制罐电阻焊基本原
- 格式:ppt
- 大小:1.59 MB
- 文档页数:60
电阻焊接原理
电阻焊接是一种常见的金属连接方法,它利用电流通过金属零件产生的热量来融化焊接材料,从而实现金属零件的连接。
电阻焊接原理包括电流作用原理、热量传导原理和金属结构原理。
首先,电阻焊接的原理是利用电流在金属导体中产生的电阻热来融化焊接材料。
当电流通过金属导体时,导体内部会产生电阻,电流通过导体时会产生热量。
这种热量可以使金属导体和焊接材料达到熔点,从而实现焊接。
电阻焊接的电流作用原理是实现焊接的基础,通过控制电流的大小和时间来控制焊接的质量和效果。
其次,热量传导原理是电阻焊接的重要原理之一。
在电流作用下,金属导体和焊接材料会产生大量的热量,这些热量会通过导体和焊接材料的热传导作用向周围传播。
在焊接过程中,热量传导的速度和方向会影响焊接的温度分布和焊接接头的形状。
因此,控制热量传导是实现高质量焊接的关键。
最后,金属结构原理是影响电阻焊接质量的重要因素之一。
金属的导电性和热导性会影响电流通过金属导体时产生的电阻热和热量传导的速度。
此外,金属的结构和成分也会影响焊接接头的强度
和耐腐蚀性能。
因此,在电阻焊接过程中,需要根据金属的结构特点来选择合适的焊接参数和焊接材料,以确保焊接质量。
总的来说,电阻焊接原理涉及电流作用原理、热量传导原理和金属结构原理。
通过理解和掌握这些原理,可以实现高质量的电阻焊接,为金属制品的生产和加工提供可靠的焊接工艺支持。
电阻焊的基本原理一、概述电阻焊是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。
电阻焊方法主要有四种,即点焊、缝焊、凸焊、对焊,见图6—1。
图6—1 主要电阻焊方法点焊时,工件只在有限的接触面上。
即所谓“点”上被焊接起来,并形成扁球形的熔核。
点焊又可分为单点焊和多点焊。
多点焊时;使用两对以上的电极,在同一工序内形成多个熔核。
缝焊类似点焊。
缝焊时,工件在两个旋转的盘状电极(滚盘)间通过后,形成一条焊点前后搭接的连续焊缝。
凸焊是点焊的一种变型。
在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。
对焊时,两工件端面相接触,经过电阻加热和加压后沿整个接触面被焊接起来。
电阻焊有下列优点:(1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
(2)加热时间短,热量集中,故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
(3)不需要焊丝、焊条等填充金属,以及氧、乙炔、氩等焊接材料,焊接成本低。
(4)操作简单,易于实现机械化和自动化,改善了劳动条件。
(5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。
但闪光对焊因有火花喷溅,需要隔离。
电阻焊缺点:(1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
(2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两板间熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低。
(3)设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。
随着航空航天、电子、汽车、家用电器等工业的发展,电阻焊越来受到社会的重视,同时,对电阻焊的质量也提出了更高的要求。
可喜的是,我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。
电阻焊的原理和方法电阻焊是一种常用的金属焊接方法,它利用电流通过金属工件产生的热量来实现焊接。
本文将介绍电阻焊的基本原理和方法。
一、电阻焊的原理电阻焊利用电流通过金属工件时产生的电阻热来实现金属焊接。
