初二【数学(人教版)】画轴对称图形
- 格式:pptx
- 大小:3.98 MB
- 文档页数:33
初中数学集体备课活页纸环节1:教师提问1.猜一猜:下列图片被遮住了一半,请说出图片的名称2.操作:如图所示,在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.思考:1、认真观察,左脚印和右脚印有什么关系?2.对称轴是折痕所在的直线,即直线l ,它与图中的线段PP’是什么关系?环节2:师友释疑1.由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小;2.新图形上的每一点都是原图形上的某一点关于直线l的对称点;3.连接任意一对对应点的线段被对称轴.第二步:互助探究环节1:师友探究如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?探究:例1、已知点A和直线l,以直线l 为对称轴,作点A经轴对称变换后所得的图形点A′.例2已知:线段AB和直线l作出与线段AB关于直线l成轴对称的图形例2 已知三角形ABC和直线l,作出三角形ABC关于直线l对称的图形.方法总结:作已知图形关于已知直线对称的图形的一般步骤:环节2:教师讲解lA BlABlAB第三步:分层提高环节1 师友训练1 如图,把下列图形补成关于直线l 对称的图形2.数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21;②12×462=___________;③18×891=__________;④24×231=___________.3.下列每对文字图形中,能看成关于虚线对称的有:_________(只需要序号).4.如图,将长方形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=50°,则∠CFD的度数为()A.20°B.30°C.40°D.50°5.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB 的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,求线段MN的长EABPMNFl l l第四步:总结归纳环节1:师友归纳•这节课我学会(懂得)了……•这节课我想对师傅(学友)说……环节2:教师归纳第五步:师友反馈环节1:师友检测1.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.2.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为________.3.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形环节2:教师评价一、本节课最佳师友是…二、课后作业必做:选做:板书设计。
八年级数学上册 13.2 画轴对称图形第2课时用坐标表示轴对称说课稿(新版)新人教版一. 教材分析八年级数学上册13.2节“画轴对称图形”是新人教版数学课程的一部分,主要内容是让学生理解并掌握用坐标表示轴对称图形的方法。
这一节内容是在学生已经掌握了轴对称图形的概念和性质的基础上进行教学的,旨在培养学生的空间想象能力和坐标表示能力。
教材中通过丰富的例题和练习题,引导学生运用坐标方法,找出对称轴,并确定对称图形在坐标系中的位置。
通过这一节的学习,学生能够进一步理解坐标与图形之间的关系,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称图形的概念和性质有了初步的了解。
但是,对于如何用坐标表示轴对称图形,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
三. 说教学目标1.知识与技能目标:让学生掌握用坐标表示轴对称图形的方法,能找出对称轴,并确定对称图形在坐标系中的位置。
2.过程与方法目标:通过实际操作,培养学生的空间想象能力和坐标表示能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:用坐标表示轴对称图形的方法。
2.教学难点:如何找出对称轴,并确定对称图形在坐标系中的位置。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过实际操作,理解并掌握坐标表示轴对称图形的方法。
2.教学手段:利用多媒体课件,展示轴对称图形的对称性质,引导学生进行实际操作。
六. 说教学过程1.导入:通过展示一些生活中的轴对称图形,引导学生回顾轴对称图形的概念和性质。
2.新课导入:介绍用坐标表示轴对称图形的方法,引导学生理解坐标与图形之间的关系。
3.实例讲解:通过具体的例题,引导学生找出对称轴,并确定对称图形在坐标系中的位置。
4.学生练习:让学生自主完成教材中的练习题,巩固所学知识。
人教版数学八年级上册说课稿《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容。
这部分内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的。
本节课的主要内容是让学生学会如何通过尺规作图的方法画出轴对称图形,并能够找出生活中的轴对称图形。
这部分内容对于学生来说,既是对轴对称知识的一个巩固,又是培养学生观察能力和动手能力的一个好机会。
二. 学情分析八年级的学生已经具备了一定的数学基础,对轴对称的概念和性质有一定的了解。
