考点二
例2
[2018·福建宁德一检] 已知
2 2
椭圆 C: 2 + 2 =1(a>b>0)的左、右焦
3
点分别为 F1,F2,过 P 0, b 且斜率为
2
弦长问题
[思路点拨] (1)当 k=0 时,直线 l∥x 轴,由圆的面积求
得直径|MF1|,易知 M
2
c,
2
3
,由 = b
2
3
得 = ,设
焦点分别为 F1,F2,B 为椭圆上的任意一点,
且 3|BF1|,|F1F2|, 3|BF2|成等差数列.
(1)求椭圆 C 的标准方程;
(2)直线 l:y=k(x+2)交椭圆于 P,Q 两点,若
点 A 始终在以 PQ 为直径的圆外,求实数 k
的取值范围.
[总结反思] 研究直线与圆锥曲线的位置
关系,一般转化为研究由直线方程与圆锥
由根与系数的关系可得 x1+x2=
,∴x2=
,则
2
2
1+4
1+4
4
y1+y2=k(x1+2)+k(x2+2)=k(x1+x2)+4k=
,∴
2
1+4
4
y2 =
.由点 A 始终在以 PQ 为直径的圆外,得∠PAQ
2
1+4
为锐角,即·>0,∵=(-2,-1),=(x2,y2-1),∴
(2)不妨设 P(x1,y1),Q(x2,y2),x1<x2,依题意知 l:y=k(x+2)
恒过点(-2,0),此点为椭圆的左顶点,∴x1=-2,y1=0.由