当电流通过金属工件时,由于金属的电阻率较大,电流通过时会产生热量。
这种热量可以使金属材料局部加热,达到焊接的目的。
二、电阻焊的方法1. 电阻焊的设备电阻焊通常使用电阻焊机进行焊接。
电阻焊机主要由电源、电极和控制系统组成。
电源提供所需的电流,电极接触金属工件并传递电流,控制系统用于调节电流和焊接时间。
2. 准备工作在进行电阻焊前,需要进行准备工作。
首先,将要焊接的金属工件清洁干净,以确保焊接的质量。
其次,根据所需的焊接参数设置电阻焊机,包括电流大小、焊接时间等。
3. 焊接过程焊接过程中,将电极放置在金属工件的接触面上,并施加一定的压力。
然后,通电使电流通过工件,产生热量。
热量使金属材料局部加热,达到焊接的温度。
当达到设定的焊接时间后,断开电流,让焊点冷却。
最后,移除电极,完成焊接。
4. 优点和应用电阻焊具有焊接速度快、焊接质量高、焊点牢固等优点。
它广泛应用于汽车制造、航空航天、电子设备等行业中的金属焊接。
三、注意事项1. 选择合适的电流和焊接时间,以确保焊接质量和安全性。
2. 确保金属工件表面清洁,以免影响焊接质量。
3. 在进行电阻焊时,应戴好防护设备,避免触电和烫伤等事故。
总结:电阻焊是一种常用的金属焊接方法,它利用电流通过金属工件产生的热量来实现焊接。
通过电阻焊的设备、准备工作和焊接过程的介绍,我们了解到了电阻焊的基本原理和方法。
电阻焊具有焊接速度快、焊接质量高的优点,并广泛应用于各个行业中的金属焊接。
在进行电阻焊时,需要注意合适的参数选择和安全防护,以确保焊接质量和人身安全。
通过学习和掌握电阻焊的原理和方法,我们可以更好地应用于实际生产中,提高焊接效率和质量。
电阻焊的基本原理
电阻焊是一种利用电流通过工件产生热量,并利用热量熔化连接材料的焊接方法。
其基本原理包括以下几个方面:
1. 电流通过工件产生热量:在电阻焊中,通过电极施加电流使工件通电,电流在工件内部通过会产生热量。
2. 材料的电阻加热:工件材料的电阻决定了电能转化为热能的程度。
在电流通过工件时,由于导电材料的电阻性,电能会转化为热能,使工件局部变热。
3. 熔化材料:在工件局部受热的情况下,当温度达到或超过工件材料的熔点时,材料开始熔化。
4. 熔化材料的混合:熔化的材料在热状态下可以进行一定程度的混合,形成焊接接头。
5. 钝化剂的应用:由于高温条件容易引起氧化和腐蚀,电阻焊中通常使用一种钝化剂来防止氧化反应。
6. 施加压力:电阻焊中通常需要施加一定的压力,在热状态下施加的压力有助于使熔化的材料充分接触和混合,形成坚固的焊接接头。
通过以上步骤,电阻焊可以实现材料的连接,形成强固的焊接接头。
这种焊接方法在工程应用中广泛使用,适用于各种金属材料的连接。
电阻焊的基本原理
电阻焊是一种常用的焊接方法,它利用工件之间的电阻加热来完成焊接。
其基本原理如下:
1.电流通过工件:在电阻焊中,工件通常是金属材料。
当外加电压施
加在工件上时,电流会通过工件。
由于金属的电阻率,电流在通过工件时
会产生热量。
2.热量生成:电流通过金属工件时,电阻会产生热量。
根据焦耳定律,电流通过电阻时会产生能量损耗,并以热量的形式释放。
这导致工件的温
度升高。
3.电阻加热:通过控制施加在工件上的电流大小和时间,可以实现对
工件的加热控制。
在电阻焊中,通常使用直流电源提供电流。
调节电流大
小可以控制加热的速度和强度。
4.互相压紧:在工件加热的过程中,需要通过适当的压力将工件强行
压紧在一起。
这样可以有效地提高接触面积和热传导效率,从而更好地加
热工件。
5.熔化和固化:随着温度的升高,金属工件逐渐达到熔点,燃烧并与
其他金属表面相互融合。
当电阻焊的工件冷却后,金属再次固化并形成一
个坚固的焊点。
电阻焊的基本原理与材料的电阻性质、电流大小和时间等因素有关。
通过调整这些参数,可以实现焊接工件的加热、熔化和固化。
电阻焊的优
点是焊接速度快、效率高,但其适用范围相对较窄,只适合于一些金属或
特定工件的焊接。
