Stretch-Oriented Polyimide Films
- 格式:pdf
- 大小:319.72 KB
- 文档页数:18
塑料名称常用缩写和英文名全称AAGR average annual growth rate EAA ethylene acrylic acidAS atomic absorption spectroscopy EB electron acrylic beamABA acrylonitrile-butadiene-acrylate EBA ethylene butylic acrylateABS acrylonitrile-butadiene-styrene copolymer EC ethyl celluloseACM acrylic acid ester rubber ECTFE ethylene-chlorotrifluorothylene copolymerACS acrylonitrile-chlorinated PE-styrene EEA ethylene-ethyl acrylateAES acrylonitrile-ethylene terephalate EG ethylene glycolAMMA acrylonitrile-methyl methacrylate EMA ethylene-methyl acrylateAN acrylonitrile EMMA ethylene methacrylic acidAO antioxidant EMAC ethylene-methyl acrylate copolymerAPET amorphous polyethylene terephthalate EMI electromagnetic interferenceAPP atactic polypropylene EMPP elastomer modified polypropyleneASA acrylic-styrene-acrylonitrile EnBA ethylene normal butyl acrylateASTM American Society for Testing and Materials EP epoxy resin, also ethytlene-propylene ATH aluminum trihydrate EPA Environmental Protection AgencyAZ(O) azodicarbonamide EPDM ethylene-propylene terpolymer rubberBATF Bureau of Alcohol, Tobacco, and Firearms EPM ethylene-propylene rubberBM blow molding EPS expandable polystyreneBMC bulk molding compounds ESCR environmental stress crack resistanceBMI bismaleimide ESI ethylene styrene copolymersBO biaxially-oriented (film) ETE engineering thermoplastic elastomersBOPP biaxially-oriented polypropylene ETFE ethylene-tetrafluoroethylene copolymerBR butadiene rubber ETP engineering thermoplasticsBS butadiene styrene rubber EV A(C) polyethylene-vinyl acetateCA cellulose acetate EVOH polyethylene-vinyl alcohol copolymersCAB cellulose acetate butyrate FDA Food and Drug AdministrationCAD computer aided design FEP fluorinated ethylene propylene copolymerCAE computer aided engineering FPVC flexible polyvinyl chlorideCAM computer aided manufacturing FR flame retardantCAP cellulose acetate propionate FRP fiber reinforced plasticCAP controlled atmosphere padkaging GAIN gas-assisted injectionCEA chemical blowing agent GIM gas injection moldingCF cresol formaldehyde GIT gas injection techniqueCFA chemical foaming agent GMT(P) glass mat reinforced thermoplasticsCFC chlorofluorocarbons GPC gel permeation chromotographyCFR Code of Federal Regulations GPPS general purpose polystyreneCHDM cyclohexanedimethanol GRP glass fiber reinforced plasticsCIM computer integrated manufacturing GTP group transfer polymerizationCN cellulose nitrate HALS hindered amine light stabilizerCOP copolyester HAS hindered amine stabilizersCOPA copolyamide HB Brinell hardness numberCOPE copolyester HCFC hydrochlorofluorocarbonsCP cellulose propionate HCR heat-cured rubberCPE chlorinated polyethylene HDI hexamethylene diisocyanateCPET crystalline polyethylene terephthalate HDPE high-density polyethyleneCPP cast polypropylene HDT heat deflection temperatureCPVC chlorinated polyvinyl chloride HFC hydrofluorocarbonsCR chloroprene rubber HIPS high-impact polystyreneCS casein HMDI diisocyanato dicyclohexylmethaneCSD carbonated soft drink HMW high molecular weightCTA cellulose triacetate HNP high nitrile polymerCVD chemical vapor deposition IM injection moldingDABCO diazobicyclooctane IMC in-mold coatingDAM days after manufacture IMD in-mold decorationDAM diallyl maleate IRI isophorone diisocyanateDAP diallyl phthalate IV intrinsic viscosityDCPD dicyclopentadiene LCP liquid crystal polymersDE diotamaceous earth LIM liquid injection moldingDEA dielectric analysis LDPE low-density polyethyleneDETDA diethyltoluenediamine LLDPE linear low-density polyethyleneDMT dimethyl ester of terephthalate LP low-profile resinDWV drain, waste, vent (pipe grade) MAP modified atmosphere packagingMbOCA methylene-bis-orthochloro aniline PP polypropleneMBS methyacrylate-butadiene-styrene PPA polyphthalamideMC methyl cellulose PPC chlorinated polypropyleneMDI methylene diphenylene diisocyanate PPE polyphenylene ether, modifiedMEKP methyl ethyl ketone peroxide ppm parts per millionMF melamine formaldehyde PPO polyphenylene oxideMFI melt flow index PPS polyphenylene sulfideMIS management information systems PPSU polyphenylene sulfoneMMA methyl methacrylate PS polystyreneMPE metallocene polyethylene PSU polysulfoneMPF melamine-phenol-formaldehyde PTA purified terephthalic acidMPR melt-processable rubber PTFE polytetrafluoroethyleneMRP manufacturing requirement planning PU polyurethaneMWD molecular weight distribution PUR polyurethaneNBR nitrile rubber PVC polyvinyl chlorideNDI naphthalene diisocyanate PVCA polyvinyl chloride acetateNR natural rubber PVIDA polyvinylidene acetateODP ozone depleting potential PVDC polyvinylidene chlorideOFS organofunctional silanes PVDF polyvinylidene fluorideOPET oriented polyethylene terephthalate PVF polyvinyl fluorideOPP oriented polypropylene PVOH polyvinyl alcoholO-TPV olefinic thermoplastic vulcanizate QMC quick mold changeOEM original equipment manufacturer RFI radio frequency interferenceOSA olefin-modified styrene-acrylonitrile RHDPE recycled high density polyethyleneOSHA Occupational Safety and Health Admin. RIM reaction injection molding PA polyamide RPET recycled polyethylene terephthalatePAEK polyaryletherketone RTD resistance temperature detectorPAI polyamide imide RTM resin transfer moldingPAN polyacrylonitrile RTV room temperature vulcanizingPB polybutylene SI silicone plasticPBA physical blowing agent SAN styrene acrylonitrile copolymerPBAN polybutadiene-acrylonitrile SB styrene butadiene copolymerPB polybenzimidazole SBC styrene block copolymerPBN polybutylene naphthalate SBR styrene butadiene rubberPBS polybutadiene styrene SMA styrene maleic anhydridePBT polybutylene terephthalate SMC sheet molding compoundPC polycarbonate SMC-C S MC-continuous fibersPCC precipitated calcium carbonate SMC-D S MC-directionally orientedPCD polycarbodiimide SMC-R SMC-randomly orientedPCR post-consumer recyclate SPC statistical process controlPCT polycyclohexylenedimethylene terephthalate SQC statistical quality control PCTA copolyester of CHDM and PTA SRIM structural reaction injection molding PCTFE polychlorotrifluoroethylene TA terephthalic acidPCTG glycol-modified PCT copolymer TDI toluene diisocyanatePE polyethylene TEO thermoplastic elastomeric olefinPEBA polyether block polyamide TLCP thermoplastic liquid crystal polymer PEC chlorinated polyethylene TMC thick molding compoundPEDT 3,4 polyethylene dioxithiophene T/N terephthalatel/naphthalatePEEK polyetheretherketone TPA terephthalic acidPEI polyether imide TP thermoplasticPEK polyetherketone TPE thermoplastic elastomerPEL permissible exposure level TPO thermoplastic olefinsPEKEKK polyetherketoneetherketoneketone TPU thermoplastic polyurethane PEN polyethylene naphthalate TPV thermoplastic vulcanizatePES polyether sulfone TS thermosetPET polyethylene terephthalate TWA time-weighted averagePETG PET modified with CHDM UF urea formaldehydePF phenol formaldehyde UHMW ultrahigh molecular weightPFA perfluoroalkoxy resin ULDPE ultralow-density polyethylenePI polyimide UP unsaturated polyester resinPID proportional, integral, derivative UR urethanePIBI butyl rubber UV ultravioletPIM powder injection molding V A(C) vinyl acetatePLC programmable logic controller VC vinyl chloridePMDI polymeric M DI VDC vinylidene chloridePMMA polymethyl methacrylate VLDPE very low-density polyethylenePMP polymethylpentene VOC volatile organic compoundsPO polyolefins WTE waste to energyPOM polyacetal ZNC Ziegler-Natta catalyst。