但是,由于每个人的学习习惯和思维方式不同,学生在画轴对称图形的过程中可能会遇到一些困难。
因此,在教学过程中,教师需要关注学生的个体差异,及时给予学生指导和帮助。
三. 说教学目标1.知识与技能目标:让学生掌握通过尺规作图的方法画出轴对称图形,提高学生的动手操作能力。
2.过程与方法目标:通过观察和动手实践,培养学生的观察能力和创新能力。
3.情感态度与价值观目标:让学生体验到数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握通过尺规作图的方法画出轴对称图形。
2.教学难点:如何引导学生发现生活中的轴对称图形,并运用轴对称的知识进行解释。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法和合作学习法。
2.教学手段:利用多媒体课件、尺规作图工具和生活中的实例进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的轴对称图形,如衣服、剪刀等,引导学生回顾轴对称的概念和性质。
2.讲解示范:讲解通过尺规作图的方法画出轴对称图形的步骤,并进行示范。
3.动手实践:让学生分组进行尺规作图,画出轴对称图形。
4.交流分享:让学生展示自己的作品,并分享在作图过程中遇到的问题和解决方法。
5.总结提升:引导学生总结轴对称图形的特征,并思考如何将轴对称的知识应用到生活中。
七. 说板书设计板书设计如下:1.概念:……2.性质:……3.作图方法:……4.应用:……八. 说教学评价1.学生参与度:观察学生在课堂上的积极参与情况,是否能够主动思考和解决问题。
13.2画轴对称图形知识要点:1.找特殊点对画轴对称图形极为重要,除线段的端点外,线与线的交点也是画图过程中的特殊点.2.对称轴上任一点的对称点是它本身.3.关于谁对称谁不变,即若关于x轴对称,则横坐标x的值不变,简记为“横同纵反”;若关于y轴对称,则纵坐标y的值不变,简记为“纵同横反”.4.在坐标系中画关于坐标轴对称的图形的“四字诀”(1)找:在直角坐标系中,找出已知图形中的一些特殊点(如多边形的顶点)的坐标.(2)求:求出其对应点的坐标.(3)描:根据所求坐标,描出对应点.(4)连:根据原图形的连接方式顺次连接这些对应点,就可以得到与这个图形关于坐标轴对称的图形.一、单选题1.如图,在3×2的正方形网格中,已有两个小正方形被涂上了阴影,再将图中其余小正方形任意一个涂上阴影,使整个阴影部分构成一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【答案】C2.如图所示是由同样大小的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上,在网格上画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A.5个B.4个C.3个D.2个【答案】A3.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个【答案】C4.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.3【答案】A5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A.2个B.3个C.4个D.5个【答案】C6.如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜想整个图形是( )A.三角形B.长方形C.五边形D.六边形【答案】D7.如图,△COB是由△AOB经过某种变换后得到的图形,请同学们观察A与C两点的坐标之间的关系,若△AOB内任意一点P的坐标是(a,b),则它的对应点Q的坐标是( ).A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)【答案】D8.点(4,3)与点(4,-3)的关系是A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系【答案】B9.下列所示的四个银行的行标图案中,不是利用轴对称设计的图案是【】A.A B.B C.C D.D【答案】A10.已知点A的坐标为(-2,3),点B的坐标为(0,1),则点A关于点B的坐标为()A.(-2,2 )B.(2,-3 )C.(2,-1 )D.(2,3 )【答案】C11.下列图形中,线段AB和A’B’ (AB=A’B’)不关于直线l对称的是()A.B.C.D.【答案】A12.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是( )A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C【答案】A二、填空题13.点A(-1,-3)关于x轴对称点的坐标是_______ ;关于原点对称的点坐标是__________.【答案】(-1,3)(1,3)14.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是______.【答案】(16,1+√3).15.已知点M(-12,3m)关于原点对称的点在第一象限,那么m的取值范围是____________.【答案】m<016.已知点P(a,3)和P’(-4,b)关于原点对称,则(a+b)的值为__________.【答案】117.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.