【精英新课堂】2016春九年级数学下册 小专题突破一 用待定系数法确定二次函数的表达式课件
- 格式:ppt
- 大小:1.66 MB
- 文档页数:22
第09讲待定系数法求二次函数解析式、二次函数与一元二次方程【人教版】·模块一用待定系数法求二次函数解析式·模块二二次函数与一元二次方程·模块三课后作业用待定系数法求二次函数的解析式(1)一般式:y=ax²+bx+c,已知图像上三点或三对x、y的值,通常选择一般式;(2)顶点式:y=a(x-h)²+k,已知图像的顶点或对称轴,通常选择顶点式;(3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y=a(x-x1)(x-x2).【考点1用“一般式”求二次函数解析式】【例1.1】已知点A(1,2)、B(2,3)、C(2,1),那么抛物线=B2+B+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C【答案】C【分析】先把o1,2),o2,1)代入抛物线的解析式,求解抛物线的解析式为:=−2+ 2+1,再判断不在抛物线上,从而可得答案.【详解】解:把o1,2),o2,1)代入抛物线的解析式,∴{++1=24+2+1=1即:{+=12+=0解得:{=−1=2,∴抛物线为:=−2+2+1,当=2时,=−4+4+1=1≠3,∴o2,3)不在抛物线=−2+2+1上,∴抛物线=B2+B+1可以经过的点是s u故选:u【点睛】本题考查的是利用待定系数法求解抛物线的解析式,抛物线上点的坐标特点,掌握以上知识是解题的关键.【例1.2】二次函数=B 2+B +自变量x 与函数值y 的部分对应值如下表.x …−10123…y…105212…则当=5时,y 的值为()A .2B .1C .5D .10【答案】D【分析】先任选三组数据,利用待定系数法求出二次函数解析式,再计算当=5时的函数值.【详解】由表可知,二次函数y =B 2+B +o ≠0)的图象经过0,5,1,2,2,1,则=5++=24+2+=1,解得:=1=−4=5,∴二次函数解析式为:=2−4+5当=5时,函数值=2−4+5=52−4×5+5=10.故选:D【点睛】本题考查二次函数,解题的关键是熟练运用待定系数法求二次函数解析式.【例1.3】已知抛物线=B 2+B +≠0经过点(2,),(3,),(4,2),那么++的值是()A .2B .3C .4D .【答案】A【分析】把点(2,),(3,),(4,2)代入抛物线,解三元一次方程组即可求解.【详解】解:∵抛物线=B 2+B +≠0经过点(2,),(3,),(4,2),∴4+2+=9+3+=16+4+=2,解得,=1−12=52−5=6−2,∴++=1−12+52−5+6−2=2,故选:A .【点睛】本题主要考查二次函数与三元一次方程组的综合,掌握二次函数的代入法,解三元一次方程组的方法是解题的关键.【变式1.1】已知:二次函数=B 2+B +的图象经过点−1,0、3,0和0,3,当=2时,y 的值为__________.【答案】3【分析】根据题意可得交点式=−3+1,然后把0,3代入求出a 值,即可求出二次函数表达式.【详解】解:∵二次函数=B 2+B +的图象经过点−1,0、3,0∴抛物线的解析式为=−3+1,把0,3代入得:−3=3,解得:=−1,∴函数的解析式为=−−3+1,即=−2+2+3,∴当=2时,=−22+2×2+3=3,故答案为:3.【点睛】本题考查了求二次函数解析式,熟练掌握待定系数法求函数解析式是解题关键.【变式1.2】二次函数的图象如图所示,则这个二次函数的表达式为()A .=2+2−3B .=2−2−3C .=−2+2−3D .=−2−2+3【答案】B【分析】根据题意,由函数图像的对称轴及与x 轴的一个交点,则可以知道函数与x 轴的另一个交点,再根据待定系数法求解函数解析式即可.【详解】根据题意,二次函数对称轴为=1,与x 轴的一个交点为(−1,0),则函数与x 轴的另一个交点为(3,0),故设二次函数的表达式为=B 2+B +,函数另外两点坐标(−1,0),(1,−4)可得方程组0=9+3+0=−+−4=++,解得方程组得=1=−2=−3,所以二次函数表达式为=2−2−3.故答案为B.【点睛】本题考查了用待定系数法求函数表达式的方法和二次函数的对称轴的问题,同时考查学生解方程组的知识,是比较常见的题目.【变式1.3】已知二次函数=B2+B+(a,b,c为常数)的部分取值如下表,该二次函数图象上有三点−4,1,−2,2,2,3,则1,2,3的大小关系是()x-5-11y151A.1<2<3B.1<3<2C.3<1<2D.2<1<3【答案】C【分析】先根据表格数据,用待定系数法求出二次函数解析式,再把−4,1,−2,2,2,3,分别代入二次函数解板式,求出1,2,3的值,即可求解.