矿床水文地质类型的划分
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
前言矿井水文地质工作是保证煤矿安全生产建设的一项重要技术基础工作。
做好矿井水文地质工作,掌握矿井水文地质规律,研究和解决矿井生产建设中的水文地质问题,防治水害,保护和利用地下水资源,严格科学管理,以适应煤炭生产进展的需要。
2009年8月17日国家安全生产监督管理总局办公会议审议通过的《煤矿防治水规定》,规定从2009年12月1日起实施。
其中规定第十二条要求各矿井应当对本单位的水文地质情形进行研究,编制矿井水文地质类型划分报告。
矿井水文地质类型划分的目的是分析矿井水文地质条件,肯定水文地质类型,指导矿井防治水工作,通过采取有效的防治水综合治理办法,确保煤矿安全生产。
本次煤矿水文地质条件复杂程度分类依据煤炭工业部制定的《矿井水文地质规程》,和借鉴《松树镇煤矿地质勘探报告》、《矿井水害评价报告》及其它有关图纸资料。
按照核实的资料和矿井的实际情形,编制了《江源区松树镇煤矿综合经营公司新一号井矿井水文地质类型划分报告》。
第一章矿井概述及井田概况第一节矿井自然概况白山市江源县松树镇煤矿综合经营公司新一号井位于吉林省白山市松树镇火车站约,行政区隶属于白山市江源区松树镇所管辖。
地理坐标北纬42°07′58″,东经126°30′01″。
第二节矿井概况及邻井关系一、矿井概况井田平均走向长约,平均倾斜长,面积,企业隶属于白山市江源区。
该矿井设计生产能力为万吨/年,白山市江源县松树镇煤矿综合经营公司新一号井地质储量243万吨,煤质牌号为无烟煤、瘦煤。
企业性质为集体企业。
二、矿井开拓方式、主井提升方式、采煤方式、通风方式、供电方式矿井开拓方式为斜井片盘式开拓。
主提升为串车提升,现生产标高为+413m,有两个掘进面,和一个回采工作面,采用壁式采煤方式,各井口地面标高:主井+738m,副井。
采煤方式为壁式炮采落煤方式。
通风方式为中央并列抽出式。
供电电源主线由松树镇变电所沿青松线引入高压10kV,备用线沿青桦线高压10kV进入变电所,经地面变电所供给井下双回路供电。
22种矿床勘查类型划分依据!本文根据地质矿产勘查行业标准汇编而成,涵盖22种矿床勘查类型:岩金矿床铜、铅、锌、银、镍、钼矿床高岭土、膨润土、耐火粘土矿床冶金、化工用石灰岩及白云岩、水泥原料矿床硫铁矿——硫铁矿和多金属型矿床硫铁矿——煤系沉积型矿床钨、锡、汞、锑矿床盐湖和盐类矿床——固体矿床盐湖和盐类矿床——浅藏卤水矿床深藏卤水矿床磷矿床砂矿床玻璃硅质原料、饰面石材、石膏、温石棉、硅灰石、滑石、石墨矿床重晶石、毒重石、萤石、硼矿床铝土矿、冶镁菱镁矿煤矿床泥炭矿床煤矿床水文地质勘查类型稀有金属矿床稀土内生矿床风化壳离子吸附型稀土矿床铀矿床01岩金矿床确定因素:第I勘查类型(简单型):矿体规模大,形态简单,厚度稳定,构造、脉岩影响程度小,主要有用组分分布均匀的层状一似层状、板状一似板状的大脉体、大透镜体、大矿柱第II勘查类型(中等型):矿体规模中等,产状变化中等,厚度较稳定,构造、脉岩影响程度中等,破坏不大,主要有用组分分布较均匀的脉体、透镜体、矿柱、矿囊第III勘查类型(复杂型):矿体规模小,形态复杂,厚度不稳定,构造、脉岩影响大,主要有用组分分布不均匀的脉状体、小脉状体、小矿柱、小矿囊具体类型特征:02铜、铅、锌、银、镍、钼矿床确定因素:第I勘查类型:为简单型,五个地质因素类型系数之和为2.5-3.0,主矿体规模大到巨大,形态简单到较简单,厚度稳定到较稳定,主要