北大——小波分析C1
- 格式:ppt
- 大小:1.47 MB
- 文档页数:24
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
小波分析学习心得学习小波分析这门课程已经有一段时间了,我对于这一门课程已经有了一定程度的认识。
由于学科专业所限,我平时接触小波分析的机会并不是很多,很高兴在这个学期能够有机会专门学习小波分析。
经过这一段时间小波分析的学习,虽然我还不能说是精通小波分析,不过也是对其中的一些基本概念有了一定的理解。
后文中,我将会对在小波分析学习过程中所得到的一些学习心得进行总结。
我们通常说的波一般指的是物质的一种运动方式,在数学中它对应于时间域或空间域的震荡方程。
正弦波就是一种最为常见的波,它的振幅均匀的分布时域中,并不收敛,所具有的能量是无穷的。
小波,顾名思义,就是小的波,它的能量是有限的,相对于正弦波而言,它的振幅在时域上是收敛的,能量并不是无穷的。
傅里叶变换将函数投影到正弦波上,将函数分解成了不同频率的正弦波,这是一个非常伟大的发现,但是在大量的应用中,傅里叶变换的局限性却日趋明显,事实上在光滑平稳信号的表示中,傅里叶变换已经达到了近似最优表示,但是日常生活中的信号却并不是一直光滑的,傅里叶变换在奇异点的表现就令人非常不满意,从对方波的傅里叶逼近就可以看出来,用了大量不同频率的正弦波去逼近其系数衰减程度相当缓慢。
其内在的原因是其基底为全局性基底,没有局部化能力,以至局部一个小小的摆动也会影响全局的系数。
很多应用场合要求比较精确的时频定位,傅里叶变换的缺点就越来越突出了。
窗口傅里叶变换将信号乘上一个局部窗,然后再做傅里叶变换,获得比较好的时频定位特性,再沿时间轴滑动窗口,得到整个时间轴上的频率分布,似乎到这里就应该结束了,因为我们可以把窗设计小点获得较高的时间分辨率,并期望有同样高的频率分辨率,但测不准原理无情的告诉我们,没有这么好的窗能在时间和频率都任意小的,最优的就是高斯窗了(窗的选取还需满足频率域也为窗函数,并不是每个时窗都满足这个条件的)。
通过短时傅里叶变换我们可以画出时频图,但是存在问题:当我们分析频率较高部分信号时应该用更窄的窗,反之用宽窗,但短时傅里叶变换一旦选定窗过后,分辨率就固定了,若要其他分辨率则需要更换窗。
给我们一个信号时,我们从时域中观察这个信号时,我们得到的信息是信号的持续的时间,随着时间的变化,信号的幅度起起伏伏。
如果我们更进一步,就是起伏速度较快的部分对应着信号中高频部分。
变换缓慢的部分对应着代表信号中的频率低频部分。
我们也可以估算信号中直流分量的大小。
当然这都是我们直观的理解。
这种单纯的从时域中的信号的波形得到的信息是不全面的。
有的时候我们想要知道我们的信号中含有那些频率成分,相应频率的强度,相位。
这就是从从频域的角度来看待我们的信号。
这就需要一个数学变换的工具,将我们的信号变换到频域。
这个强大的数学工具就是傅里叶变换,变换后我们希望我们还可以回到时域中,也就是我们的变换是可可逆的,事实上,傅里叶变换就有这个信息不损失的性质。
如今傅里叶变换已经成为一个体系。
一切来自于数学中的分解思想,在这里我们选择一组正交基。
对我们信号函数的分解就像是对空间中某一一向量分解到三个坐标系一样,只不过函数的坐标是傅里叶系数而已。
这样,我们经过傅里叶变换就可以知道我们的信号中含有的频率成分。
但是这里有一个隐含的假设,或者说是傅里叶变换的致命弱点,那就是他潜在的假设了我们的信号是平稳信号。
何为平稳信号?所谓的平稳信号就是信号的各种频率成分在信号的全部持续时间中都存在。
举个例子,假如我们对一个持续时间在[0,100s]的平稳信号做傅里叶变换,得出信号中有59HZ,那么就说明,对该平稳信号,59HZ从0开始,在这100s中的任何一个时刻都存在。
可是,当我们的信号不是平稳信号时,例如59HZ产生50s 处,强度和上一个信号的完全相同,其他频率也完全相同,如果我们对这一个信号做傅里叶变换,由于傅里叶变换的积分域是从负无穷到正无穷,所以不幸的是,我们得到了和上一信号完全一样的结果,我们无法再从频域回到时域了。
也就是FT并没有告诉我们非平稳信号的各种频率分别出现在那个时间段上。
事实上,在现实生活中,非平稳信号和平稳信号交织在一起的。