第4节电阻焊技术4.1电阻焊概述4.1.1、电阻焊基本原理1.定义:电阻焊,是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生电阻热进行焊接的方法,属压焊。
2.电阻焊热源的产生电阻焊是将焊件组合后通过电极施压,利用电流通过接头接触面及邻近区域产生的电阻热进行焊接。
要形成一个牢固的焊接接头,两焊件必须具有足够的共同晶粒。
熔焊是利用外加热源使连接处熔化,凝固晶粒而形成焊缝的,而电阻焊则是利用本身的电阻热和塑性变形的能量,形成结合面的共同晶粒而形成焊缝的,从连接的物理本质来看,二者都是靠焊接金属原子之间的结合力结合在一起的。
但他们的热源不同,在接头的形成过程中有无必要的塑性变形也不同,即实现接头坚固结合的途径不同。
这便是电阻焊与一般的熔焊的不同之处。
4.1.2、电阻焊分类电阻焊的种类很多,可根据所使用的焊接的不同特征进行分类。
图14.1.3、电阻焊的特点1.电阻焊的优点1)焊接生产率高。
点焊时通用点焊机每分钟可焊60点,若用快速点焊机则每分钟可达500点以上;对焊直径为40mm的棒材每分钟可焊一个接头;缝焊厚度为l~3mm的薄板时,其焊接速度通常为0.5~lm/min,滚对焊最高焊接速度可达60m/min。
因此电阻焊非常适合大批量生产。
2)焊接质量好。
从焊接接头来说,由于冶金过程简单,且不易受空气的有害作用,所以焊接接头的化学成分均匀,并且与母材基本一致。
从整体结构来看,由于热量集中,受热范围小,热影响区也很小,所以焊接变形不大,并且易于控制。
此外,点、缝焊时由于焊点处于焊件内部,焊缝表面平整光滑,因而焊件表面质量也较好。
3)焊接成本较低。
电阻焊时不用焊接材料,一般也不用保护气体,所以在正常情况下除必需的电力消耗外,几乎没有什么消耗,因而使用成本低廉。
4)劳动条件较好。
电阻焊时既不会产生有害气体,也没有强光辐射,所以劳动条件比较好。
此外,电阻焊焊接过程简单,易于实现机械化、自动化,因而工人的劳动强度较低。
电阻焊基本知识及操作要求电阻焊是一种常见的金属连接技术,广泛应用于电子、电气设备以及汽车制造等行业。
它通过利用电阻加热产生的热量来实现焊接。
以下是关于电阻焊的基本知识和操作要求。
一、电阻焊基本原理电阻焊的基本原理是利用电流通过电阻产生的电阻热量使接触面的金属迅速升温并融化,随后冷却固化形成焊点。
其焊接过程包括预热、施加焊接电流、卸载等步骤。
二、电阻焊设备1.电阻焊机:电阻焊机是实现电阻焊的基本设备,主要由焊接变压器、电流调整装置、焊接电极等组成。
2.电极:电极是焊接时与金属接触的部分,电流通过电极使两个接触点迅速加热。
电极通常使用铜材料制成,能够在电流通过时快速加热,并有助于金属的传导。
三、电阻焊操作要求1.工作环境要求:焊接场所应干燥,防止金属材料与电极之间的电击。
应远离易燃或易爆的材料。
2.选用合适的电阻焊机及电极:根据焊接的需求选用合适的电阻焊机,以及合适的电流和电压参数。
选用合适的电极,以确保良好的接触。
3.清洁表面:焊接前应将要焊接的金属表面进行清洁,除去氧化物和油脂等杂质,以保证良好的接触。
4.定位夹紧:为了保证焊点的位置准确,应将金属工件进行夹紧定位,防止移动或变形。
5.施加适当的电流和时间:根据工件的材料和尺寸,选择合适的电流和时间参数。
一般应根据工艺规程进行设置。
6.避免过烧和过热:焊接时应注意控制电流和焊接时间,避免过烧和过热现象的发生,以免破坏金属结构。
7.电极保养:定期对电极进行清洁和保养,保持电极表面的光洁度和平整度,以确保良好的导电和抗磨损性能。
8.检验焊点质量:焊接完成后,应对焊点进行质量检验。
常见的检验方式包括外观检查、金相组织检查等。
总结:电阻焊作为一种常见的金属连接技术,具有简单、快速、可靠的特点。
通过合理的操作要求和控制,可以获得高质量的焊接连接。
但是在实际应用中需要根据具体的工件要求和焊接技术规程来进行操作,并严格遵守相关安全操作规范,以确保焊接质量和人员安全。
钢桶的焊接工艺研究辛巧娟在钢桶生产中,焊接工序是钢桶生产的主要质量控制工序,焊接质量的好坏,将直接影响钢桶的质量。