专利名称:Incrementally Stretched Films withIncreased Tear Resistance and Methods ForMaking The Same发明人:Michael G. Borchardt申请号:US13189772申请日:20110725公开号:US20130029066A1公开日:20130131专利内容由知识产权出版社提供专利附图:摘要:Methods of incrementally stretching thermoplastic films in the machinedirection include elongating the films in the machine direction without reducing the films'machine-direction tear resistance. In one or more implementations, methods of incrementally stretching thermoplastic films include reducing the gauge of the films without reducing the films' machine-direction tear resistance. The methods can involve cold stretching the films and imparting transverse-direction extending linear rib pattern into the film. The linear ribs can have alternating thick and thin gauges. Incrementally stretched thermoplastic films can have a machine-direction tear resistance that is approximately equal to or greater than the machine-direction tear resistance of the film prior to stretching.申请人:Michael G. Borchardt地址:Naperville IL US国籍:US更多信息请下载全文后查看。
新型OLED柔性基板用聚酰亚胺薄膜研究李陶琦1,2,周雨薇1,蔡阿丽1,聂麒曌1,刘晓旭3(1.大同共聚(西安)科技有限公司,陕西西安710075;2.西安近代化学研究所,陕西西安710065;3.陕西科技大学材料科学与工程学院,陕西西安710021)摘要:本研究以4,4ʹ-二氨基苯酰替苯胺(DABA)和4,4ʹ-二氨基-2,2ʹ-二甲基联苯(m-TB)与均苯四甲酸二酐(PMDA)和4,4,-氧双邻苯二甲酸酐(ODPA)为原料,成功合成了有机发光二极管(OLED)柔性基板用聚酰亚胺(PI)薄膜。
结果表明:当二胺与二酐摩尔比为0.990、加料时间为120 min、反应温度为0~30℃、搅拌速度为200~250 r/min、反应时间为240 min时,聚酰胺酸合成过程凝胶量少,黏度满足工业化合成要求。
经400℃热亚胺化后,所得PI薄膜的玻璃化转变温度为450℃,1%热失重温度为554℃,热膨胀系数为4.1×10-6 K-1,拉伸强度为326.9 MPa,拉伸模量为9 572.8 MPa,电气强度为623 kV/mm,介电常数为3.251,这些参数指标满足OLED柔性基板的工业应用要求。
关键词:OLED;柔性基板;聚酰亚胺薄膜;原位聚合;热性能中图分类号:TM215.3 DOI:10.16790/ki.1009-9239.im.2024.03.004Study on polyimide films for novel OLED flexible substrateLI Taoqi1,2, ZHOU Yuwei1, CAI Ali1, NIE Qizhao1, LIU Xiaoxu3(1. Datong Co Polymer (Xiʹan) Technology Co., Ltd.,Xiʹan 710075, China;2.Xiʹan Modern Chemistry Research Institute,Xiʹan 710065, China;3. School of Material Science andEngineering, Shaanxi University of Science and Technology,Xiʹan 710021, China)Abstract: In this study, 4,4ʹ-diaminobenzanilide (DABA), 2,2ʹ-dimethyl-[1,1ʹ-biphenyl]-4,4ʹ-diamine (m-TB), dianhydrides pyromellitic dianhydride (PMDA), and 4,4ʹ-oxybisphthalic anhydride (ODPA) were used as raw materials, and a polyimide (PI) film for oganic light emitting diodes (OLED) flexible substrates was successfully synthesized. The results show that when the molar ratio of diamine to dianhydride is 0.990, the feeding time is 120 min, the reaction temperature is 0−30℃, the stirring speed is 200−250 r/min, and the reaction time is 240 min, the gel amount during the synthesis of polyamide acid is small, and viscosity can meet the requirements of industrial synthesis. After thermal imimization at 400℃, the glass transition temperature of the polyimide film is 450℃, the 1% weight loss temperature is 554℃, the thermal expansion coefficient is 4.1×10-6 K-1, the tensile strength is 326.9 MPa, the tensile modulus is 9 572.8 MPa, the electric strength is 623 kV/mm, and the dielectric constant is 3.251, which meet the industrial application requirements of OLED flexible substrate. Key words: OLED; flexible substrate; polyimide films; in-situ polymerization; thermal performance0 引言自有机发光二极管(OLED)技术首次问世以来,通过持续的研究和创新,柔性OLED技术已经取得了重大突破[1-6]。
Microwave plasma chemical vapor depositionOxygen-conduscting Bi2O3What is Solid State Ionics?YBa 2Cu 3O 7-δ(YBCO) synthesis Pyrolysis“Unobtainium”“Hallelujahmountains”“bioluminescence”PyrolysisComplexationCitrate-methodMetal ion complex(+ammonium nitrate)Evaporation(viscosity)PyrolysisCalcination葡萄糖酸盐3甘氨酸High Tc superconductor vs. ITER ITER: International Thermonuclear Experimental Reactor ITER is designed to produce approximately500 MW of fusion power sustained for up to1,000 seconds by the fusion of about 0.5 g ofdeuterium/tritium mixture in itsapproximately 840 m3reactor chamber.Surface: 5778KCore: 15.7x106KMicrowave CVD for YBCO films 陈春华, 彭定坤等,硅酸盐通报-1990年2期,p.62-65.CIGS器件结构衬底载气溶液芯片60μmLa1-x Sr x CoO3-d films by sol-gel methods Aqueous sol-gelto La1-x SrxCoO3-δfilmPolymeric sol-gelto La1-xSrxCoO3-δfilm380μm10 祄24μm5μmP.D. Yang (USTC 1993. UC Berkeley), Adv. Func. Mater. 12 (2002) 323.Cure & pyrolyze3600ºF = 1982ºCCosmos-1, June 21, 2005 (Failed)(The world's first solar sail spacecraft )Diameter: 30m, Area: 600m2100kgMylar: Biaxially-oriented polyethylene terephthalate“丹炉九还掷千金”([明]凌蒙初)卷十八丹客半黍九还富翁千金一笑破布衫巾破布裙,逢人惯说会烧银。
加工方法Manufacturing Method 拉力强度Tensile Strength 机械性能Mechanical Properites低碳钢或铁基层金属Iron & Low Carbon as Base Metal 镀镍Nickel Plated 镀黄铜Brass Plated马氏铁体淬火Marquenching 退火Annealing 淬火Quenching高温回火High Temperature Tempering 应力退火温度Stress –relieving Annealing Temperature晶粒取向(Grain-Oriented)和非晶粒取向(Non-Oriented硬磁材料Hard Magnetic Material表面处理Surface Finish硬度Hardness 电镀方法Plating type 锌镀层质量Zinc Coating Mass表面处理Surface Treatment 拉伸应变Stretcher Strains焊接Welding 防止生锈Rust Protection硬度和拉力Hardness & Tensile strength test 连续铸造法Continuous casting process珠光体Pearlite 单相金属Single Phase Metal Ferrite渗碳体Cementitle奥氏体Austenite软磁Soft Magnetic硬磁Hard Magnetic疲劳测试Impact Test热膨胀系数Coefficient of thermal expansion 比重Specific gravity化学性能Chemical Properties物理性能Physical Properties 再结晶Recrystallization硬化Work Hardening包晶反应Peritectic Reaction包晶合金Peritectic Alloy 共晶Eutectic临界温度Critical temperature 自由度Degree of freedom相律Phase Rule金属间化物Intermetallic compound 固熔体Solid solution 置换型固熔体Substitutional type solid solution米勒指数Mill's Index晶体结构Crystal structure金属与合金Metal and Alloy金属特性Special metallic featuresStrength抗腐蚀和耐用Corrosion & resistance durability强度Strengthen 无机非金属inorganic nonmetallic materials 燃料电池fuel cell新能源new energy resources材料科学专业学术翻译必备词汇材料科学专业学术翻译必备词汇编号中文英文1 合金alloy2 材料material3 复合材料properties4 制备preparation5 强度strength6 力学mechanical7 力学性能mechanical8 复合composite9 薄膜films10 基体matrix11 增强reinforced12 