光纤传感器实验重点
- 格式:ppt
- 大小:346.50 KB
- 文档页数:17
一、实验目的1. 理解光纤传感技术的基本原理,掌握光纤传感器在温度测量中的应用。
2. 学习光纤光栅温度传感器的制作方法,掌握其性能测试和数据分析。
3. 了解温度光纤传感器的实际应用场景,提高对光纤传感器技术的认识。
二、实验原理光纤传感器是一种基于光纤材料的光学传感器,具有抗电磁干扰、体积小、重量轻、防腐性好等优点。
光纤光栅温度传感器是光纤传感器的一种,其原理是利用光纤光栅的布拉格波长位移特性,即当光纤光栅的温度发生变化时,其反射或透射光的波长会发生偏移,从而实现对温度的测量。
三、实验仪器与材料1. 光纤光栅温度传感器2. 光纤光栅光谱分析仪3. 温度控制器4. 实验台5. 数据采集系统四、实验步骤1. 将光纤光栅温度传感器固定在实验台上,连接好光纤光谱分析仪和数据采集系统。
2. 调节温度控制器,使环境温度逐渐升高,记录光纤光栅光谱分析仪输出的光谱数据。
3. 重复步骤2,使环境温度逐渐降低,记录光谱数据。
4. 分析光谱数据,计算光纤光栅的布拉格波长位移与温度之间的关系。
五、实验数据与分析1. 实验数据:| 温度(℃) |布拉格波长(nm)||----------|--------------|| 20 | 1552.0 || 30 | 1553.5 || 40 | 1555.0 || 50 | 1556.5 || 60 | 1558.0 |2. 分析:通过实验数据可以看出,光纤光栅的布拉格波长随温度升高而增加,说明光纤光栅具有正的温度系数。
根据实验数据,可以拟合出光纤光栅的布拉格波长与温度之间的关系式:$$\lambda_B = 1552.0 + 0.0135T$$其中,$\lambda_B$为布拉格波长,$T$为温度。
六、实验结论1. 光纤光栅温度传感器具有良好的温度响应特性,可以实现对温度的精确测量。
2. 通过实验验证了光纤光栅的布拉格波长与温度之间的关系,为光纤光栅温度传感器的应用提供了理论依据。
光纤传感器的位移特性实验
一、实验目的:了解光纤位移传感器的工作原理和性能。
二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成Y 型光纤,探头为半圆分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦即探头,它与被测体相距X,由光源发出的光通过光纤传到端部射出后再经被测体反射回来,由另一束光纤接收反射光信号再由光电转换器转换成电压量,而光电转换器转换的电压量大小与间距X有关,因此可用于测量位移。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源±15V 、反射面。
四、实验步骤:
1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上光电变换座孔上。
其内部已和发光管D及光电转换管T 相接。
图9-1 光纤传感器安装示意图
2、将光纤实验模板输出端V 01与数显单元相连,见图9-2。
图9-2 光纤传感器位移实验接线图
3、调节测微头,使探头与反射平板轻微接触。
4、实验模板接入±15V电源,合上主控箱电源开关,调R W使数显表显示为零。
5、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表9-1。
表9-1光纤位移传感器输出电压与位移数据
6、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。
五、思考题:
光纤位移传感器测位移时对被测体的表面有些什么要求?。
实验题目:光纤传感器实验满分100姓名:娄春雅学号: 201922150275 。
班级:材料卓越二班实验日期: 06.12 校区:兴隆山校区。
一、实验目的光纤传感器实验目的:1.了解光纤与光源耦合方法的原理,光纤与光源耦合有直接耦合和经聚光器耦合两种2.掌握单模光纤切割的基本方法3.了解传感器的原理4.学习测量光纤与激光耦合功率5.理解光纤耦合的直接耦合和间接耦合的基本原理光纤温度传感实验目的:1.理解光纤装置的原理和用途,了解传感器原理2.理解 M-Z 光纤温度传感器的基本工作原理3.学习测量光纤温度传感器实验数据,计算光纤传感器灵敏度二、实验仪器光纤传感实验中的实验仪器包括:激光器及电源(实验中提供激光光源,发射出波长为 633nm 的光波。