有用组分分布均匀到较均匀,构造对矿体影响小或中等第II勘查类型:为中等型,五个地质因素类型系数之和为1.7-2.4,主矿体规模中等到大,形态复杂到较复杂,厚度不稳定,主要有用组分分布较均匀到不均匀,构造对矿体形状影响明显第III勘查类型:为复杂型,五个地质因素类型系数之和为1-1.6,主矿体规模小到中等,形态复杂,厚度不稳定,主要有用组分分布较均匀到不均匀,构造对矿体形状影响明显到严重具体类型特征:03高岭土、膨润土、耐火粘土矿床确定因素:I勘查类型:矿体(层)延展规模大型,形态规则,厚度稳定,内部结构、地质构造简单II勘查类型:矿体(层)延展规模中一大型,形态较规则,厚度较稳定,内部结构、地质特征简单至较简单Ill勘查类型:矿体(层)延展规模中一小型,形态较规则至不规则,厚度较稳定至不稳定,内部结构、地质构造较简单至复杂具体类型特征:04冶金、化工用石灰岩及白云岩、水泥原料矿床确定因素:第I勘查类型:矿体内部结构简单,厚度稳定,构造简单至中等,岩浆岩与变质岩不发育至较发育,岩溶不发育至较发育第II勘查类型:矿体内部结构中等,厚度较稳定,构造中等至复杂,岩浆岩与变质岩较发育至发育,岩溶较发育至发育第III 勘查类型:矿体内部结构复杂,厚度不稳定,构造复杂,岩浆岩与变质岩发育,岩溶发育具体类型特征:05硫铁矿——硫铁矿和多金属型矿床确定因素:第I勘查类型:矿体形状简单-较简单,厚度稳定-较稳定,构造简单-中等的大型矿床第II勘查类型:矿体形状较简单,厚度较稳定-不稳定,构造简单-复杂的大-中型矿床,矿体形状较简单,厚度较稳定,构造中等的中小型矿床第III勘查类型:矿体形状复杂,厚度不稳定,构造中等-复杂的中-小型矿床具体类型特征:06硫铁矿——煤系沉积型矿床确定因素:第I勘查类型:矿体形状简单,厚度稳定-较稳定,连续性好,构造简单的大型矿床第II勘查类型:矿体形状简单-较简单,厚度较稳定,连续性较好,构造简单-中等的大-中型矿床第III勘查类型:矿体形状较简单-复杂,厚度不稳定,连续性差,构造中等的中-小型矿床具体类型特征:07钨、锡、汞、锑矿床具体类型特征:08盐湖和盐类矿床——固体矿床确定因素:第I勘查类型:矿体延展规模大型,矿体稳定,构造简单或岩(盐)溶不发育(或界线规则)第II勘查类型:矿体延展规模大-中型,矿体较稳定,构造简单-中等或岩(盐)溶中等-发育(或界线较规则)第III勘查类型:矿体延展规模中-小型,矿体不稳定,构造较简单-复杂或岩(盐)溶不发育-发育(或破坏矿体)具体类型特征:09盐湖和盐类矿床——浅藏卤水矿床确定因素:第1勘查类型:矿体延展规模大型、矿体稳定、构造简单或岩(盐)溶不发育(或界则)第II勘查类型:矿体延展规模大-中型,矿体较稳定,构造简单-中等或岩(盐)中等-发育(或界线较规则)第III勘查类型:矿体延展规模中-小型,矿体不稳定,构造较简单-复杂或岩(盐)溶不发育-发育(或破坏矿体)具体类型特征:10深藏卤水矿床确定因素:第I勘查类型:无河流补给,或虽有常年性、季节性河流补给,但补给强度弱:周边地下水及盐下水富水性弱,卤水动态稳定,卤水层结构简单,水化学组分分布均匀-较均匀、水平分带和垂直分异不明显第II勘查类型:有常年性河流注入并形成湖泊,补给强度中等,周边地下水及盐下水富水性弱-中等,卤水动态较稳定,卤水层结构较简单;水化学组分分布较均匀,但水平分带和垂直分异较明显第III勘查类型:河流补给较丰富,有常年性湖泊,周边淡水含水层-直延伸到矿层之下,具承压性,水头高,富水性强,卤水动态不稳定,卤水层结构较简单-较复杂,