【详解】解:把当=−5,=1,当=−1,=5,当=1,=1,代入=B2+B+,得25−5+=1−+=5++=1,解得:=−12=−2 =72,∴=−122−2+72,把−4,1,−2,2,2,3,分别代入=−122−2+72,得1=−12×−42−2×−4+72=72,2=−12×−22−2×−2+72=32,3=−12×22−2×2+72=−52,∴3<1<2,故选:C.【点睛】本题考查用待定系数法求二次函数解析式,二次函数图象上点的坐标特征,熟练掌握用待定系数法求二次函数解析式,二次函数图象上点的坐标特征是解题的关键.【考点2用“顶点式”求二次函数解析式】【例2.1】已知,二次函数的图像过点(1,18),顶点是(−1,−2),则此二次函数的表达式是().A.=52+10+3B.=52+10−2C.=52+10+7D.=52−10−3【答案】A【分析】设二次函数的解析式为=−ℎ2+,顶点是(−1,−2),则=+12−2,把(1,18)代入,即18=1+12−2,=5,那么=5+12−2=52+10+3.【详解】根据题意设二次函数的解析式为=+12−2,把(1,18)代入,即18=1+12−2,=5,那么=5+12−2=52+10+3,故选:A.【点睛】本题主要考查是二次函数的顶点式、一般式等知识内容,熟练掌握二次函数的顶点式y=a x−ℎ2+k,顶点是(ℎ,k)是解题的关键.【例2.2】已知一个二次函数的图象经过点(2,2),顶点为(−1,−1),将该函数图象向右平移,当他再次经过点(2,2)时,所得抛物线表达式为()A.=−13(−5)2+1B.=13(−5)2−1C.=−13(+4)2−10D.=3(−7)2−1【答案】B【分析】根据题意,求出平移距离,即可求出平移后抛物线的顶点坐标,设平移后,二次函数的解析式为=o−5)2−1,将(2,2)代入即可求出结论.【详解】解:由题意可知:平移前,点(2,2)关于抛物线的对称轴直线x=-1的对称点为(-4,2)向右平移后,点(-4,2)平移到(2,2)∴抛物线向右平移了2-(-4)=6个单位长度∴平移后抛物线的顶点坐标为(5,-1)设平移后,二次函数的解析式为=o−5)2−1将(2,2)代入,得2=o2−5)2−1解得:a=13∴平移后,二次函数的解析式为=13(−5)2−1故选B.【点睛】此题考查的是抛物线的平移和求抛物线解析式,根据题意求出平移距离是解题关键.【例2.3】已知二次函数图象的对称轴是直线=2,函数的最小值为3,且图象经过点−1,5,则此二次函数的解析式是_____.【答案】=292−89+359【分析】由题意可知二次函数的图象的顶点坐标为2,3,所以设其解析式为“顶点式”,再代入点−1,5,即可求出解析式.【详解】根据题意,设二次函数的解析式为=−22+3,将点−1,5代入得,5=−1−22+3,整理得:9=2,解得:=29−22+3=292−89+359,∴二次函数的解析式为:=故答案为:=292−89+359.【点睛】本题考查二次函数的解析式,解题的关键是理解题意,设出解析式的“顶点式”.【变式2.1】某二次函数的图象与函数y=12x2﹣4x+3的图象形状相同、开口方向一致,且顶点坐标为(﹣2,1),则该二次函数表达式为()A.y=12(x﹣2)2+1B.y=12(x﹣2)2﹣1C.y=12(x+2)2+1D.y=﹣12(x+2)2+1【答案】C【分析】设二次函数的解析式为=o−ℎ)2+o≠0),根据顶点坐标为(﹣2,1)以及与函数y=12x2﹣4x+3的图象形状相同、开口方向一致,可确定函数的解析式.【详解】解:设二次函数的解析式为=o−ℎ)2+o≠0),∵二次函数的图像顶点坐标为(﹣2,1),∴二次函数的解析式为=o+2)2+1,∵二次函数的图象与函数y=12x2﹣4x+3的图象形状相同、开口方向一致,∴二次函数的解析式为:=12(+2)2+1,故选:C.【点睛】本题考查了待定系数法求二次函数解析式,读懂题意,熟练掌握二次函数的几种形式是解本题的关键.【变式2.2】一个二次函数的图象的顶点坐标是2,−3,与y轴的交点是0,5,这个二次函数的解析式是()A.=22−4+11B.=22−4+5C.=22−8+5D.=22+8+5【答案】C【分析】根据顶点坐标,可设二次函数解析式为=−22−3,然后将0,5代入解析式中,求出a的值,并将顶点式化为一般式即可得出结论.