),光纤夹具(实验中用光纤夹具来固定光纤),透镜(光纤传输的间接耦合工具,可用来会聚发出的激光。
),光纤剥钳(实验中用来剥除光纤外表面的保护层,得到裸露的纤芯。
),光纤切割锯(实验中用来切割光纤的器具,切割光纤,获得光纤完美的端面。
),激光功率计(实验中用来测量激光器及光纤输出端的功率。
),五位调整架(实验中五维调整架用来放置透镜及光纤夹具),显微镜,光纤传感实验仪,CCD 及显示器,光纤(光的传输载体),分光装置(实验中用来将激光器发出的激光分成两束光线),聚光装置(实验中聚光装置用来将两路光纤中的光线通过分束镜会聚在一起,并使会聚后的光线射入 CCD 中),数显调节仪(实验中的加热与控温仪器,可以设定环境温度和温度变化速率,用于测量光纤传感器的随温度的变化特性),显示器(实验中用来观察干涉条纹的仪器)。
三、实验原理(主要公式,原理图,实验方法等)图二圆柱形光纤传光原理1. 光纤的基础知识光纤的基本结构如图 1,它主要包括三层(工程上有时有四层或五层,图中是四层结构):1.纤芯;2.包层;3.起保护作用的涂敷层;4.较厚的保护层。
纤芯和包层的折射率分别是n1和n2,如图 2,为了使光线在光纤中传播,纤芯的折射率n1必须比包层n2的折射率大,这样才会产生全反射。
物理实验技术中如何进行光纤传感器实验光纤传感器是一种利用光纤的特性进行测量和监测的技术。
它可以用于温度、压力、应力等各种物理量的测量,并且具有灵敏度高、响应速度快、抗干扰能力强等优点。
这使得光纤传感器成为科学研究和工程应用中不可或缺的重要工具之一。
在进行光纤传感器实验之前,我们首先需要准备一些必要的实验设备和材料。
光纤传感器实验需要用到光源、光纤、光电探测器等一系列器件。
其中,光源可以选择激光器或者LED照明灯;光纤可以是单模光纤或者多模光纤,其材料可以是石英光纤、塑料光纤等;光电探测器则可以选择光电二极管或者光电二级管等。
此外,我们还需要一些光纤连接器、光纤衰减器等辅助器件,这些设备和材料的选用需要根据实验要求来确定。
在实验中,选择适当的光源和光纤将光信号引导到传感器中是实验的关键。
通常情况下,我们会将光源与光纤连接,然后将光纤的另一端与传感器连接。
为了保证光信号的传输效果,我们需要保证连接的稳定性和光线的传输质量。
这可以通过使用优质的连接器和光纤线缆来实现,同时需要注意避免光线的损失和反射。
在光纤传感器实验中,我们还需要设计和制作适合的传感器结构。
传感器结构的设计直接影响到实验结果的准确性和稳定性。
我们可以根据不同的物理量采用不同的传感器结构,例如通过改变光纤的长度、形状或者添加特殊的材料来实现传感器的灵敏度和响应特性的调节。
此外,我们还需要合理设计传感器的包装和固定方式,以保证传感器在实验中工作的稳定性。
实验过程中,我们还需要选择合适的测量方法和数据记录方法。
光纤传感器的信号是通过光线强度的变化来表示的,因此我们可以通过测量光线强度的变化来获得所需要的物理量。
一种常见的测量方法是通过光电探测器将光信号转换为电信号,然后通过数据采集卡等设备将电信号转换为数字信号,并进行进一步的处理和分析。
值得注意的是,我们在进行测量和记录时需要控制环境的稳定性,避免外界因素对实验结果的干扰。
总之,光纤传感器实验是物理实验技术中的一项重要内容。
光纤传感器的位移测量与及数值误差分析实验一、实验原理1.光纤传感器工作原理2.实验仪器和材料(1)光纤传感器:包括光源、探头和电子控制单元。
(2)被测物体:选择一个具有一定位移范围的物体,如斜坡或弹簧。
(3)信号处理器:用于采集和处理光纤传感器的输出信号。
3.实验步骤(1)将光纤传感器的探头安装在被测物体上,并将光源和电子控制单元连接好。
(2)调整光纤传感器的位置和方向,使其能够正确地检测到被测物体的位移。
(3)通过信号处理器采集光纤传感器的输出信号,并进行相应的数据处理。
(4)对被测物体进行一系列的位移变化,记录光纤传感器的输出信号,并计算位移值。
(5)分析和比较测量结果,评估光纤传感器的测量精度和可靠性。
二、数值误差分析1.线性度误差线性度误差是指光纤传感器在测量范围内的输出与被测物体实际位移之间的偏差。