水化学组分变化较大、水平分带和垂直分异明显具体类型特征:11磷矿床确定因素:第I勘查类型:矿体延展规模大型、矿体稳定、构造简单或岩(盐)溶不发育(或界线规则)第II勘查类型:矿体延展规模大一中型、矿体较稳定、构造简单一中等或岩(盐)溶中等一发育(或界线较规则)第III勘查类型:矿体延展规模中一小型、矿体不稳定、构造较简单一复杂或岩(盐)溶不发育一发育(或破坏矿体)具体类型特征:12砂矿床确定因素:第工类型(简单型):主要矿体延展规模大,宽度较稳定,形态简单-较简单,有用组分分布较均匀第II类型(中等型):主要矿体延展规模大-中等,宽度不稳定-很不稳定,形态较简单-复杂,有用组分分布不均匀-很不均匀第III类型(复杂型):主要矿体延展规模中等-小,形态复杂,宽度很不稳定,有用组分分布很不均匀,底板极不平坦,属于此类型的多为规模小的支谷砂矿,残积、坡积、洪积砂矿和以岩溶为基底的砂矿,以及人工堆积的砂具体类型特征:13玻璃硅质原料、饰面石材、石膏、温石棉、硅灰石、滑石、石墨矿床确定因素:矿床勘查类型根据矿体规模、主矿体形态和内部结构、主矿体厚度稳定程度、矿石质量稳定程度及矿床构造、岩浆岩、岩溶对矿体的影响和破坏程度五个方面划分为三个类型,即:1地质条件简单型,11地质条件中等型,111地质条件复杂型。
前言本标准属于煤炭工业协会《2005年煤炭行业标准项目计划》,国家发改委以发改办工业(2005)739号文件批准下达。
本标准是为了适应煤炭资源地质勘查工作的需要,在原煤炭工业部1980年颁发的有关规程基础上,总结二十多年执行过程的实践经验,结合当前我国经济发展和技术进步而制定的。
本标准是《矿区水文地质工程地质勘探规范》和《煤、泥炭地质勘查规范》的配套标准。
本标准自生效之日起,同时替代原煤炭工业部(80)煤地字第638号文件颁发的《煤炭资源地质勘探抽水试验规程》、《煤炭资源地质勘探地表水、地下水长期观测及水样采取规程》、《煤炭资源地质勘探钻孔简易水文地质观测规程》和《煤田水文地质测绘规程》。
本标准的附录主要引自GB 12719-91《矿区水文地质工程地质勘探规范》及DZ0215-2002《煤、泥炭地质勘查规范》。
本标准由中国煤炭地质总局负责起草。
本标准起草人:王佟、傅耀军、程爱国、孙玉臣、华解明、袁同星、牛志刚、李洪。
本标准由中国煤炭地质总局提出并负责解释。
煤矿床水文地质、工程地质、环境地质勘查评价标准1、适用范围1.1本标准规定了煤炭资源地质勘查水文地质、工程地质及环境地质工作的基本准则,侧重于勘查技术要求、工作方法。
1.2本标准适用于煤炭资源地质勘查各阶段的设计编制、勘查施工、地质研究、地质报告编制和评审、资源/储量评估、矿业权评估、可行性研究的依据。
2、引用标准下列标准包含的条文,通过在本标准中引用而构成本标准的条文。
在本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方面应探讨、使用下列标准最新版本的可能性。
GB 1 12719—91 矿区水文地质工程地质勘探规范DZ/T 0 0215—2002 煤、泥炭地质勘查规范GB/T 14158—93 区域水文地质工程地质环境地质综合勘查规范GB 50215—2005 煤炭工业矿井设计规范GB 50197—2005 露天矿工程设计规范GB 50027—2001 供水水文地质勘察规范DZ/T 0080—93 煤田地球物理测井规范GB 3838—2002 地表水环境质量标准3、总则3.1 水文地质工程地质勘查和环境地质调查评价是煤炭资源勘查工作的重要组成部分,各勘查阶段都应予以重视,认真做好相应工作。