【详解】解:根据题意,设二次函数解析式为=−22−3,将0,5代入=−22−3中,得5=0−22−3解得:a=2∴二次函数解析式为=2−22−3=22−8+5故选C.【点睛】此题考查的是求二次函数解析式,掌握利用待定系数法求二次函数解析式是解题关键.【变式2.3】二次函数与y轴的交点到原点的距离为8,它的顶点坐标为(−1,2),那么它的解析式为_________.【答案】=6(+1)2+2或=−10(+1)2+2【分析】根据二次函数的顶点坐标设出顶点式,然后根据二次函数与y轴的交点到原点的距离为8,得出二次函数经过(0,8)或(0,−8),分别代入求解即可.【详解】解:∵二次函数的顶点坐标为(−1,2),∴设二次函数解析式为=o+1)2+2,∵二次函数与y轴的交点到原点的距离为8,∴二次函数经过(0,8)或(0,−8),∴8=+2或−8=+2,解得:=6或=−10,∴二次函数的解析式为=6(+1)2+2或=−10(+1)2+2,故答案为:=6(+1)2+2或=−10(+1)2+2.【点睛】本题考查了待定系数法求二次函数解析式,熟练掌握二次函数的几种形式是解本题的关键.【考点3用“交点式”求二次函数解析式】【例3.1】已知抛物线与轴交点的横坐标为−3和2,且过点(1,−8),它对应的函数解析式为()A.=2+−6B.=−2−+6C.=−22−2+12D.=22+ 2−12【答案】D【分析】设函数解析式为=o+3)(−2),将点(1,−8)代入即可求得a的值,可得结果.【详解】解:设抛物线函数解析式为:=o+3)(−2),∵抛物线经过点(1,−8),∴−8=o1+3)(1−2),解得:=2,∴抛物线解析式为:=2(+3)(−2),整理得:=22+2−12,故选:D.【点睛】本题主要考查待定系数法求二次函数的解析式,设出二次函数的交点式是解题的关键.【例3.2】二次函数图象如图所示,则其解析式是()A.=−432+83+4B.=432+83+4C.=−432−83+4D.=−432+83+3【答案】A【分析】设=o+1)(−3),把(0,4)代入求出a的值,即可得出结论.【详解】设=o+1)(−3),把(0,4)代入得:4=-3a,解得:=−43,∴=−43(+1)(−3),整理得:=−432+83+4.故选A.【点睛】本题考查了待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【变式3.1】已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3),则该抛物线的解析式为__________.【答案】y=﹣x2﹣2x+3【分析】由于已知抛物线与x轴的交点坐标,则可设交点式y=a(x+3)(x-1),然后把C 点坐标代入求出a的值即可.【详解】设抛物线解析式为y=a(x+3)(x-1),把C(0,3)代入得a•3•(-1)=3,解得a=-1,所以抛物线解析式为y=-(x+3)(x-1),即y=-x2-2x+3.故答案为y=-x2-2x+3.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【变式3.2】某二次函数的图象与x轴交于点(﹣1,0),(4,0),且它的形状与y=﹣x2形状相同.则这个二次函数的解析式为_____.【答案】y=﹣x2+3x+4或y=x2﹣3x﹣4.【分析】根据图象与x轴交于点(﹣1,0),(4,0)可设两点式解答,根据形状与y=﹣x2形状相同,可知二次项系数为﹣1或1,于是可得二次函数解析式.【详解】∵函数图象与x轴交于点(﹣1,0),(4,0),∴设解析式为y=a(x+1)(x﹣4),又因为图象的形状与y=﹣x2形状相同,故a=﹣1或1,所以解析式为y=±(x+1)(x﹣4),整理得,y=﹣x2+3x+4或y=x2﹣3x﹣4.故答案为y=﹣x2+3x+4或y=x2﹣3x﹣4.【点睛】本题考查了用待定系数法求函数解析式,由于知道二次函数图象与x轴交点,故设两点式较为简便.直线与抛物线的交点(1)y轴与抛物线y=ax²+bx+c的交点为(0,c);(2)与y轴平行的直线x=h与抛物线y=ax²+bx+c有且只有一个交点(h,ah²+bh+c).(3)抛物线与x轴的交点二次函数y=ax²+bx+c的图像与x轴的两个交点的横坐标x1、x2,就是对应一元二次方程y=ax²+bx+c的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔Δ>0⇔抛物线与x轴相交;②有一个交点(顶点在x轴上)⇔Δ=0⇔抛物线与x轴相切;③没有交点⇔Δ<0⇔抛物线与x轴相离.【考点1抛物线与x轴的交点】【例1.1】抛物线=2−4−5交轴于,两点,则B长为______.