非晶amorphous13 基复合材料composites14 纤维fiber15 纳米nanometer16 金属metal17 合成synthesis 18 界面interface19 颗粒particles20 法制备prepared21 尺寸size22 形状shape23 烧结sintering24 磁性magnetic25 断裂fracture26 聚合物polymer27 衍射diffraction 28 记忆memory29 陶瓷ceramic30 磨损wear31 表征characterization32 拉伸tensile33 形状记忆memory34 摩擦friction35 碳纤维carbon36 粉末powder37 溶胶sol-gel38 凝胶sol-gel39 应变strain40 性能研究properties41 晶粒grain42 粒径size43 硬度hardness44 粒子particles45 涂层coating46 氧化oxidation47 疲劳fatigue48 组织microstructure49 石墨graphite50 机械mechanical51 相变phase52 冲击impact53 形貌morphology54 有机organic55 损伤damage56 有限finite57 粉体powder58 无机inorganic59 电化学electrochemical60 梯度gradient61 多孔porous62 树脂resin63 扫描电镜sem64 晶化crystallizatio n65 记忆合金memory66 玻璃glass67 退火annealing68 非晶态amorphous 69 溶胶-凝胶sol-gel70 蒙脱土montmorillon ite71 样品samples 72 粒度size73 耐磨wear74 韧性toughness75 介电dielectric76 颗粒增强reinforced77 溅射sputtering78 环氧树脂epoxy79 纳米tio tio80 掺杂doped81 拉伸强度strength82 阻尼damping83 微观结构microstructure84 合金化alloying85 制备方法preparation86 沉积deposition87 透射电镜tem88 模量modulus89 水热hydrothermal90 磨损性wear91 凝固solidification92 贮氢hydrogen93 磨损性能wear94 球磨milling95 分数fraction96 剪切shear97 氧化物oxide98 直径diameter99 蠕变creep100弹性模量modulus留纞銅雀樓12:53:02101储氢hydrogen102压电piezoelectric103电阻resistivity104纤维增强composites 105纳米复合材料preparation 106制备出prepared107磁性能magnetic 108导电conductive 109晶粒尺寸size110弯曲bending111光催化tio 112非晶合金amorphous 113铝基复合材料composites 114金刚石diamond115沉淀precipitation116分散dispersion117电阻率resistivity118显微组织microstructure119sic复合材料sic120硬质合金cemented121摩擦系数friction122吸波absorbing123杂化hybrid124模板template125催化剂catalyst126塑性plastic127晶体crystal128sic颗粒sic129功能材料materials130铝合金alloy131表面积surface132填充filled133电导率conductivity134控溅射sputtering135金属基复合材料composites136磁控溅射sputtering137结晶crystallization138磁控magnetron139均匀uniform140弯曲强度strength141纳米碳carbon142偶联coupling143电化学性能electrochemical144和性能properties 145al复合材料composite 146高分子polymer147本构constitutive 148晶格lattice149编织braided150断裂韧性toughness 151尼龙nylon152摩擦磨损性friction 153耐磨性wear154摩擦学tribological 155共晶eutectic156聚丙烯polypropylene157半导体semiconductor158偶联剂coupling159泡沫foam160前驱precursor161高温合金superalloy162显微结构microstructure163氧化铝alumina164扫描电子显微镜sem165时效aging166熔体melt167凝胶法sol-gel168橡胶rubber169微结构microstructure170铸造casting171铝基aluminum172抗拉强度strength173导热thermal174透射电子显微镜tem175插层intercalation176冲击强度impact177超导superconducting178记忆效应memory179固化curing180晶须whisker181溶胶-凝胶法制sol-gel182催化catalytic183导电性conductivity184环氧epoxy185晶界grain186前驱体precursor 187机械性能mechanical 188抗弯strength189粘度viscosity190热力学thermodyna mic191溶胶-凝胶法制备sol-gel 192块体bulk 193抗弯强度strength194粘土clay 195微观组织microstructu re 196孔径pore197玻璃纤维glass198压缩compression199摩擦磨损wear200马氏体martensitic留纞銅雀樓12:53:57201制得prepared202复合材料性能composites203气氛atmosphere204制备工艺preparation205平均粒径size206衬底substrate207相组成phase208表面处理surface209杂化材料hybrid210材料中materials211断口fracture212增强复合材料composites213马氏体相变transformation214球形spherical215混杂hybrid216聚氨酯polyurethane217纳米材料nanometer218位错dislocation219纳米粒子particles220表面形貌surface221试样samples222电学properties223有序ordered224电压voltage225析出phase226拉伸性tensile227大块bulk 228立方cubic229聚苯胺polyaniline 230抗氧化性oxidation 231增韧toughening 232物相phase233表面改性modification 234拉伸性能tensile235相结构phase 236优异excellent237介电常数dielectric238铁电ferroelectric239复合材料力学性能composites240碳化硅sic241共混blends242炭纤维carbon243复合材料层composite244挤压extrusion245表面活性剂surfactant246阵列arrays247高分子材料polymer248应变率strain249短纤维fiber250摩擦学性能tribological251浸渗infiltration252阻尼性能damping253室温下room254复合材料层合板composite255剪切强度strength256流变rheological257磨损率wear258化学气相沉积deposition259热膨胀thermal260屏蔽shielding261发光luminescence262功能梯度functionally263层合板laminates264器件devices265铁氧体ferrite266刚度stiffness 267介电性能dielectric 268xrd分析xrd269锐钛矿anatase270炭黑carbon271热应力thermal272材料性能properties 273溶胶-凝胶法sol-gel 274单向unidirectiona l275衍射仪xrd 276吸氢hydrogen277水泥cement278退火温度annealing279粉末冶金powder280溶胶凝胶sol-gel281熔融melt282钛酸titanate283磁合金magnetic284脆性brittle285金属间化合物intermetallic286非晶态合金amorphous287超细ultrafine288羟基磷灰石hydroxyapatite289各向异性anisotropy290镀层coating291颗粒尺寸size292拉曼raman293新材料materials294tic颗粒tic295孔隙率porosity296制备技术preparation297屈服强度strength298金红石rutile299采用溶胶-凝胶sol-gel300电容量capacity301热电thermoelectric302抗菌antibacterial303聚酰亚胺polyimide304二氧化硅silica305放电容量capacity306层板laminates 307微球microspheres 308熔点melting309屈曲buckling 310包覆coated311致密化densification 312磁化强度magnetizatio n313疲劳寿命fatigue314本构关系constitutive 315组织结构microstructure316综合性能properties317热塑性thermoplastic318形核nucleation319复合粒子composite320材料制备preparation321晶化过程crystallization322层间interlaminar323陶瓷基ceramic324多晶polycrystalline325纳米结构nanostructures326纳米复合composite327热导率conductivity328空心hollow329致密度density330x射线衍射仪xrd331层状layered332矫顽力coercivity333纳米粉体powder334界面结合interface335超导体superconductor336衍射分析diffraction337纳米粉powders338磨损机理wear339泡沫铝aluminum340进行表征characterized341梯度功能gradient342耐磨性能wear343平均粒particle344聚苯乙烯polystyrene 345陶瓷基复合材料composites 346陶瓷材料ceramics 347石墨化graphitizatio n348摩擦材料friction 349熔化melting 350多层multilayer留纞銅雀樓12:55:33 351和其性能properties 352酚醛树脂resin353电沉积electrodeposition354分散剂dispersant355相图phase356复合材料界面interface357壳聚糖chitosan358抗氧化性能oxidation359钙钛矿perovskite360分层delamination361热循环thermal362氢量hydrogen363蒙脱石montmorillonite364接枝grafting365导率conductivity366放氢hydrogen367微粒particles368伸长率elongation369延伸率elongation370烧结工艺sintering371层合laminated372纳米级nanometer373莫来石mullite374磁导率permeability375填料filler376热电材料thermoelectric377射线衍射ray378铸造法casting379粒度分布size380原子力afm381共沉淀coprecipitation382水解hydrolysis 383抗热thermal 384高能球ball385干摩擦friction 386聚合物基polymer 387疲劳裂纹fatigue388分散性dispersion 389硅烷silane390弛豫relaxation 391物理性能properties 392晶相phase 393饱和磁化强度magnetization394凝固过程solidification395共聚物copolymer396光致发光photoluminescence397薄膜材料films398导热系数conductivity399居里curie400第二相phase401复合材料制备composites402多孔材料porous403水热法hydrothermal404原子力显微镜afm405压电复合材料piezoelectric406尼龙6nylon407高能球磨milling408显微硬度microhardness409基片substrate410纳米技术nanotechnology411直径为diameter412织构texture413氮化nitride414热性能properties415磁致伸缩magnetostriction416成核nucleation417老化aging418细化grain419压电材料piezoelectric420纳米晶amorphous421si合金si422复合镀层composite 423缠绕winding 424抗氧化oxidation 425表观apparent 426环氧复合材料epoxy 427甲基methyl428聚乙烯polyethylene 429复合膜composite 430表面修饰surface431大块非晶amorphous 432结构材料materials 433表面能surface434材料表面surface435疲劳性能fatigue436粘弹性viscoelastic437基体合金alloy438单相phase439梯度材料material440六方hexagonal441四方tetragonal442蜂窝honeycomb443阳极氧化anodic444塑料plastics445超塑性superplastic446sem观察sem447烧蚀ablation448复合薄膜films449树脂基resin450高聚物polymer451气相vapor452电子能谱xps453硅烷偶联coupling454团聚particles455基底substrate456断口形貌fracture457抗压强度strength458储能storage459松弛relaxation460拉曼光谱raman461孔率porosity462沸石zeolite463熔炼melting464磁体magnet465sem分析sem466润湿性wettability 