主要矿床水文地质类型的基本特点矿床是地球内部物质迁移富集的结果,与相关的水文地质条件有密切关系。
不同类型的矿床具有不同的水文地质特点。
在此,我们将介绍几种主要的矿床水文地质类型及其基本特点。
热液矿床热液矿床是指在由热液活动形成的岩石中含有经济矿物的成矿作用。
热液矿床的水文地质特点是:•热液:热液在成矿中起着重要的作用,通过热液通道将矿物元素从原来的地方搬运到成矿地区。
•活塞效应:热液在深部地层中形成高压、高温条件,推动地下水向上运动,形成了很多由热液和地下水共同形成的岩浆岩和角岩矿床。
•热液影响:热液流经产矿岩体时,会影响产矿岩体的物理、化学特性,从而形成热液矿床。
例如,在热液的作用下,产矿岩体的矿物颗粒逐渐变大,矿物含量逐渐增加。
石英脉型矿床石英脉型矿床主要是由深部的热液在岩石中形成的大型石英脉和伴生矿物所组成的成矿作用。
石英脉型矿床的水文地质特点是:•热液介入:热液流向产矿岩体,其中的矿物元素向着不同的方向迁移并聚集,形成了石英脉矿体。
•填洞作用:石英脉经地层变迁,由于其硬度较高,未被侵蚀,被保留下来,在地下水的作用下,脉体中一些空隙被填充了矿物,形成了各种类型的石英脉矿床。
•缝隙填充:石英岩和伴生矿脉自身具有较大的空隙和裂缝,水文作用使得这些缝隙被矿物充填,形成了石英脉型矿床。
磷酸盐矿床磷酸盐矿床是指以磷酸盐矿物为主要成分的矿床,形成于不同岩石成因环境中。
磷酸盐矿床的水文地质特点是:•碱性环境:在适宜的成矿环境下,磷酸盐的含量可以高达10-20%。
而这些适宜的成矿环境是在碱性环境下形成的,这是磷酸盐矿床得以形成的必要条件。
•沉淀作用:磷酸盐一般是以化学沉淀的形式出现在地层中的。
不同的岩石成因环境会形成不同的磷酸盐沉积,在水文作用下,逐渐形成了不同类型的磷酸盐矿床。
•交代作用:在一些特殊的成矿环境下,磷酸盐可以与其他的岩石形成交代作用,使得磷酸盐与其他矿物组合成为矿体。
海底热泉型矿床海底热泉型矿床指的是在海底热液喷口周围产生富含高温、高压水溶液的区域中,由这些水溶液带来的金属矿物重新沉淀而形成的成矿作用。
书山有路勤为径,学海无涯苦作舟
矿床水文地质类型的划分
矿床水文地质类型是指导矿床水文地质调查和研究,以便合理选择勘探方法、正确布署勘探工作、有效地防治与利用矿坑水的重要依据。
地质矿产部1982 年颁发的《矿区水文地质工程地质普查勘探规范》,根据矿床充水的主要含水层的类型,将固体矿床划分为以下三类:
第一类:以孔隙含水层充水为主的矿床,简称孔隙充水矿床。
其矿床充水条件和矿坑涌水量的大小取决于充水岩层的颗粒成分、孔隙大小、胶结程度、埋藏条件及与地表水的水力联系程度
第二类:以裂隙含水层充水为主的矿床,简称裂隙充水矿床,其矿床充水条件和矿坑涌水量的大小取决于充水岩层的裂隙发育程度,构造复杂程度以及与地表水的水力联系程度。
第三类:以岩溶含水层充水为主的矿床,简称岩溶充水矿床。
其矿床充水条件和矿坑涌水量的大小主要决定于充水岩层的岩溶发育程度及分布和埋藏条件、矿区的构造复杂程度。
本类矿床又划分为三个亚类:
第一亚类:以溶蚀裂隙为主的岩溶充水矿床;
第二亚类:以溶洞为主的岩溶充水矿床;
第三亚类:以暗河为主的岩溶充水矿床。
各类充水矿床根据矿层与当地侵蚀基准面及地下水位的关系,地表水体的影响程度,主要含水层和构造破碎带的富水性补给条件,矿层直接顶底板隔水层的稳定性等影响水文地质条件复杂程度的因素,划分为三型:
第一型:水文地质条件简单的矿床