【答案】6【分析】根据抛物线y=x2-4x-5与x轴分别交于A、B两点,可以令y=0求得点A、B的坐标,从而可以求得AB的长.【详解】解:∵y=x2-4x-5,∴y=0时,x2-4x-5=0,解得,x1=-1,x2=5.∵抛物线y=x2-4x-5与x轴分别交于A、B两点,∴点A的坐标为(-1,0),点B的坐标为(5,0),∴AB的长为:5-(-1)=6.故答案为:6.【点睛】本题考查抛物线与x轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x轴相交时,y=0.【例1.2】抛物线=−1+3与x轴的两个交点之间的距离是()A.72B.2C.12D.4【答案】D【分析】先求出函数图像与x轴交点的坐标,进而即可求解.【详解】解:当=0时,−1+3=0,解得:1=−3,2=1,∴抛物线与x轴的交点坐标为−3,0和1,0,∴抛物线与x轴的两个交点之间的距离:1−−3=4,故选:D.【点睛】本题考查了抛物线与x轴的交点,解一元二次方程;正确理解题意,求出抛物线与x轴交点坐标是解题的关键.【例1.3】抛物线的部分图像如图所示,它与轴的一个交点坐标为−3,0,对称轴为=−1,则它与轴的另一个交点坐标为()A.4,0B.3,0C.2,0D.1,0【答案】D【分析】直接根据二次函数与轴的交点关于=−1对称可得结果.【详解】解:∵抛物线与轴的一个交点坐标为−3,0,对称轴为J−1,∴−1−(−3)=2,∴−1+2=1,∴它与轴的另一个交点坐标为1,0,故选:D.【点睛】本题考查了抛物线与轴的交点问题,熟练掌握二次函数的性质是解本题的关键.【变式1.1】二次函数J2−+1的图象与坐标轴的交点有_____个.【答案】1【分析】计算自变量为0对应的函数值得到抛物线与轴的交点,再解方程2−+1=0,可判断抛物线与轴的交点,从而可判断抛物线与坐标轴的交点个数.【详解】解:当J0时,J2−+1=1,则抛物线与轴的交点坐标为0,1;当J0时,2−+1=0,方程无解;所以二次函数J2−+1的图象与坐标轴有1交点.故答案为:1.【点睛】本题考查了抛物线与轴的交点:把求二次函数JB2+B+(,,是常数,≠0)与轴的交点坐标问题转化为解关于的一元二次方程是解题关键.【变式1.2】已知函数=2−6+5的部分图象(如图),满足<0的的取值范围是____.【答案】1<<5【分析】首先由图象可求得该抛物线与x轴的另一个交点的横坐标,再根据图象即可求解.【详解】解:由=2−6+5,当=0时,2−6+5=0解得:1=1,2=5∴该抛物线与x轴的交点的横坐标1,5,∵该抛物线的开口向上,∴当<0时,的取值范围是1<<5,故答案为:1<<5.【点睛】本题考查了二次函数的图象和性质,从图象中获取相关信息是解决本题的关键.【变式1.3】抛物线y=ax2+bx+c的对称轴为x=1,点P,点Q是抛物线与x轴的两个交点,若点P的坐标为(3,0),则点Q的坐标为______.【答案】(-1,0)【分析】根据抛物线的对称轴结合点P的横坐标,即可求出点Q的横坐标,此题得解.【详解】解:∵抛物线的对称轴为直线x=1,点P的坐标为(3,0),∴点Q的横坐标为1×2-3=-1,∴点Q的坐标为(-1,0).故答案为:(-1,0).【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,牢记抛物线的对称性是解题的关键.【考点2用二次函数解一元二次方程】【例2.1】已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=﹣4,x2=2B.x1=﹣3,x2=﹣1C.x1=﹣4,x2=﹣2D.x1=﹣2,x2=2【答案】A【分析】关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标.【详解】解:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(2,0),对称轴是直线x=−1.设该抛物线与x轴的另一个交点是(x,0).则r22=−1,解得,x=-4,即该抛物线与x轴的另一个交点是(-4,0).所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=−4,x2=2.故选:A.【例2.2】已知二次函数=B2+B+≠0图像上部分点横坐标、纵坐标的对应值如下表:x…01234…y…-3-4-305…请根据上表直接写出方程B2+B+=0≠0的解为______.