467电磁屏蔽shielding 468升温heating469致密dense470沉淀法precipitation 471差热分析dta472成功制备prepared 473复合体系composites 474浸渍impregnation 475力学行为behavior 476复合粉体powders 477沥青pitch478磁电阻magnetoresistance479导电性能conductivity480光电子能谱xps481材料力学mechanical482夹层sandwich483玻璃化glass484衬底上substrates485原位复合材料composites486智能材料materials487碳化物carbide488复相composite489氧化锆zirconia490基体材料matrix491渗透infiltration492退火处理annealing493磨粒wear494氧化行为oxidation495细小fine496基合金alloy497粒径分布size498润滑lubrication499定向凝固solidification500晶格常数lattice留纞銅雀樓12:56:20501晶粒度size502颗粒表面surface503吸收峰absorption504磨损特性wear505水热合成hydrothermal506薄膜表面films507性质研究properties 508试件specimen 509结晶度crystallinity 510聚四氟乙烯ptfe511硅烷偶联剂silane 512碳化carbide 513试验机tester514结合强度bonding 515薄膜结构films516晶型crystal517介电损耗dielectric 518复合涂层coating519压电陶瓷piezoelectric520磨损量wear521组织与性能microstructure522合成法synthesis523烧结过程sintering524金属材料materials525引发剂initiator526有机蒙脱土montmorillonite527水热法制hydrothermal528再结晶recrystallization529沉积速率deposition530非晶相amorphous531尖端tip532淬火quenching533亚稳metastable534穆斯mossbauer535穆斯堡尔mossbauer536偏析segregation537种材料materials538先驱precursor539物性properties540石墨化度graphitization541中空hollow542弥散particles543淀粉starch544水热法制备hydrothermal545涂料coating546复合粉末powder547晶粒长大grain548sem等sem549复合材料组织microstructu re550界面结构interface 551煅烧calcined 552共混物blends553结晶行为crystallizatio n554混杂复合材料hybrid 555laves相laves556摩擦因数friction 557钛基titanium558磁性材料magnetic559制备纳米nanometer560界面上interface561晶粒大小size562阻尼材料damping563热分析thermal564复合材料层板laminates565二氧化钛titanium566沉积法deposition567光催化剂tio568余辉afterglow569断裂行为fracture570颗粒大小size571合金组织alloy572非晶形成amorphous573杨氏模量modulus574前驱物precursor575过冷alloy576尖晶石spinel577化学镀electroless578溶胶凝胶法制备sol-gel579本构方程constitutive580磁学magnetic581气氛下atmosphere582钛合金titanium583微粉powder584压电性piezoelectric585晶须sic586应力应变strain587石英quartz588热电性thermoelectric589相转变phase590合成方法synthesis 591热学thermal 592气孔率porosity 593永磁magnetic 594流变性能rheological 595压痕indentation 596热压烧结sintering 597正硅酸乙酯teos 598点阵lattice599梯度功能材料fgm 600带材tapes601磨粒磨损wear602碳含量carbon603仿生biomimetic604快速凝固solidification605预制preform606差示dsc607发泡foaming608疲劳损伤fatigue609尺度size610镍基高温合金superalloy611透过率transmittance612溅射法制sputtering613结构表征characterization614差示扫描dsc615通过semsem616水泥基cement617木材wood618分析tem619量热calorimetry620复合物composites621铁电薄膜ferroelectric622共混体系blends623先驱体precursor624晶态crystalline625冲击性能impact626离心centrifugal627断裂伸长率elongation628有机-无机organic-inorganic629块状bulk630相沉淀precipitation631织物fabric632因数coefficient 633合成与表征synthesis 634缺口notch635靶材target636弹性体elastomer 637金属氧化物oxide 638均匀化homogenizati on639吸收光谱absorption 640磨损行为wear641高岭土kaolin 642功能梯度材料fgm643滞后hysteresis644气凝胶aerogel645记忆性memory646磁流体magnetic647铁磁ferromagnetic648合金成分alloy649微米micron650蠕变性能creep留纞銅雀樓12:56:46651聚氯乙烯pvc652湮没annihilation653断裂力学fracture654滑移slip655差示扫描量热dsc656等温结晶crystallization657树脂基复合材料composite658阳极anodic659退火后annealing660发光性properties661木粉wood662交联crosslinking663过渡金属transition664无定形amorphous665拉伸试验tensile666溅射法sputtering667硅橡胶rubber668明胶gelatin669生物相容性biocompatibility670界面处interface671陶瓷复合材料composite 672共沉淀法制coprecipitatio n673本构模型constitutive 674合金材料alloy675磁矩magnetic 676隐身stealth677比强度strength 678改性研究modification 679采用粉末powder 680晶粒细化grain681抗磨wear682元合金alloy683剪切变形shear684高温超导superconducting685金红石型rutile686晶化行为crystallization687催化性能catalytic688热挤压extrusion689微观microstructure690tem观察tem691缺口冲击impact692生物材料biomaterials693涂覆coating694纳米氧化nanometer695x射线光电子能谱xps696硅灰石wollastonite697摩擦条件friction698衍射峰diffraction699块体材料bulk700溶质solute701冲击韧性impact702锐钛矿型anatase703凝固组织microstructure704磨损试验机tester705丙烯酸甲酯pmma706光谱raman707减振damping708聚酯polyester709体材料materials 710航空aerospace 711光吸收absorption 712韧化toughening 713疲劳裂纹扩展fatigue 714超塑superplastic 715凝胶法制备gel716半导体材料semiconduct or717剪应力shear718发光材料luminescence 719凝胶法制gel720甲基丙烯酸甲酯pmma721硬质hard722摩擦性能friction723电致变色electrochromic724超细粉powder725增强相reinforced726薄带ribbons727结构弛豫relaxation728光学材料materials729sic陶瓷sic730纤维含量fiber731高阻尼damping732镍基nickel733热导thermal734奥氏体austenite735单轴uniaxial736超导电性superconductivity737高温氧化oxidation738树脂基体matrix739含能energetic740粘着adhesion741穆斯堡尔谱mossbauer742脱层delamination743反射率reflectivity744单晶高温合金superalloy745粘结bonded746快淬quenching747熔融插层intercalation748外加applied749钙钛矿结构perovskite750减摩friction751复合氧化物oxide21 / 21。
ABA Poly(Acrylonitrile Butadiene Acrylate)ABS Poly(Acrylonitrile Butadiene Styrene)ACM Poly(Acrylic Acid Ester Rubber)ACS Acrylonitrile-Chlorinated Polyethylene-Styrene Terpolymer ACS American Chemical SocietyAES Poly(Acrylonitrile Ethylene Styrene) or Poly(Acrylonitrile Ethylene Propylene Styrene)AMMA Poly(Acrylonitrile Methyl Methacrylate)AN AcrylonitrileAO AntioxidantAPET Amorphous Polyethylene TerephthlateAPI American Petroleum InstituteARP Poly(Arylterephthalate) CopolyesterAS AntistaticASA Poly(Acrylic Styrene Acrylonitrile)ASTM American Society for Testing and Materials BDMA Benzyl Dimethyl Amine (Epoxy Cure Accelerator) BGE Butyl Glycidyl EtherBIIR Bromobutyl RubberBMC Bulk Molding CompoundBMI BismaleimideBOPP Biaxially Oriented Polypropylene (Film)BR Polybutadiene RubberCA Cellulose AcetateCAB Cellulose Acetate ButyrateCAP Cellulose Acetate PropionateCF Cresol FormaldehydeCFR Code of Federal Regulations (21 CFR has provisions dealing with food contact of polymers)CGE Cresol Glycidyl Ether CHDM CyclohexanedimethanolCIIR Chlorobutyl RubberCM Chlorinated Polyethylene RubberCM Compression MoldedCMC Carboxymethyl CelluloseCN Cellulose NitrateCO Epichlorohydrin Rubber (Homopolymer)COF Coefficient of FrictionCP Cellulose PropionateCPE Chlorinated PolyethyleneCPVC Chlorinated Polyvinyl ChlorideCR Polychloroprene RubberCS CaseinCSA Canadian Standards AssociatesCSM Chlorosulfonated Polyethylene RubberCTE Coefficient of Thermal ExpansionCTFE ChlorortrifluoroethyleneCTI Comparative Tracking IndexCVD Chemical Vapor DepositionDAM Dry As Molded (often applied to nylon)DAP Diallyl PhthalateDDS Diaminodiphenyl Sulfone (Epoxy Cure Agent) DGEBA Diglycidyl Ether of Bisphenol ADIN Deutches Institut f NormungDTUL Deflection Temperature Under LoadEAA Ethylene/Acrylic Acid CopolymerEBAC Poly(Ethylene Butyl Acrylate)EC Ethyl CelluloseECN Epoxy Cresol NovolacECO Epichlorohydrin Rubber (Ethylene Oxide Copolymer) ECTFE Poly(Ethylene Chlorotrifluoroethylene)EEA Poly(Ethylene-Ethyl Acrylate)EEW Epoxy Equivalent Weight (Also called WPE)EMAAA Ethylene Acid TerpolymerEMAC Poly(Ethylene Methyl Acrylate)EMCM Ethylene Methyl Acrylate Cyclohexene Methyl Acrylate EMI Electromagnetic InterferenceEP Epoxy; EpoxideEPA Environmental Protection Agency (US Government) EPDM Ethylene Propylene Terpolymer RubberEPM Ethylene Propylene CopolymerEPN Epoxy Phenol NovolacEPS