(1)主要矿体位于当地侵蚀基准面以上,地形条件有利于自然排水,矿床。
前言本标准属于煤炭工业协会《2005年煤炭行业标准项目计划》,国家发改委以发改办工业(2005)739号文件批准下达。
本标准是为了适应煤炭资源地质勘查工作的需要,在原煤炭工业部1980年颁发的有关规程基础上,总结二十多年执行过程的实践经验,结合当前我国经济发展和技术进步而制定的。
本标准是《矿区水文地质工程地质勘探规范》和《煤、泥炭地质勘查规范》的配套标准。
本标准自生效之日起,同时替代原煤炭工业部(80)煤地字第638号文件颁发的《煤炭资源地质勘探抽水试验规程》、《煤炭资源地质勘探地表水、地下水长期观测及水样采取规程》、《煤炭资源地质勘探钻孔简易水文地质观测规程》和《煤田水文地质测绘规程》。
本标准的附录主要引自GB 12719-91《矿区水文地质工程地质勘探规范》及DZ0215-2002《煤、泥炭地质勘查规范》。
本标准由中国煤炭地质总局负责起草。
本标准起草人:王佟、傅耀军、程爱国、孙玉臣、华解明、袁同星、牛志刚、李洪。
本标准由中国煤炭地质总局提出并负责解释。
煤矿床水文地质、工程地质、环境地质勘查评价标准1、适用范围1.1本标准规定了煤炭资源地质勘查水文地质、工程地质及环境地质工作的基本准则,侧重于勘查技术要求、工作方法。
1.2本标准适用于煤炭资源地质勘查各阶段的设计编制、勘查施工、地质研究、地质报告编制和评审、资源/储量评估、矿业权评估、可行性研究的依据。
2、引用标准下列标准包含的条文,通过在本标准中引用而构成本标准的条文。
在本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方面应探讨、使用下列标准最新版本的可能性。
GB 1 12719—91矿区水文地质工程地质勘探规范DZ/T0 0215—2002煤、泥炭地质勘查规范GB/T14158—93区域水文地质工程地质环境地质综合勘查规范GB50215—2005煤炭工业矿井设计规范GB50197—2005露天矿工程设计规范GB50027—2001供水水文地质勘察规范DZ/T0080—93煤田地球物理测井规范GB3838—2002地表水环境质量标准3、总则3.1 水文地质工程地质勘查和环境地质调查评价是煤炭资源勘查工作的重要组成部分,各勘查阶段都应予以重视,认真做好相应工作。
1)矿井水文地质类型划分原则在参考上述各种矿井(床)水文地质分类方案的基础上,本规定提出的矿井水文地质类型分类的原则和要求如下:(1)分类以矿井防治水工作为目的,考虑与矿井地质勘探工作相结合。
(2)分类要全面考虑矿井充水诸因素的影响,要突出其中主要因素的作用。
(3)分类应符合我国的实际情况,反映近年来煤矿水害事故发生的特点以及在防治水工作中的经验教训,力求简单明了,便于实际应用。
(4)本类型划分所考虑的各种因素(指标)具有同等地位,并且为了煤矿生产安全,类型划分采用就高不就低的原则。
例如,根据矿井及其周边老空水分布状况,某矿井应为极复杂类型,但其它指标均未达到极复杂类型要求,采用就高不就低的原则,将该矿井定为水文地质条件极复杂类型矿井;同理,在单位涌水量q、矿井涌水量Q1、Q2和突水量Q3,以最大值作为分类依据。
(5)同一井田煤层较多且水文地质条件变化较大时,应分煤层进行矿井水文地质类型划分。
例如,华北型煤田,开采上组煤时,矿井可能是水文地质简单或中等类型的,而开采下组煤层则可能是水文地质条件复杂或极复杂的矿井。