【答案】1=−1,2=3【分析】由表格信息可知,二次函数的对称轴为=1,当=3时,函数值为零,根据函数的对称性,即可求解.【详解】解:据题意得,当=0时,=−3;当=2时,=−3,∴对称轴为=1,当=3时,=0,根据函数关于对称轴对称可知,当=−1时,=0,∴方程B2+B+=0≠0的解为1=−1,2=3,故答案为:1=−1,2=3.【点睛】本题主要考查二次函数图像与一元二次方程解的综合,掌握二次函数图像的性质解一元二次方程是解题的关键.【例2.3】已知二次函数y=﹣x2﹣2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2﹣2x+m=0的解为_____.【答案】x1=﹣4,x2=2【分析】根据图象可知,二次函数y=﹣x2﹣2x+m的部分图象经过点(﹣4,0),把该点代入方程,求得m值;然后把m值代入关于x的一元二次方程﹣x2﹣2x+m=0,求根即可.【详解】解:根据图象可知,二次函数y=﹣x2﹣2x+m的部分图象经过点(﹣4,0),所以该点适合方程y=﹣x2﹣2x+m,代入,得(﹣4)2+2×(﹣4)+m=0解得,m=8①把①代入一元二次方程﹣x2﹣2x+m=0,得﹣x2﹣2x+8=0,②解②,得x1=﹣4,x2=2∴关于x的一元二次方程﹣x2﹣2x+m=0的解为x1=﹣4,x2=2故答案为x1=﹣4,x2=2.【点睛】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,求出m的值是解题关键.【变式2.1】若二次函数=B2+B+的图象如图所示,则方程B2+B+=0的解为()A.1=0,2=3B.1=1,2=3C.1=1,2=0D.1=−1,2=3【答案】D【分析】由抛物线与x轴的交点横坐标可得方程B2+B+=0的解.【详解】解:由图象可得抛物线=B2+B+经过−1,0,3,0,∴方程B2+B+=0的解为1=−1,2=3.故选:D.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系.【变式2.2】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题:(1)点B的坐标为;(2)y随x的增大而减小的自变量x的取值范围为;(3)方程ax2+bx+c=0的两个根为【答案】(1)(3,0);(2)x>1;(3)x1=-1,x2=3【分析】(1)由图象可得:A、B到直线x=1的距离相等,根据A的坐标,即可求出B点坐标;(2)利用图象得出函数对称轴进而得出y随x的增大而减小的自变量x的取值范围;(3)根据方程ax2+bx+c=0,即图象与x轴交点,进而得出方程的两个根【详解】解:(1)由图象可得:A、B到直线x=1的距离相等,∵A(-1,0)∴B点坐标为:(3,0)故答案为(3,0);(2)由图象可得:y随x的增大而减小的自变量x的取值范围是:x>1;故答案为x>1;(3)∵方程ax2+bx+c=0,即图象与x轴交点,∴方程ax2+bx+c=0的两个根是:x1=-1,x2=3;故答案为x1=-1,x2=3【考点3用二次函数的图象求一元二次方程的近似解】【例3.1】在求解方程B2+B+=0(≠0)时,先在平面直角坐标系中画出函数=B2+ B+的图象,观察图象与轴的两个交点,这两个交点的横坐标可以看作是方程的近似解,分析右图中的信息,方程的近似解是()A.1=−3,2=2B.1=−3,2=3C.1=−2,2=2D.1=−2,2=3【答案】D【分析】由题意观察=B2+B+的图象,进而根据与轴的两个交点的横坐标进行分析即可.【详解】解:因为两个交点的横坐标可以看作是方程的近似解,两个交点的横坐标为:1=−2,2=3,所以方程的近似解是1=−2,2=3.故选:D.【点睛】本题考查二次函数图象与轴的交点问题,熟练掌握并结论方程思想可知与轴的两个交点的横坐标可以看作是方程B2+B+=0(≠0)的近似解进行分析.【例3.2】根据下表列出的函数=B2+B+的几组与的对应值,判断方程B2+B+ =0一个解的范围是()3.23 3.24 3.253.26−0.37−0.110.090.28A.3<<3.23B.3.23<<3.24C.3.24<<3.25D.3.25<<3.26【答案】C【分析】根据表格数据,便可求值根的范围.【详解】解:由表格数据可知:当=3.24时,=−0.11;当=3.25,=0.09∴一个根的范围是:3.24<<3.25故选:C.【点睛】本题考查二次函数与一元二次方程根之间的关系,属于基础题,准确理解题意是解题关键.