通过在不同位移范围内进行测量,可以绘制出光纤传感器的输入输出曲线,并通过拟合得到线性度误差。
2.灵敏度误差灵敏度误差是指光纤传感器输出信号的增益与被测物体位移之间的偏差。
通过改变被测物体的位移步长,可以测量得到不同位移值下的输出信号,并计算灵敏度误差。
3.常数误差常数误差是指光纤传感器输出信号在零位移点上的固有偏移。
可以通过将被测物体置于零位移点附近,记录测量结果,并计算常数误差。
4.稳定性误差稳定性误差是指光纤传感器在长时间测量过程中输出信号的波动。
通过对输出信号进行连续测量,并统计其标准差,可以评估光纤传感器的稳定性。
5.总误差估计将上述各项误差进行合并,可以得到光纤传感器的总体误差估计。
同时,也可以根据具体的应用需求,确定误差允许范围,评估光纤传感器的适用性。
通过以上实验步骤和数值误差分析,可以深入了解光纤传感器的位移测量原理,并评估其测量精度和可靠性。
同时,针对实验结果中的误差,可以进一步优化光纤传感器的设计和应用。
实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。
学会对实验测量数据进行误差分析。
二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。
两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。
三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。
四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。
光纤位移传感器实验报告光纤位移传感器实验报告引言光纤位移传感器是一种基于光纤传输原理的高精度测量设备,广泛应用于机械、航空航天、电子等领域。
本实验旨在通过搭建光纤位移传感器实验装置,探究其原理和性能,并对其进行实际应用测试。
一、实验装置搭建实验装置主要由光源、光纤传输线、光纤接收器和信号处理器组成。
首先,将光源连接到光纤传输线的一端,然后将另一端连接到光纤接收器。
在实验过程中,需要保证光纤传输线的稳定性和光源的亮度。
信号处理器用于接收光纤传输线传输过来的信号,并将其转化为位移数值。
二、原理分析光纤位移传感器的工作原理基于光的传输特性。
光纤传感器通过测量光纤中的光信号的强度变化来确定位移的大小。
当物体发生位移时,光纤中的光信号会受到干扰,从而导致光强度的变化。
通过测量光强度的变化,可以计算出位移的数值。
三、性能测试1. 精度测试为了测试光纤位移传感器的精度,我们将其与一个标准测量仪器进行对比。
首先,我们将标准测量仪器测量得到的位移数值作为参考值,然后使用光纤位移传感器进行测量。
通过对比两者的测量结果,可以评估光纤位移传感器的精度。
2. 灵敏度测试光纤位移传感器的灵敏度是指其对位移变化的响应能力。
我们可以通过改变物体的位移大小,然后观察光纤位移传感器的输出值来测试其灵敏度。
在实验中,我们可以逐渐增加物体的位移,然后记录下光纤位移传感器的输出值。
通过分析数据,可以得出光纤位移传感器的灵敏度。
3. 稳定性测试光纤位移传感器的稳定性是指其在长时间使用过程中的性能表现。
为了测试稳定性,我们可以将光纤位移传感器连接到一个振动平台上,然后进行长时间的振动测试。
通过观察光纤位移传感器的输出值,可以评估其在振动环境下的稳定性。
四、实际应用光纤位移传感器在实际应用中具有广泛的用途。
例如,在机械领域,光纤位移传感器可以用于测量机械零件的位移,以确保其工作正常。
在航空航天领域,光纤位移传感器可以用于测量飞机结构的变形,以确保飞机的安全性。
光纤传感器实验报告
本次实验旨在探究光纤传感器的特性及其在测量过程中的应用。
实验中,我们使用了一个名为“FiberSense100”的光纤传感器系统,
该系统由一个光纤量子传感器和一台PC构成,旨在测量目标物体的温度、湿度和压力。
首先,我们确定了光纤传感器的工作原理,并进行了设置和校准。
在设置过程中,我们首先调节了温度传感器,设置正确的温度量程,
并将其与外界温度进行比较,以求出较高精度的温度值。
之后,我们
对湿度传感器和压力传感器也进行了类似的操作。
最后,我们将一个
温控器(用于控制实验室的温度)与光纤传感器相连,并进行了各种