2)矿井水文地质类型划分依据根据我国的矿井水文地质特征和主要影响因素,矿井水文地质类型的划分依据如下:(1)受采掘破坏或影响的含水层及水体。
其中包括含水层性质及补给条件和单位涌水量。
受采掘破坏或影响的含水层也就是矿井充水的主要含水层。
例如,在华北型煤田中开采上组煤层时可能主要是顶板砂岩含水层,而在开采组底部煤层时可能是煤层底板奥系灰岩含水层和顶板薄层灰岩含水层。
单位涌水量q是反映充水含水层富水性的重要指标,q的取值应以井田主要充水含水层中有代表性的为准。
关于单位涌水量q,在生产实践中,常常根据抽水试验资料得到。
按钻孔单位涌水量(q),含水层富水性分为以下4级:①弱富水性:q≤0.1 L/(s·m);②中等富水性:0.1 L/(s·m)<q≤1.0 L/(s·m);③强富水性:1.0 L/(s·m)<q≤5.0 L/(s·m);④极强富水性:q>5.0 L/(s·m)。
水文地质勘探类型和矿井水文地质类型区别
来源:地大热能2015-07-27
水文地质勘探类型:划分的目的是为不同类型矿床的勘探工程设定不同工程量、勘探程度以及矿井涌水量计算等技术要求。
比如:孔隙充水简单型矿床在勘查阶段的水文地质剖面要求至少一条,但在复杂型矿床要求至少4条剖面,各剖面上不少于3个水文孔;水文地质条件简单的矿区,可计算全矿区的正常和最大涌水量。
立足与勘探,围绕如何将勘探工作做好,与开采安全关系不大。
矿井水文地质类型:划分的目的是保证矿井安全生产,按照不同类型水文地质条件,对煤矿安全进行安全监管。
比如:水文地质条件复杂的矿井要求设立专门的防治水机构,装备必要的防治水抢险救灾设备,探放水应当坚持“有掘必探”原则。
矿床开采技术条件勘查需注意的问题一、水文地质勘查类型划分1、划分原则:以地质特征(主要充水含水层介质类型、充水方式),分类,一般分为以孔隙含水层充水为主的、以裂隙含水层充水为主的和岩溶含水层充水为主的3类。
其中岩溶充水矿床分为三个亚类即溶蚀裂隙为主的、溶洞为主的和以暗河为主的。
以水文地质条件复杂程度分型,分为水文地质条件简单、中等和复杂3型。
2、“型”的确定依据①主要矿体与当地侵蚀基准面的关系;②主要充水含水层的分布埋藏及地下水的补给;③补给主要充水含水层和构造破碎带的富水性、导水性;④主要充水含水层与相邻地表水、地下水的水力联系程度;⑤开采条件下可能遭遇的主要水文地质问题及其性质;⑥第四系发育情况;⑦水文地质边界复杂程度。
3、水文地质勘探类型的表述矿区水文地质勘查类型根据地质特征和水文地质条件复杂程度综合命名,其一般表达式:矿区水文地质勘查类型属XX(主要充水含水层介质类型一孔隙含水层或孔隙水、裂隙含水层或裂隙水、岩溶含水层或岩溶水)XX(充水方式一直接顶(底)板、间接顶(底)板)为主的XX(水文地质条件一简单、中等、复杂)类型。
如:矿区水文地质勘查类型属裂隙含水层直接充水为主的简单类型,矿区水文地质勘查类型属顶板溶洞岩溶含水层间接充水为主的中等一复杂类型,矿区水文地质勘查类型属底板溶蚀裂隙岩溶含水层间接充水为主的中等类型。
等等。
二、工程地质勘查类型划分1、划分原则以地质特征(矿体和围岩或主要工程地质问题出现层位的主要岩石类型、岩体结构及其工程地质特征)分类,一般分为松散一软弱岩类、块状岩类、层状岩类和可溶岩类4类。
以工程地质条件复杂程度分型,分为工程地质条件简单、中等、复杂3型。