【变式3.1】根据表中二次函数=B2+B+的自变量与函数值的对应值,判断一元二次方程B2+B+=0的一个根的取值范围是()6.17 6.18 6.196.20−0.03−0.010.020.04A.6<<6.17B.6.17<<6.18C.6.18<<6.19D.6.19<<7【答案】C【分析】根据一元二次方程B2+B+=0的根即为函数=B2+B+与轴交点的横坐标解答即可.【详解】解:∵当=6.18时,=−0.01,当=6.19时,=0.02,∴一元二次方程B2+B+=0的一个根的取值范围是6.18<<6.19,故选:C.【点睛】本题考查了一元二次方程的根与二次函数的关系,熟知一元二次方程B2+B+= 0的根即为函数=B2+B+与轴交点的横坐标是解答本题的关键.【变式3.2】已知二次函数y=-x2-2x+2.(1)填写下表,并在给出的平面直角坐标系中画出这个二次函数的图象;x……-4-3-2-1012……y…………(2)结合函数图象,直接写出方程-x2-2x+2=0的近似解(指出在哪两个连续整数之间即可).【答案】(1)见解析;(2)近似解是-3<x<-2或0<x<1.【分析】(1)计算填写表格后利用描点法画出函数图象即可;(2)观察图象,看交点的横坐标在哪两个整数之间,由此即可解答.【详解】(1)x……-4-3-2-1012……y……-6-1232-1-6……所画图象如图.(2)由图象可知,方程-x2-2x+2=0的近似解是-3<x<-2或0<x<1.【点睛】本题考查用二次函数图象的画法及利用函数图象法求一元二次方程的解,解题的关键是看函数图象与x轴交点的位置.【考点4用二次函数的图象解不等式】【例4.1】如图,在平面直角坐标系中,抛物线=B2+B+<0经过点−1,0,对称轴为直线=1.若<0,则x的取值范围是()A.<1B.<−1C.−1<<1D.<−1或>3【答案】D【分析】由抛物线的对称性求出抛物线与x轴的另一交点为3,0,根据图象可得出答案.【详解】解:∵抛物线=B2+B+<0经过点−1,0,对称轴为直线=1,∴抛物线与x轴的另一交点为3,0,由图象可知,<0时,x的取值范围是<−1或>3.故选:D.【点睛】本题考查了二次函数与x轴的交点,二次函数的性质,主要利用了二次函数的对称性,准确识图是解题的关键.【例4.2】已知二次函数=2−4+3的图象与轴交于点o1,0),o3,0),则当<0时,的取值范围是()A.>1B.<3C.<1或>3D.1<<3【答案】D【分析】根据题意确定函数的开口方向,画出函数的大致图,即可确定x的取值范围.【详解】∵a=1∴函数的开口向上∵图象与轴交于点o1,0),o3,0)∴函数的图象如下:通过图象可知,当1<<3时<0,故选D.【点睛】本题考查抛物线与x轴的交点,二次函数的图象与性质,有关图象性质得问题,画出大致图更加直观,能根据题意画出函数的大致图并根据图象分析是解决此题的关键.【例4.3】如图,一次函数1=B+≠0与二次函数2=B2+B+≠0的图象相交于−1,5、9,2两点,则关于的不等式B+≤B2+B+的解集为______.【答案】≤−1或≥9【分析】由求关于的不等式B+≤B2+B+的解集,即求一次函数1=B+≠0的图象在二次函数2=B2+B+≠0的图象下方时(包括交点),x的取值范围,再结合图象即可得解.【详解】解:∵求关于的不等式B+≤B2+B+的解集,即求一次函数1=B+≠0的图象在二次函数2=B2+B+≠0的图象下方时(包括交点),x的取值范围,又∵结合图象可知当≤−1和≥9时,一次函数1=B+≠0的图象在二次函数2=B2+B+≠0的图象下方,∴关于的不等式B+≤B2+B+的解集为≤−1或≥9.故答案为:≤−1或≥9.【点睛】本题考查根据交点确定不等式的解集.利用数形结合的思想是解题关键.【变式4.1】已知函数=2−6+5的部分图象(如图),满足<0的的取值范围是____.【答案】1<<5【分析】首先由图象可求得该抛物线与x轴的另一个交点的横坐标,再根据图象即可求解.【详解】解:由=2−6+5,当=0时,2−6+5=0解得:1=1,2=5∴该抛物线与x轴的交点的横坐标1,5,∵该抛物线的开口向上,∴当<0时,的取值范围是1<<5,故答案为:1<<5.【点睛】本题考查了二次函数的图象和性质,从图象中获取相关信息是解决本题的关键.【变式4.2】一个二次函数,当自变量x=0时,函数值y=-1;当x=-2与12时,y=0(1)求这个二次函数的解析式(2)当y>0时,x的取值范围是__________(直接写出结果)【答案】(1)=2+32−1;(2)>12或<−2【分析】(1)设二次函数为=o−1)(−2),由题意可得,1=−2,2=12,将(0,−1)代入求解即可;(2)由(1)得=1>0,开口向上,即可求解.