【答案】318.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),则点M和点N的坐标分别为M__________,N _________.【答案】(-1,-3)、(1,-3)19.如果点P(-2,b)和点Q(a,-3)关于x轴对称,则a+b的值为_____.【答案】1三、解答题20.如图,是一个轴对称图形,请画出它的对称轴.解:所作对称轴如图所示.21.在图中分别以△AOB的两边所在直线为对称轴,画出点P的对称点.如图所示,点P′,P″即为所求.22.如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.【答案】A′(8,3),B′(8,5),C′(2,5)小红旗关于y轴的轴对称图形如图所示:()()(),,,'83,'85,'25.A B C23.如图,在正方形网格上有一个△ABC.(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(1)如图所示:(2)S=6×4-12×4×2-12×4×1-12×6×3=9.24.已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若△BAC=2△MPC,请你判断△F与△MCD的数量关系,并说明理由.解:(1)证明:∵∵ABM与∵ACM关于直线AF成轴对称,∵∵ABM∵∵ACM,∵AB=AC,又∵∵ABE与∵DCE关于点E成中心对称,∵∵ABE∵∵DCE,∵AB=CD,∵AC=CD;(2)∵F=∵MCD.理由:由(1)可得∵BAE=∵CAE=∵CDE,∵CMA=∵BMA,∵∵BAC=2∵MPC,∵BMA=∵PMF,∵设∵MPC=α,则∵BAE=∵CAE=∵CDE=α,设∵BMA=β,则∵PMF=∵CMA=β,∵∵F=∵CPM−∵PMF=α−β,∵MCD=∵CDE−∵DMC=α−β,∵∵F=∵MCD.。
13.2 画轴对称图形(第一课时)教学目标1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.3. 经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.4.鼓励学生积极参与数学活动,培养学生的数学兴趣.5.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学过程设计一、知识回顾1.如何验证两个平面图形是轴对称的?师生活动:教师结合所展示的图形进行提问,学生思考并回答:作出其中几对对应点的垂直平分线,看它们是否为同一条直线.2.作轴对称图形的对称轴的方法师生活动:教师结合所展示的图形进行提问,学生思考并回答:只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.设计意图:让学生通过观察、思考,复习关于做轴对称图形的对称轴知识,为本节课的内容做铺垫.追问:如果有一个图形和一条直线,我们能画出与这个图形关于这条直线对称的图形吗?师生活动:学生思考并说出自己的想法,当学生感到迷惑时,教师结合图形引出本节课内容二、新课讲授问题1在一张半透明的纸的左边画一只左脚印.把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.1.左脚印和右脚印有什么关系?2.对称轴是哪条直线?3.图中的对应点连线段PP ′与对称轴有什么关系?师生活动:教师提出问题,学生思考可以利用所学过的哪些知识点来解决问题教师提示,归纳:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点(3)连接任意一对对应点的线段被对称轴垂直平分设计意图:通过提出问题、解决问题,让学生学会用所学知识点解决实际操作问题,提高动手操作能力.问题2已知点A和直线l,如何画出与点A关于直线l对称的图形?师生活动:通过教师提出问题,学生观察思考,根据垂直平分线性质并归纳作法:1.过点A画直线l的垂线,垂足为点O2.在垂线上截取OA′=OA.问题3已知线段AB和直线l,如何画出与线段AB关于直线l对称的图形?师生活动:通过教师提出问题,学生观察思考,在问题2的基础上发现图形特点,归纳作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截OA’=OA,点A’就是点A关于直线l的对称点;2、类似地,作出点B关于直线l的对称点B’;3、连接A’B’.问题3例1 如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.师生活动:通过教师提出问题,学生观察思考,在问题1和问题2的基础上类比发现图形特点,归纳作法:1、过点A作直线l的垂线,垂足为点O,在垂线上截取OA’=OA,点A’就是点A关于直线l的对称点2、类似地,分别作出点B、C关于直线l的对称点B’、C’;3、连接A’B’、B’C’、C’A’.师生共同小结画轴对称图形的方法:几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.师生共同归纳画轴对称图形的步骤:1、找点(确定图形中的一些特殊点);2、画点(画出特殊点关于已知直线的对称点);3、连线(连接对称点)三、课堂练习1.下面是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是()2.如图,把下列图形补成关于直线l的对称图形。