Expanded PolystyreneESCR Environmental Stress Cracking ResistanceETFE Poly(Ethylene Tetrafluoroethylene)ETPU Engineering Thermoplastic PolyurethaneEVA Ethylene Vinyl Acetate CopolymerEVAC Ethylene-Vinyl Acetate CopolymerEVAL Poly(Ethylene-Vinyl Alcohol)EVOH Poly(Ethylene Vinyl Alcohol)FDA Food and Drug Administration (US Government)FEP Fluorinated Ethylene PropyleneFF Furan FormaldehydeFMQ Fluorosilicone RubberFPM Fluorocarbon RubberFPVC Flexible Polyvinyl ChlorideFR Flame RetardantFVMQ Fluorosilicone RubberFZ Fluorinated Polyphosphazene RubberGFR Glass Fiber ReinforcedGP General PurposeGPO Propylene Oxide RubberGPPS General Purpose PolystyreneHAI High Amp Arc IgnitionHALS Hindered Amine Light StabilizerHDPE High Density PolyethyleneHDT Heat Deflection Temperature or Heat Distortion Temperature HFP HexafluoropropyleneHIPS High Impact PolystyreneHNBR Hydrogenated Nitrile Rubber (Acrylonitrile-Butadiene Rubber) HRE Rockwell E Hardness NumberHRM Rockwell M Hardness NumberHRR Rockwell R Hardness NumberHVAR High Voltage Arc Resistance to IgnitionHVTR High Voltage Tracking RateHWI Hot Wire IgnitionIBS Interactive Blowing SystemIIR Butyl RubberIM Injection MoldedIMR Internal Mold ReleaseISO International Standards OrganizationLCP Liquid Crystal PolymerLDPE Low Density PolyethyleneLLDPE Linear Low Density PolyethyleneLMDPE Linear Medium Density PolyethyleneMD Metal DeactivatorMDPE Medium Density PolyethyleneMEKP Methyl Ethyl Ketone Peroxide (Thermoset Curing Agent)MF Melamine-FormaldehydeMFD Microfloppy DiskettesMFI Melt Flow IndexMVTR Moisture Vapor Transmission RateMWD Molecular Weight DistributionNASA National Aeronautics and Space Administration (US)NB No Break (Applied to Impact Test Results)NBR Nitrile Rubber (Acrylonitrile-Butadiene Rubber)NHFR Non-Halogen Flame RetardantNHT High Temperature NylonNSF National Sanitation Foundation (nonregulatory agency)OB Optical BrightenerODP Ozone Depletion PotentialOEM Original Equipment ManufacturerOPP Oriented Polypropylene (Film)OPS Oriented Polystyrene (Film)OSHA Occupation Safety and Health Administration (US Government) PA PolyacrylatePA Polyamide (Nylon)PAEK PolyaryletherPAEK PolyaryletherketonePAI Polyamide-ImidePAMS Poly(Alpha Methylstyrene)PAN PolyacrylonitrilePARA Polyarylamide (polyaramide)PAS PolyarylsulfonePASA Polyamide, Semi-Aromatic (Nylon)PASU PolyarylsulfonePB PolybutadienePB Polybutene-1PBGA Plastic Ball Grid ArrayPBI PolybenzimidazolePBT Polybutylene TerephthalatePC PolycarbonatePCB Printed Circuit BoardPCP Post-Consumer PlasticPCR Post-Consumer ResinPCT Polycyclohexylenedimethylene Terephthalate PCTFE PolychlorortrifluoroethylenePCTG Glycol-Modified PCTPCU Polycarbonate UrethanePDAP Poly(Diallyl Phthalate)PDSM polydimethylsiloxane (Silicone)PE PolyethylenePEBA Polyether Block AmidePEEK PolyetheretherketonePEF Process Engineered FuelPEG Polyethylene GlycolPEI PolyetherimidePEK PolyetherketonePEKEKK P olyetherketoneetherketoneketonePEKK PolyetherketoneketonePEN Polyethylene NaphthalatePEO Poly(Ethylene Oxide)PEOX Poly(Ethylene Oxide)PES PolyethersulfonePESU PolyethersulfonePET Polyethylene TerephthalatePETG PET Modified with CHDMPEX Cross-linked PolyethylenePF Phenol Formaldehyde (Phenolic)PFA PerfluoroalkoxyPFPE PolyperfluoropolyetherPI PolyimidePIB PolyisobutylenePIR Polyisocyanurate FoamPISU PolyimidesulfonePMMA PolymethylmethacrylatePMP PolymethylpentenePNR Polynorborane RubberPO PolyolefinPOB Poly(p-Oxybenzoate)POM Polyoxymethylene (Acetal)POP Point of Purchase (Marketing Displays) PP PolypropylenePPA PolyphthalamidePPE Polyphenylene EtherPPF Phenol-FurfuralPPG Polypropylene GlycolPPO Polyphenylene OxidePPOX Polypropylene OxidePPS Polyphenylene SulfidePPSU PolyphenylsulfonePRF Plastics Recovery FacilityPS PolystyrenePSU PolysulfonePTFE PolytetrafluoroethylenePTMG Polytetramethylene GlycolPTT Polytrimethylene TerephthalatePU PolyurethenePUR PolyurethenePVAC Poly(Vinyl Acetate)PVAL Poly(Vinyl Alcohol)PVB Poly(Vinyl Butyral)PVC Polyvinyl ChloridePVCA Poly(Vinyl Chloride-Acetate)PVDC Polyvinylidene ChloridePVDF Polyvinylidene FluoridePVFM Poly(Vinyl Formal)PVK PolvinylcarbazolePVOH Polyvinyl AlcoholPVP PolyvinylpyrrolidonePZ Polyphosphazene RubberRH Relative HumidityRIM Reaction Injection MoldingRPVC Rigid Polyvinyl ChlorideRRIM Reinforced Reaction Injection MoldingRTI Relative Thermal Index (UL test)RTPU Rigid Thermoplastic PolyurethaneRTV Room Temperature Vulcanizing (Silicone)SAN Poly(Styrene Acrylonitrile)SB Styrene-ButadieneSBC Styrene-Butadiene CopolymerSBS Poly(Styrene Butadiene Styrene)SEBS Poly(Styrene-Ethylene-Butadiene-Styrene) Elastomer SI SiliconeSI System International (a subset of metric units)SIS Poly(Styrene-Isoprene-Styrene) ElastomerSMA Poly(Styrene Maleic Anhydride)SMC Sheet Molding CompoundSMMA Styrene Methyl Methacrylate CopolymerSMS Styrene-a-MethylstyreneSPS Syndiotactic PolystyreneSPU Segmented PolyurethaneTAIC Triallyl IsocyanurateTEEE Ether Ester Block Copolymer (Thermoplastic Elastomer) TEEE Thermoplastic Elastomer Ether Ester Block Copolymer TEO Olefinic Thermoplastic ElastomerTES Thermoplastic Styrenic ElastomerTFE PolytetrafluoroethyleneTM Transfer MoldedTP ThermoplasticTPE Thermoplastic ElastomerTPI Thermoplastic PolyimideTPO Thermoplastic Polyolefin (often applied to elastomers) TPU Thermoplastic Polyurethene (often applied to elastomers) TPUR Thermoplastic Polyurethene (often applied to elastomers) TPV Thermoplastic VulcanizateTS ThermosetTYS Tensile Yield StrengthUF Urea FormaldehydeUHMW Ultra High Molecular Weight (often applied to polyethylene) UL Underwriters LaboratoryULDPE Ultra Low Density PolyethyleneUP Unsaturated Polyester (Thermoset)USDA United States Department of AgricultureUTS Ultimate Tensile StrengthUV UltravioletVCE Poly(Vinyl Chloride-Ethylene)VCEMA Poly(Vinyl Chloride-Ethylene-Methyl Acrylate)VCMA Poly(Vinyl Chloride-Methyl Acrylate)VCVAC Poly(Vinyl Chloride-Vinyl Acrylate)VCVDC Poly(Vinyl Chloride-Vinylidene Chloride)VHMW Very High Molecular Weight (often applied to polyethylene) WPE Weight per Epoxide (also called EEW)XLPE Cross-linked Polyethylene。