现在全世界的钢桶焊接几乎都是采用电阻焊技术。
一、钢桶电阻焊焊接原理钢桶电阻焊是将被焊桶件压紧于两电极之间,并能以电流,利用电流流经桶件接触及邻近区域产生的电阻热将其加热到熔化或塑性状态,断电后,在压力继续作用下,使之形成牢固接头的金属结合的一种方法。
电阻焊的主要方法有4种。
即点焊、缝焊、凸焊、对焊。
在钢桶生产中应用最频繁的是点焊和缝焊。
1.钢桶电阻焊的特点钢桶电阻焊有两个显著特点:·采用内部热源——利用电流通过焊接区的电阻产生的热量进行加热。
·必须施加压力——在压力的作用下,通电加热、经过水冷或风冷冷却后,形成接点。
由此可见,要获得适当的电阻热,必须有外加电源,并始终在压力的作用下进行焊接。
所以,焊接电流IW,电极压力Fw是形成电阻焊接头的最基本条件。
至于焊接过程中这两个参数如何变化,则要根据焊件的材料、结构特点、性能及焊接设备而定。
2.电阻(焊接)热的产生及影响产热的因素焊接时产生的热量可由下式计算:Q=I2Rt (1)式中Q-产生的热量(J);I——焊接电流(A);R——电极间电阻(Q);t——焊接时间(S)。
电阻R及影响R的因素式(1)中的电极问电阻包括桶件本身电阻Rw,两桶件间接触电阻Rc电极与桶件间接触电阻Rw(图1)。
R = 2Rw + Rc + 2Rew (2)当桶件和电极已定时,桶件的电阻取决于它的电阻率。
因此,电阻率是被焊钢桶材料的重要性能指标。
电阻率高的材料其导热性差,电阻率低的材料其导热性好。
这是因为,电阻率与电阻成反比。
电极压力的变化将改变桶件与桶件、桶件与电极间的接触面积,从而也将影响电流线的分布(参见图1)。
随着电极压力的增大,电流线的分布将较分散,因此桶件电阻将减小。
图1 点焊时的电阻分布和电流线熔核开始形成时,由于溶化区的电阻增大,将迫使更大部分电流从其周围的压接区(塑性焊接环)流过。
电阻焊的简介电阻焊是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。
电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔化而实现连接的焊接方法。
通常使用较大的电流。
为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过程中始终要施加压力。
电阻焊的简介电阻焊是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。
电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔化而实现连接的焊接方法。
通常使用较大的电流。
为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过程中始终要施加压力。
进行这一类电阻焊时,被焊工件的表面善对于获得稳定的焊接质量是头等重要的。
因此,焊前必须将电极与工件以及工件与工件间的接触表面进行清理。
电阻焊的原理电阻焊是当电流通过导体时,由于电阻产生热量。
当电流不变时,电阻愈大,产生的热量愈多。
当两块金属相接触时,接触处的电阻远远超过金属内部的电阻。
因此,如有大量电流通过接触处,则其附近的金属将很快地烧到红热并获得高的塑性。
这时如施加压力,两块金属即会联接成一体。
电阻焊的特点1:电阻焊是利用焊件内部产生的电阻热,由高温区向低温区传导,加热及融化金属,实现焊接的。
它属于内部分布能源。
2:电阻焊的焊缝是在压力下凝固或集合结晶,属于压焊范畴,具有锻压特征。
3:由于焊接热量集中,加热时间短,所以热影响区小,焊接变形与应力也较小。
所以,通常焊后不需要校正及热处理。
4:通常不需要焊、焊丝、焊剂、保护气体等焊接材料,焊接成本低。
5:电阻焊的熔核始终被固体金属包围,融化金属与空气隔绝,焊接治金过程比较简单。
6:操作简单,易于实现机械化与自动化,劳动条件较好。
7:生产率高,可与其它工序一起安排在组装焊接生产线上。