【详解】解:(1)设二次函数为=o−1)(−2),由题意可得,1=−2,2=12,即二次函数为=o+2)(−12)将(0,−1)代入=o+2)(−12)得×2×(−12)=−1解得=1即=(+2)(−12)=2+32−1故答案为:=2+32−1(2)由(1)得=1>0,开口向上,由题意可得:当x=-2与12时,y=0∴当>12或<−2时,>0故答案为:>12或<−2【点睛】此题考查了待定系数法求解二次函数解析式,以及二次函数的性质,解题的关键是根据题意正确求得函数解析式并掌握二次函数的有关性质.【变式4.3】二次函数=B2+B+o≠0)的图象如图所示,根据图象回答下列问题:(1)写出方程B2+B+=0的根;(2)写出不等式B2+B+<0的解集;(3)若方程B2+B+=无实数根,写出的取值范围.【答案】(1)1=0,2=2;(2)<0或>2;(3)>2【分析】(1)找到抛物线与x轴的交点,即可得出方程ax2+bx+c=0的两个根;(2)找出抛物线在x轴下方时,x的取值范围即可;(3)根据图象可以看出k取值范围.【详解】解:(1)观察图象可知,方程B2+B+=0的根,即为抛物线与轴交点的横坐标,∴1=0,2=2.(2)观察图象可知:不等式B2+B+<0的解集为<0或>2.(3)由图象可知,>2时,方程B2+B+=无实数根.【点睛】本题考查了二次函数的图象与方程和不等式的关系,求方程ax2+bx+c=0的两个根,即为抛物线与x轴的交点的横坐标;判断y>0,y=0,y<0时,x的取值范围,要结合开口方向,图象与x轴的交点而定;方程ax2+bx+c=k有无实数根,看顶点坐标的纵坐标即可.1.已知抛物线与二次函数=−32的的图象形状相同,开口方向相同,且顶点坐标为−1,3,它对应的函数表达式为()A.=−3−12+3B.=3−12+3C.=3+12+3D.=−3+12+3【答案】D【分析】设此抛物线的解析式为=o−ℎ)2+,根据抛物线与二次函数=−32的的图象形状相同,开口方向相同,可知=−3,再代入顶点坐标即可.【详解】解:设此抛物线的解析式为=o−ℎ)2+,∵抛物线与二次函数=−32的的图象形状相同,开口方向相同,∴=−3,∵顶点坐标为−1,3,∴ℎ=−1,=3,∴=−3+12+3,故选D.【点睛】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.2.一个二次函数,当x=0时,y=﹣5;当x=﹣1时,y=﹣4;当x=﹣2时,y=5,则这个二次函数的关系式是()A.y=4x2+3x﹣5B.y=2x2+x+5C.y=2x2﹣x+5D.y=2x2+x﹣5【答案】A【分析】设二次函数的关系式是y=ax2+bx+c(a≠0),然后由当x=0时,y=﹣5;当x=﹣1时,y=﹣4;当x=﹣2时,y=5,得到a,b,c的三元一次方程组,解方程组确定a,b,c的值即可.【详解】解:设二次函数的关系式是y=ax2+bx+c(a≠0),∵当x=0时,y=﹣5;当x=﹣1时,y=﹣4;当x=﹣2时,y=5,∴c=﹣5①,a﹣b+c=﹣4②,4a﹣2b+c=5③,解由①②③组成的方程组得,a=4,b=3,c=﹣5,所以二次函数的关系式为:y=4x2+3x﹣5.故选:A.【点睛】本题考查了用待定系数法确定二次函数的解析式.设二次函数的解析式为y=ax2+bx+c(a≠0),通过解方程组确定a,b,c的值.3.若二次函数=2+3+−1的图象经过原点,则的值为()A.0B.1C.−1D.1或−1【答案】B【分析】将点0,0代入函数解析式求解即可得.【详解】解:把0,0代入=2+3+−1可得:−1=0,解得:=1,故选:B.【点睛】题目主要考查利用待定系数法确定函数解析式,熟练掌握待定系数法是解题关键.4.若二次函数=B2+B+的图象经过点−1,0,2,0,则关于x的方程B2+B+=0的解为()A.1=−1,2=2B.1=−2,2=1C.1=1,2=2D.1=−1,2=−2【答案】A【分析】根据一元二次方程的根为二次函数与x轴的交点即可解答.【详解】解:∵=B2+B+的图象经过点−1,0,2,0,∴方程B2+B+=0的解为1=−1,2=2.故选:A.【点睛】此题考查了二次函数与一元二次方程的关系,解题的关键是正确应用两者的关系.5.若二次函数=B2+B+的部分图象如图所示,则关于的方程B2+B+=0的解为()A.1=−2,2=3B.1=−1,2=3C.1=0,2=3D.1=1,2=3【答案】B【分析】先利用抛物线的对称性写出抛物线与轴的一个交点坐标为−1,0,然后根据抛物线与轴的交点问题可得到关于的方程B2+B+=0≠0的解.【详解】解:抛物线的对称轴为直线=1,抛物线与轴的一个交点坐标为3,0,所以抛物线与轴的一个交点坐标为−1,0,。