Common Abbreviations Used in thePlastics IndustryAbbreviationPolymerABS acrylonitrile-butadiene-styreneASA acrylate-styrene-acrylonitrileATH aluminium trihydrateBDS butadiene-styrene block copolymerBMC bulk moulding compoundBOPP biaxially oriented polypropyleneBR butadiene rubberCA cellulose acetateCAB cellulose acetate-butyrateCAP celluse acetate propionateCE celluloseCMC carboxymethyl celluseCN cellulose nitrateCP cellulose propionateCSM chopped strand mat (or) chlorosulphonated polyethylene (rubber) DMC dough moulding compoundTPX* polymethyl pentene copolymerUHMWPE ultra high molecular weight PEVCM vinyl chloride monomer = VCECTFE ethylene chlorotrifluoro ethylene copolymerEPDM ethylene-propylene-diene monomer (elastomer)EPM ethylene-propylene rubber = EPREPR ethylene-propylene rubber = EPMEPS expanded polystyreneEV A ethylene vinyl acetateEVOH ethylene vinyle acholFEP fluorinated ethylene-propyleneFRP fibre reinforced polyester/plasticsGMT glass mat thermoplasticGPPS general purpose polystyreneGRP glass reinforced plasticHDPE high density polyethyleneHEMA hydroxyethyl methacrylate polymerHIPS high impact polystyrene = TPSLCP liquid crystal polymer = SRPLDPE low density polyethyleneLLDPE linear low density polyethyleneMBS methacrylate-butadiene-styrene terpolymer MDPE medium density polyethyleneMF melamine formaldehydeNBR nitrile rubber = acrylonitrile butadiene rubber NR natural rubberOPP oriented polypropylenePA polyamide = nylonPAA polaryl amidePA 6 nylon 6PA 66 nylon 66PA 46 nylon 46PA 610 nylon 610PA 66/610 nylon 66/610 copolymerPA 11 nylon 11PA 12 nylon 12PAI polyamide imidePAN polyacrylonitrilePB polybutylenePBT polybutylene terephthalate = PTMTPC polycarbonatePE polyethylenePEBA polyether block amidePEEK polyetheretherketonePEEL polyester elastomerPEI polyester imidePEK polyetherketonePES polyether sulphonePETP polyethylene terephthalatePETG PET copolymerPF phenol formaldehydePFA perfluoro alkoxyl alkanePHB polyhydroxybutyratePI polyimidePIR polyisocyanurate rigid (foam)PMMA polymethyl methacrylatePMP polymethyl pentenePOM polyoxymethylenePP polypropylenePPE polyphenylene etherPPO polyphenylene oxidePPS polyphenylene sulphidePPSS polyphenylene sulphide sulphonePS polystyrenePSU polysulphonePTFE polytetrafluoroethylenePTMT polytetramethylene terephthalate = PBT PUR polyurethanePV A polyvinyl acetatePVB polyvinyl butytral (butyrate)PVC polyvinyl chloridePVCC chlorinated polyvinyl chloridePVCP polyvinyl chloride plasticisedPVCU polyvinyl chloride unplasticisedPVDC polyvinylidene chloridePVDF polyvinylidene flouridePVF polyvinylflouridePVOH polyvinyl alcoholSAN styrene acrylonitrile (copolymer)SBR styrene butadiene rubberSBS styrene-butadiene-styrene (block copolymer) SEBS styrene-ethylene-butadiene-styreneSIS styrene-isoprene-styreneSMA styrene maleic anhydrideSMC sheet moulding compondSRP self reinforcing polymer = LCPTPE thermoplastic elastomerTPO thermoplastic olefin (rubber)TPR thermoplatic rubberTPS toughened polystyrene = HIPSTPU thermoplastic polyurethane (rubber) = TPUR TPUR thermoplastic polyurethane (rubber) = TPU UF urea formaldehydeVC vinyl chloride = VCMXLPE cross-linked polyethylene。
专利名称:BIAXIALLY STRETCHED FILM AND METHOD OF MANUFACTURING THE SAME,POLARIZER PROTECTIVE FILM, DECORATIVEFILM, AND LAYERED FILM发明人:Toshiyuki ZENTO,Naoto FUKUHARA,EijiNAKAMURA,Michiyuki NANBA申请号:US15300527申请日:20150326公开号:US20170173850A1公开日:20170622专利内容由知识产权出版社提供摘要:The present invention provides a method of manufacturing a biaxially stretched film which exhibits small heat shrinkage and has excellent dimensional stability. An unstretched thermoplastic resin film composed of at least one thermoplastic resin layer is biaxially stretched in a longitudinal direction and a width direction to manufacture the biaxially stretched film. The method of manufacturing the biaxially stretched film according to the present invention includes: a process (I) for preheating the thermoplastic resin film to a temperature in a rubbery plateau region in a storage elastic modulus curve; a process (II) for biaxially stretching the thermoplastic resin film under a condition that a stretching speed is 500%/min or higher while heating the thermoplastic resin film to the temperature in the rubbery plateau region; a process (III) for cooling the thermoplastic resin film after the process (II) to a temperature in a glass-to-rubber transition region or a glass region in the storage elastic modulus curve; and a process (IV) for relaxing the thermoplastic resin film after the process (III) under the temperature inthe glass-to-rubber transition region.申请人:KURARAY CO., LTD.地址:Kurashiki-shi JP国籍:JP更多信息请下载全文后查看。
NASA/TM-2000-210094Stretch-Oriented Polyimide Films Jeffrey A. HinkleyLangley Research Center, Hampton, VirginiaD. KlinedinstNorfolk State University, Norfolk, VirginiaL. FeuzETH, Zurich, SwitzerlandApril 2000The NASA STI Program Office ... in ProfileSince its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.The NASA STI Program Office is operated by Langley Research Center, the lead center for NASAÕs scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASAÕs institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:· TECHNICAL PUBLICATION. Reports ofcompleted research or a major significantphase of research that present the results ofNASA programs and include extensivedata or theoretical analysis. Includescompilations of significant scientific andtechnical data and information deemed tobe of continuing reference value. NASAcounterpart of peer-reviewed formalprofessional papers, but having lessstringent limitations on manuscript lengthand extent of graphic presentations.· TECHNICAL MEMORANDUM. Scientificand technical findings that are preliminaryor of specialized interest, e.g., quick releasereports, working papers, andbibliographies that contain minimalannotation. Does not contain extensiveanalysis.· CONTRACTOR REPORT. Scientific andtechnical findings by NASA-sponsoredcontractors and grantees.· CONFERENCE PUBLICATION. Collectedpapers from scientific and technicalconferences, symposia, seminars, or othermeetings sponsored or co-sponsored byNASA.· SPECIAL PUBLICATION. Scientific,technical, or historical information fromNASA programs, projects, and missions,often concerned with subjects havingsubstantial public interest.