重复2-5步,最后得出混凝剂使用量对混凝剂/水体系的影响。
二、混凝实验报告实验类型:混凝实验实验目的:研究不同混凝剂对混凝剂/水体系的影响,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 分别将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后得出不同混凝剂使用量对混凝剂/水体系的影响。
三、混凝实验报告实验类型:混凝实验实验目的:评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
实验仪器:混凝剂(如聚合物、碳酸钙等);烧杯;分析天平;温度计;烧杯;湿度计;样品。
实验步骤:1. 将混凝剂A、B、C装入烧杯中,加入适量的水,搅拌均匀;2. 将混合物放置于室温下,持续不断地搅拌30分钟;3. 用分析天平称取混合物中混凝剂的量,取出混凝剂A/水体系的比例,取出混凝剂B/水体系的比例,取出混凝剂C/水体系的比例;4. 测量混凝剂A/水体系的温度及湿度,测量混凝剂B/水体系的温度及湿度,测量混凝剂C/水体系的温度及湿度;5. 记录混凝剂A、B、C使用量及混凝剂/水体系的温度及湿度;6. 逐步增加混凝剂A、B、C使用量,重复2-5步,最后评估混凝剂与水体系的相互作用,以及混凝剂使用量对水体系的影响。
混凝实验报告混凝实验报告一、实验目的1、了解混凝剂混凝机理及作用方式;2、掌握常用混凝剂对水质的处理效果;3、熟悉混凝工艺操作步骤。
二、实验原理混凝时,混凝剂与水中有害物质发生化学反应或电荷中和作用,形成较大的絮凝团,并形成一定密度的絮体,从而使水中溶解物、悬浮物或胶体颗粒等杂质得以集结、附着并迅速沉降。
混凝剂主要有无机盐和有机高聚物两大类,常用的有氯化铝、硫酸铝、聚合铁盐、聚合铝盐等。
三、实验步骤1、将水样倒入混凝澄清装置中;2、将混凝剂按照一定比例加入混凝槽,并进行搅拌;3、待混凝剂与水中的杂质充分反应后,停止搅拌;4、观察混凝后水样的悬浮物;5、待悬浮物沉降后,取上清液进行测定。
四、实验结果与分析通过本次实验,分别使用了氯化铝和聚合铁盐作为混凝剂进行处理。
实验结果表明,两种混凝剂均能使水样中的悬浮物集结成絮体并沉降,但聚合铁盐的效果更好。
这是因为聚合铁盐是一种高分子有机聚合物,具有较强的吸附能力和官能团化合作用,能有效地集结水中的杂质。
五、实验总结本次实验通过混凝实验,初步了解了混凝剂的混凝机理和作用方式,掌握了常用混凝剂对水质的处理效果。
在实验操作过程中,需要注意混凝剂的投加量和混凝时间,以及混凝后需等待悬浮物沉降后再进行测定。
同时,还需要注意混凝剂的种类选择,根据水质和实际情况来确定最佳的混凝剂。
六、参考文献[1] 水处理学. 朱成钢,刘上岐主编. 北京:中国建筑工业出版社,2014.[2] 环境工程学. 丁仲礼,林长森编著. 北京:中国建筑工业出版社,2011.[3] 膨胀土等胶结材料的沉降实验研究[D]. 成都:西南交通大学,2015.。
一、实验目的1. 通过混凝正交实验,观察和了解混凝过程中胶体颗粒的聚集现象,加深对混凝理论的理解。
2. 探究不同混凝剂投加量、pH值、温度等参数对混凝效果的影响。
3. 利用正交试验设计,优化混凝工艺条件,提高混凝效果。
二、实验原理天然水中含有大量的胶体颗粒,这些颗粒表面带有电荷,使得水中的悬浮物不易沉淀。
混凝剂是一种能够中和胶体颗粒表面电荷的物质,使胶体颗粒失去稳定性,从而聚集成较大的絮体,便于后续的沉淀或过滤。
三、实验材料与仪器1. 实验材料:原水、聚合氯化铝(PAC)、聚丙烯酰胺(PAM)、氢氧化钠(NaOH)、盐酸(HCl)、水温计、pH计、烧杯、搅拌器、移液管等。
2. 实验仪器:电子天平、恒温箱、离心机、分光光度计等。
四、实验方法1. 实验分组:根据正交试验设计,将实验分为L9(3^4)组,每组实验条件如下:| 组别 | PAC投加量(mg/L) | pH值 | 温度(℃) || ---- | ----------------- | ---- | ---------- || 1 | 20 | 7 | 20 || 2 | 30 | 7 | 20 || 3 | 40 | 7 | 20 || 4 | 20 | 6 | 25 || 5 | 30 | 6 | 25 || 6 | 40 | 6 | 25 || 7 | 20 | 8 | 20 || 8 | 30 | 8 | 20 || 9 | 40 | 8 | 20 |2. 实验步骤:1. 准备原水,测定其浊度。
2. 根据实验分组,依次加入不同浓度的PAC,搅拌均匀。
3. 调节pH值,使其达到预定值。
4. 在恒温箱中,将混合液保持在预定温度下反应一定时间。
5. 将混合液离心分离,测定上清液的浊度。
6. 记录实验数据。
五、实验结果与分析1. 实验结果:| 组别 | PAC投加量(mg/L) | pH值 | 温度(℃) | 浊度(NTU) | | ---- | ----------------- | ---- | ---------- | ----------- | | 1 | 20 | 7 | 20 | 4.5 | | 2 | 30 | 7 | 20 | 3.2 | | 3 | 40 | 7 | 20 | 2.6 | | 4 | 20 | 6 | 25 | 4.0 | | 5 | 30 | 6 | 25 | 3.0 | | 6 | 40 | 6 | 25 | 2.5 | | 7 | 20 | 8 | 20 | 5.0 | | 8 | 30 | 8 | 20 | 4.0 | | 9 | 40 | 8 | 20 | 3.5 | 2. 分析:通过实验结果可以看出,PAC投加量、pH值、温度等因素对混凝效果有显著影响。