待定系数法求二次函数的解析式—知识讲解(提高)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线经过A ,B ,C 三点,当时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为().由图象可知A,B,C的坐标分别为(0,2),(4,0),(5,-3).∴=++=++=-⎧⎨⎪⎩⎪ca b ca b c216402553,,,解之,得抛物线的解析式为该抛物线的顶点坐标为.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围.2.(2016•丹阳市校级模拟)形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.【思路点拨】形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x﹣h)2+k,其中(h,k)为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x2﹣5.【解析】解:∵形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x﹣h)2+k,将顶点坐标是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3. 已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式. 【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为: ,, 则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法: 解法(1):设抛物线的函数关系式为顶点式:(a ≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2):设抛物线的函数关系式为两点式:(4)y a x =+(x-2)(a ≠0),把(-1,4)代入得,所以抛物线的函数关系式为:4(4)9y x =-+(x-2); 【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式. 举一反三:【高清课程名称:待定系数法求二次函数的解析式 高清ID 号: 356565 关联的位置名称(播放点名称):例3-例4】【变式】已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式 . 【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a (x+2)2+, 将点(1,0)代入,得a (1+2)2+=0, 解得a=﹣,即y=﹣(x+2)2+,∴所求二次函数解析式为y=﹣x 2﹣2x+. 类型二、用待定系数法解题4.(2015春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式;(2)设此二次函数的顶点为P ,求△ABP 的面积.【答案与解析】 解:(1)由二次函数图象知,函数与x 轴交于两点(﹣1,0),(3,0), 设其解析式为:y=a (x+1)(x ﹣3), 又∵函数与y 轴交于点(0,2), 代入解析式得, a ×(﹣3)=2, ∴a=﹣,∴二次函数的解析式为:,即;(2)由函数图象知,函数的对称轴为:x=1, 当x=1时,y=﹣×2×(﹣2)=, ∴△ABP 的面积S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量. 举一反三:【高清课程名称:待定系数法求二次函数的解析式 高清ID 号: 356565 关联的位置名称(播放点名称):例3-例4】 【变式】已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,.(1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上. 【答案】(1)23212+--=x x y ; (2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++. 得2230m m -+=.△=41280-=-<,该方程无实根.所以原结论成立.。