· TECHNICAL TRANSLATION. English-language translations of foreign scientificand technical material pertinent to NASAÕsmission.Specialized services that complement the STI Program OfficeÕs diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.For more information about the NASA STI Program Office, see the following:· Access the NASA STI Program Home Pageat · E-mail your question via the Internet tohelp@· Fax your question to the NASA STI HelpDesk at (301) 621-0134· Phone the NASA STI Help Desk at(301) 621-0390· Write to:NASA STI Help DeskNASA Center for AeroSpace Information 7121 Standard DriveHanover, MD 21076-1320National Aeronautics and Space Administration Langley Research CenterHampton, Virginia 23681-2199April 2000NASA/TM-2000-210094Stretch-Oriented Polyimide FilmsJeffrey A. HinkleyLangley Research Center, Hampton, Virginia D. KlinedinstNorfolk State University, Norfolk, Virginia L. FeuzETH, Zurich, SwitzerlandAvailable from:NASA Center for AeroSpace Information (CASI)National Technical Information Service (NTIS) 7121 Standard Drive5285 Port Royal RoadHanover, MD 21076-1320Springfield, VA 22161-2171(301) 621-0390(703) 605-6000Stretch-Oriented Polyimide FilmsJ. A. HinkleyNASA Langley Research CenterD. KlinedinstNorfolk State UniversityL. FeuzETH ZurichAbstractTwo thermoplastic polyimides Ð one amorphous, the other crystallizable -- were subjected to isothermal stretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved, and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.IntroductionPolymer films are useful as transparent windows, as flexible structural elements, as electrical substrates, and as vapor barriers. Their optical, electrical, mechanical, and barrier properties can often be improved by in-plane film orientation brought about by stretching. Textile fibers, too, are highly dependent on drawing and annealing to optimize their strengths and stiffnesses.It is of interest, therefore, to explore the effects of drawing on thermoplastic aromatic polyimides, a class of thermally-stable, radiation-resistant polymers. Previous thermal deformation experiments1,2 with various polyimides showed that some of them underwent strain-induced crystallization when they were heated slowly under load. In the studies reported here, various stretch ratios, stretching rates, and stretching temperatures were employed in an effort to optimize the stiffness of uniaxially-drawn films. Isothermal stretching was applied to a polyether imide, LARC TM-IA, and to a closely-related copolymer, LaRC TM-IAX. ExperimentalLARCª-IA3,4 is a nominally amorphous polyimide with a glass transition temperature of 241¡C. Poly(amic acid) precursor solution (30% in N-methyl pyrrolidinone) was obtained from Imitec, Inc., Schenectady, New York. Molecular weight was controlled during the synthesis by offsetting the stoichiometry 3% in favor of the diamine; the chains were capped with phthalic anhydride. Films were cast on soda-lime glass plates, dried for several days at room temperatureunder low humidity, and cured for 1 hour each at 100¡, 200¡, and 300¡C. To make LARCª-IAX, 10% of the diamine is replaced with p-phenylene diamine. Stretching was performed in an air-circulating oven using dead-weight loading.1 Length change was monitored using a long-stroke displacement transducer attached to the weight. Tensile tests on drawn films were performed at room temperature with a gauge length of 3.8 cm and a crosshead speed of 0.5 cm/min; strain was calculated from crosshead displacement. Differential scanning calorimetry (DSC) was performed at 20¡C/minute in air using a Shimadzu analyzer.Results and DiscussionLARC TM-IAIf a suitable constant load is applied to a LARC-IA specimen in the temperature range 240-280¡C, the film elongates readily initially, but at a certain strain, the stretching slows spontaneously. This "natural" draw ratio at which stretching slows ranges from 300% to 750%, depending on the temperature and load (Figure 1). Similar behavior is seen in PET (polyethylene terephthalate) fibers and films,5,6 and is attributed to strain-induced crystallization. The self-limiting character of the deformation makes the material quite forgiving in terms of process variations, and allows zone-drawing7 to be conducted quite easily8. Alternatively, the extent of stretch can be controlled by stopping the deformation short of the "natural" draw ratio. The moduli of the stretched films are substantially higher than that of the as-cast material. Representative tensile data are compared in TableÊI. As might have been expected, larger strain seems to produce a higher modulus.Table IEffect of Strain on room-temperature modulus(Stretching performed at 250 ¡C)Final Strain Average Strain Rate,Sec-1Room Temperature Modulus E, GPa (in stretch direction)Unstretched-- 2.24.00.285.95.00.267.0Besides the total strain, two other stretching variables, the strain rate and temperature, also affect the properties of the stretched film. With our constant-load apparatus, strain rate could only be controlled indirectly by varying the applied engineering stress or the temperature.Considering first the effect of stress, Figure 2 shows raw data at three different stress levels. Note that a logarithmic scale is needed for the abscissa; changing the stress by a factor of three brought about almost a thousandfold change in the experiment times. Each experiment was replicated three times to indicate the degree of reproducibility.Although a detailed study of the rheology of this process is beyond the scope of this report, it is of interest to compare this imide to more conventional commodity polymers. Elongational flows can take a very long time to reach steady state9.It is customary, then, to plot the instantaneous elongational viscosity (also known as the Òstress growth functionÓ) against time. This has been done even in cases where the strain rate is not constant10 (as is the case in the present experiments). Data from Figure 2 are replotted this way in Figure 3.As expected, the viscosity is an increasing function of time. At times below one second the curves for the three stress levels seem to converge to an elongational viscosity of about106ÊPaÊsec. This is comparable to values reported for other thermoplastics9. At longer times, the curves in Figure 3 undergo a change in slope; the upturn happens earlier at higher strain rates. This feature, too, has been seen in polyethylene terephthalate11. The low-rate viscosity shows a modest temperature dependence, rising to ~3 MPa sec at 245¡C and falling to ~0.4 MPa sec at 280¡C.Specimens made by the processes outlined in Figure 2 were tested to failure at room temperature. The results are shown in Table II. It is clear that a high strain rate is advantageous in producing a greater degree of orientation (and thus a higher modulus). It is thought that this is because the desired strain-induced chain orientation is in competition with chain relaxation occurring at the stretching temperature12.Table IIEffect of Strain Rate (250¡C,A = 3.5) on Room Temperature Tensile PropertiesAverage Strain Rate,Sec-1E, GPa-- 2.87 0.004 3.29 0.21 6.54 3.78.79With some polymers, a rapid quench is helpful in maintaining the orientation produced by the stretching. To test this for LaRC-IA, a series of films were maintained under load (no stop) for various periods of time after the apparent cessation of stretching. There was no discernable trend in room temperature modulus upon varying the