但是闪光焊因有火花喷溅,尚需隔离。
电阻焊设计知识点总结图电阻焊是一种常用的焊接方法,通常用于连接金属工件。
本文将对电阻焊的设计知识点进行总结,并通过图表的方式展示,以便读者更好地理解和掌握电阻焊的相关知识。
1. 电阻焊的基本原理电阻焊是利用电流通过工件与电极之间的电阻产生热量,使工件表面熔化并形成焊接接头的一种焊接方法。
电流通过电阻的流动产生的热量主要用于加热工件,进而实现焊接。
2. 电阻焊的分类根据电流传导方式和工件之间的接触方式,电阻焊可分为两类:接触电阻焊和无接触电阻焊。
2.1 接触电阻焊接触电阻焊是通过电极直接与工件接触并施加压力,形成电阻加热的焊接方法。
常用的接触电阻焊方法有点焊、缝焊和锡焊。
下图为接触电阻焊的示意图:[插入示意图]点焊:缝焊:锡焊:2.2 无接触电阻焊无接触电阻焊是通过工作线圈或电感线圈产生交变电流,使工件自激振动并发热,实现焊接的方法。
一般用于较小的焊接工件以及对电极磨损敏感的工件。
下图为无接触电阻焊的示意图:[插入示意图]3. 电阻焊的设备和工艺参数3.1 设备电阻焊设备主要包括电源、电极、机械结构和控制系统等。
其中,电源提供所需的电流和电压,并控制焊接过程的时间和电能;电极负责传导电流到工件并施加焊接压力;机械结构用于支撑和定位工件。
3.2 工艺参数电阻焊的工艺参数包括焊接电流、焊接时间、压力和电极的材料等。
这些参数的选择与工件的材料、形状和尺寸密切相关,需要根据实际情况进行合理调整。
4. 电阻焊的优缺点4.1 优点(1) 电阻焊工艺简单、快速,适用于大规模生产;(2) 焊接接头坚固可靠,耐腐蚀性好;(3) 可实现金属不同种类之间的焊接。
4.2 缺点(1) 电阻焊对工件的形状和尺寸有一定的限制;(2) 电极磨损较快,需要定期更换;(3) 微小工件的焊接控制和定位较为困难。
总结:电阻焊是一种常用的焊接方法,通过电流通过工件与电极之间的电阻产生的热量进行焊接。
根据电流传导方式和工件之间的接触方式,电阻焊可分为接触电阻焊和无接触电阻焊。
电阻焊工作原理电阻焊是一种通过电化学反应发热来进行焊接的方法。
该技术可用于焊接多种材料和组件,如电子元件、电线、管道、轮毂、汽车零部件等。
在此过程中,电子会流经焊接区域,形成热量,使材料融化在一起。
电阻焊装置由三个要素组成,包括一个电源、一个焊接头和夹具。
电源会提供电能来加热焊接头。
焊接头和夹具则用于夹住和定位待焊接的工件。
在电阻焊过程中,焊接头和夹具碰触金属表面。
这个接触点将成为焊接区域,也称为焊接头。
当电能通过焊接头时,电子会流动,并在接触点处形成热量。
这使得焊接头开始变热,最终达到熔化点,这时焊接材料便会相互熔合。
焊接过程结束后,焊接头冷却并变为固体。
电阻焊的工作原理是将电能转化为焊接热量。
电流通过焊接头时,焊接头受到电流驱动而变热。
在焊接头变热时,焊接材料开始融化并形成焊缝。
焊接区域的温度和热量是由电源提供的电能和焊接头的电阻决定的。
焊接头的电阻产生的热量可根据焊接工件的需求进行调节。
通常电阻焊过程需要进行预热,以确保焊接头能够在温度上升到足够高的温度。
电阻焊的工作原理主要是通过电流产生热量将焊接部位加热,进而将焊材熔化并相互固结。
这类焊接方式简单易行,不需要其他复杂的工具和辅助设备,可以使用手工或自动化的方式进行。
它已成为许多制造业的主要焊接和拼接方法之一。
电阻焊可以为许多行业提供快速、经济和高效的焊接解决方案。
无论是手工还是自动化操作,电阻焊都是一项非常实用的工艺,在应用中广泛且易于使用。
电阻焊是一种很古老的焊接工艺,已经被广泛应用于现代制造行业中。
它可以为金属、塑料及其他材料的加工和拼接提供高效的手段。
与其他焊接方法相比,其易于控制,诸如应力、变形和变质等问题都可以在极小程度上控制。
电阻焊有许多变体。
最常用的莫过于冷压焊接(冷压接头和锁紧螺母)和热压焊接(包括热压接头和铆接)。
在冷压焊接途径中,焊接材料之间的热能非常有限。
通常,要求焊接头的硬度高而柔韧性较弱,这将促使焊接材料形成一道紧密的接头。