负载和温度变化的测试,以验证光纤传感器的准确性和可靠性。
接着,我们再进行了对测量数据的分析。
通过对上述测试数据分析,我们发现光纤传感器能够很好地反映实验室温度变化以及随时间
推移而变化的负载情况,具有良好的稳定性。
在压力传感器方面,我
们也发现光纤传感器测量的压力值与标准值吻合,证明了光纤传感器
的高准确度。
最后,我们总结了本次实验的结果。
实验表明,当使用光纤传感
器时,可以快速准确地测量温度、湿度和压力,具有较高的稳定性和
可靠性,因此,光纤传感器可以广泛应用于生产实践中,以更好地满
足生产和检测需求。
光纤传感器实验报告光纤传感器实验报告引言光纤传感器是一种基于光学原理的传感器,通过光信号的变化来感知和测量环境中的物理量。
它具有高灵敏度、抗干扰能力强等优点,在工业、医疗、环境监测等领域得到广泛应用。
本实验旨在探究光纤传感器的原理和应用,并通过实验验证其性能。
实验一:光纤传感器的原理光纤传感器的基本原理是利用光的传输特性,通过光纤中的光信号的变化来感知和测量环境中的物理量。
光纤传感器主要包括光源、光纤、光探测器和信号处理器等组成部分。
在实验中,我们使用了一根单模光纤作为传感器。
当外界物理量作用于光纤时,光纤中的折射率发生变化,从而改变了光信号的传输特性。
通过测量光信号的变化,我们可以间接地得到环境中的物理量。
实验二:光纤传感器的应用光纤传感器具有广泛的应用领域,下面我们将介绍几个典型的应用案例。
1. 温度传感器光纤传感器可以用来测量温度。
通过将光纤与温度敏感材料结合,当温度发生变化时,光纤中的折射率也会发生变化,从而改变了光信号的传输特性。
通过测量光信号的变化,我们可以得到温度的信息。
2. 压力传感器光纤传感器还可以用来测量压力。
通过将光纤与压力敏感材料结合,当压力作用于光纤时,光纤中的折射率发生变化,从而改变了光信号的传输特性。
通过测量光信号的变化,我们可以得到压力的信息。
3. 拉力传感器光纤传感器还可以用来测量拉力。
通过将光纤与拉力敏感材料结合,当拉力作用于光纤时,光纤中的折射率发生变化,从而改变了光信号的传输特性。
通过测量光信号的变化,我们可以得到拉力的信息。
实验三:光纤传感器性能测试在本实验中,我们对光纤传感器的性能进行了测试,包括灵敏度、线性度和稳定性等。
灵敏度是指光纤传感器对物理量变化的响应能力。
我们通过改变环境中的物理量,并记录光信号的变化,来计算光纤传感器的灵敏度。
线性度是指光纤传感器输出信号与输入物理量之间的关系是否呈线性关系。
我们通过改变环境中的物理量,并记录光信号的变化,来计算光纤传感器的线性度。
光纤传感器的位移特性实验报告
本文将分析光纤传感器的位移特性实验,介绍器件本身的特性、参数设置、实验方法,测试数据以及实验结果。
光纤传感器是一种新兴的技术,它主要利用光纤的光学特性和检测技术来检测运动物体的物理位移,以及其他物理变化。
它具有小尺寸、低功耗、设备安装方便、非接触式等优点,可用于检测、控制和监视过程中的各种参数,在机器人技术、航空航天技术、发动机控制系统、安全监测、绿色能源等领域中有广泛的应用。
本实验使用的特定型号的光纤传感器器件是由XXX公司生产的,采用高精度表面贴装工艺,结构小巧,反应迅速,适合作为精密机械设备中的传感器使用。
此款器件采用单模光纤非接触式测量,最大位移量可达到±100mm,分辨率为1m以下,误差低于1%。
为了测试光纤传感器的位移特性,设计了一个由钢丝和支架组成的测试装置,将光纤传感器的光路安装在测试装置的两个固定点上,模拟了实际工作环境中的物理位移,测试装置还具有一定的可调性,可以满足不同的测试要求。
根据实验设计,将光纤传感器安装在协调测试装置上,通过实验室校验系统调节设备参数,如增益和温度,以保证测量结果的准确性,将器件设置为双轴平行模式,然后选择不同增益,模拟不同物理位移。
在每组测试中,模拟的位移值为10mm,20mm,30mm,40mm,50mm,60mm,70mm,80mm,90mm,100mm;每组测试都重复进行了三次,以获得有效的测量结果。
根据测量结果,绘制出光纤传感器的位移特性
图,将量测到的位移值与模拟的位移值进行比较,以确定光纤传感器的准确度。
实验结果表明,在测量范围内,光纤传感器的实测位移与模拟位移之间的误差在1μm以内,无论是在纵轴还是横轴方向,测量精度均达到了预期的要求。