hold time from 30 seconds to 570 seconds at 250¡C.Synthetic textile fibers are often "heat-set" (annealed under tension) to reduce the amount of shrinkage they undergo when subsequently heated. Attempts to anneal our stretched films at constant length were unsuccessful: the films always broke. A clamping apparatus was therefore designed that allowed the films to shrink slightly during annealing but maintained some load by means of a moderately stiff spring in series with the film. Films annealed this way at 260-280¡C for 30-60 minutes showed, in addition to a melting endotherm near 320¡C, an additional DSC melting peak close to the annealing temperature. The total heat of melting was often less than that for a well-oriented film, however, so the mechanical properties were not determined. The effect of stretching temperature is illustrated in Table III. At the lower temperatures, it was hard to produce a high rate of strain, so modulus was not optimum. The highest temperature produced a lower-modulus (and presumably less-oriented) film. Although the stretching rates were comparable in the 260¡ and 280¡ experiments, it seems apparent that chain relaxation is rapid relative to the experiment time at stretching temperatures above 260¡C.Table IIIEffect of Stretching Temperature on Room Temperature Modulus of Oriented Film(A=3.5)Stretching Temperature E, GPa245 6.8250 6.02609.1280 4.8The maximum room-temperature modulus in the stretch direction was three times that of an unstretched film. Such highly-oriented films are, of course, anisotropic. When failed in tension, they fibrillated, splitting along the stretch direction. This is in contrast to the less-oriented films, which broke straight across.LARC TM-IAXExperiments with LARC-IAX were conducted in the same way as those already described. It is worth noting, however, that in contrast to LARC-IA, the copolymer LARC-IAX did not seem tocrystallize during stretching. The films remained clear and no films were observed to stop straining on their own.Figure 4 illustrates the effect of strain at the lowest stretching temperature. The same load was used for all six specimens, so strain rates were comparable; a stop was used to define the maximum strain. Similar trends were seen with 250¡C and 260¡C stretching. As was observed in the experiments on LaRC-IA, higher strain rates increased the moduli of stretch-oriented films; Figure 5 is an example.In order to summarize the relative importance of the three variables strain, A; log (strain rate); and temperature, moduli resulting from a total of 22 different sets of stretching conditions were fitted by simple linear regression, giving the equation(E, GPa) = 55.47 + 1.47 (A) +1.16 (log (d A/dt, sec-1))- 0.20 (t, ¡C).All coefficient estimates were significant (P<0.02), but a fair amount of scatter remained (R2Ê(Ê0.6). The regression equation should not be taken too literally because some stretching conditions were represented by only a single film, and interactions between the variables were not modeled. It does suggest that the observed maximum modulus (16.1 GPa) is close to the best result one could hope for over the range of parameters accessible for study (i.e. TÊ>Ê240¡C, AÊ<Ê5, and strain rateÊ<Ê10 sec-1).Comparisons among films produced under a wide range of conditions showed that increased moduli were accompanied by significant decreases in room-temperature strain-to-break (FigureÊ6). The tensile strengths, however, remained far above that of the unstretched film (FigureÊ7).Summary and conclusionsThermoplastic polyimides were shown to behave in many ways like more familiar commodity polymers. Stretching improved moduli by factors of 3 to 6.5 in the machine direction, and was sometimes accompanied by strain-induced crystallization. Guidelines for process optimization were obtained.References1. D. Klinedinst, M. S. Thesis, Materials Research Center, Norfolk State University, 1998.2.J. A. Hinkley, J. F. Dezern, L. Feuz, and D. Klinedinst, "Uniaxial Stretching of Poly(keto-ether-imides)", NASA/TM-1999-209820, November 1999.3.D. Progar and T. L. St.Clair, J. Adhesion Sci. Technol., 4(7), 527 (1990).4.U.S. Patent 5,147,966 NASA Langley Research Center (September 1992).5.P. Desai and A. S. Abhiraman, J. Polym. Sci. (Phys.), 26, 1657 (1988).6.G. LeBourville, J. Beautemps, and J. P. Jerry, J. Appl. Polym. Sci., 39, 319 (1990).7.Y. Aihara and P. Cebe, Polym. Eng. Sci., 34(16), 1275 (1994).8.J. A. Hinkley, unpublished results9.S. Middleman, Fundamentals of Polymer Processing, McGraw-Hill, NY, 1977, Chapter 3.10.T. Takaki and D. C. Bogue, J. Appl. Polym. Sci, 19, 419 (1975).11.M. Okamoto, H. Kubo, and T. Kotaka, Polymer, 39(14) 3135 (1998).12.S. K. Sharma and A. Misra, J. Appl. Polym. Sci., 34, 2231 (1987).REPORT DOCUMENTATION PAGEForm Approved OMB No. 0704-0188Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing datasources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),Washington, DC 20503.1. AGENCY USE ONLY (Leave blank )2. REPORT DATEApril 20003. REPORT TYPE AND DATES COVEREDTechnical Memorandum4. TITLE AND SUBTITLEStretch-Oriented Polyimide Films5. FUNDING NUMBERSWU 274-00-99-076. AUTHOR(S)Jeffrey A. Hinkley, D. Klinedinst, and L. Feuz7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)NASA Langley Research Center Hampton, VA 23681-21998. PERFORMING ORGANIZATION REPORT NUMBERL-179539. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)National Aeronautics and Space Administration Washington, DC 20546-000110. SPONSORING/MONITORINGAGENCY REPORT NUMBERNASA/TM-2000-21009411. SUPPLEMENTARY NOTESHinkley: Langley Research Center, Hampton, VA; Klinedinst: Norfolk State University, Norfolk, VA;Feuz: ETH, Zurich, Switzerland12a. DISTRIBUTION/AVAILABILITY STATEMENTUnclassified-UnlimitedSubject Category 27 Distribution: Nonstandard Availability: NASA CASI (301) 621-039012b. DISTRIBUTION CODE13. ABSTRACT (Maximum 200 words)Two thermoplastic polyimides - one amorphous, the other crystallizable -- were subjected to isothermalstretching just above their glass transition temperatures. Room-temperature strengths in the stretch direction were greatly improved and, moduli increased up to 3.6-fold. Optimum stretching conditions were determined.14. SUBJECT TERMSPolyimide; Orientation; Film; Tensile properties 15. NUMBER OF PAGES 1816. PRICE CODEA0317. SEC U R ITY CL A SSIF I C A T I ONO F REPO R TUnclassified18. SEC U R ITY CL A SSIF I C A T I ONO F TH I S PA G EUnclassified 19. SECURITY CLASSIFICATIONOF ABSTRACTUnclassified 20. LIMITATION OF ABSTRACTULNSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z-39-18298-102。