2、型的确定依据①地形地质条件;②地质构造复杂程度③矿体及其顶底板岩性组合特征④矿体及其顶底板岩体风化、岩溶发育程度,岩体结构、岩体质量⑤开采条件下可能遭遇的工程地质问题及其性质⑥第四系发育情况⑦水文地质条件等3、矿区工程地质勘查类型的表述矿区工程地质勘查类型根据地质特征和工程地质复杂程度综合命名,其一般表达式:矿区工程地质勘查类型属XX(矿体和围岩或主要工程地质问题出现层位的主要岩石类型、岩体结构及工程地质特征:松散—软弱岩类、层状岩类、块状岩类和可溶洞盐岩类)为主的XX(工程地质条件一简单、中等、复杂)类型。
1)矿井水文地质类型划分原则在参考上述各种矿井(床)水文地质分类方案的基础上,本规定提出的矿井水文地质类型分类的原则和要求如下:(1)分类以矿井防治水工作为目的,考虑与矿井地质勘探工作相结合。
(2)分类要全面考虑矿井充水诸因素的影响,要突出其中主要因素的作用。
(3)分类应符合我国的实际情况,反映近年来煤矿水害事故发生的特点以及在防治水工作中的经验教训,力求简单明了,便于实际应用。
(4)本类型划分所考虑的各种因素(指标)具有同等地位,并且为了煤矿生产安全,类型划分采用就高不就低的原则。
例如,根据矿井及其周边老空水分布状况,某矿井应为极复杂类型,但其它指标均未达到极复杂类型要求,采用就高不就低的原则,将该矿井定为水文地质条件极复杂类型矿井;同理,在单位涌水量q、矿井涌水量Q1、Q2和突水量Q3,以最大值作为分类依据。
(5)同一井田内煤层较多且水文地质条件变化较大时,应分煤层进行矿井水文地质类型划分。
例如,华北型煤田,开采上组煤时,矿井可能是水文地质简单或中等类型的,而开采下组煤层则可能是水文地质条件复杂或极复杂的矿井。
2)矿井水文地质类型划分依据根据我国的矿井水文地质特征和主要影响因素,矿井水文地质类型的划分依据如下:(1)受采掘破坏或影响的含水层及水体。
其中包括含水层性质及补给条件和单位涌水量。
受采掘破坏或影响的含水层也就是矿井充水的主要含水层。
例如,在华北型煤田中开采上组煤层时可能主要是顶板砂岩含水层,而在开采太原组底部煤层时可能是煤层底板奥陶系灰岩含水层和顶板薄层灰岩含水层。
单位涌水量q是反映充水含水层富水性的重要指标,q的取值应以井田内主要充水含水层中有代表性的为准。
关于单位涌水量q ,在生产实践中,常常根据抽水试验资料得到。
按钻孔单位涌水量(q),含水层富水性分为以下4级:①弱富水性:q≤0.1 L/(s·m);②中等富水性:0.1 L/(s·m)<q≤1.0 L/(s·m);③强富水性:1.0 L/(s·m)<q≤5.0 L/(s·m);④极强富水性:q>5.0 L/(s·m)。
⽔⽂地质类型划分报告兴旺煤矿⽔⽂地质类型划分报告2010年5⽉兴旺煤矿⽔⽂地质类型划分报告⼀、矿井位置、范围及四邻关系,⾃然地理等情况:1、矿井位置矿区位于兴仁县县城北,直距约15km,距下⼭镇约4公⾥,有公路与兴仁⾄睛隆的主⼲公路相接,新建的兴仁县西北交通环线从矿区经过,矿⼭地理坐标为:东经105°10′32″-105°11′51″,北纬25°33′32″-25°34′18″。
2、矿井范围兴旺煤矿采矿许可范围由20个拐点构成不规则多边形,⾯积1.8756km2,矿界煤层⾛向长约2.2km,煤层倾斜宽约0.9km。
开采标⾼+1625-+1200m,设计⽣产规模15万吨/年,采矿许可证有效期限2008年4⽉⾄2018年4⽉。
采矿权拐点坐标及最低开采标⾼见下表兴旺煤矿采矿权范围拐点坐标表3、矿井四邻关系⑴、兴仁县下⼭镇兴旺煤矿原属整合矿井,共四家矿井参加整合(如下图所⽰)。
兴旺煤矿(整合后)矿区与整合原矿井矿区关系图注:图中最外部矿界为整合后新的兴旺煤矿矿区范围⑵、兴旺煤矿与四邻矿井的关系(如下图所⽰)4、矿井⾃然地理⑴、地形地貌⼯作区属⾼原中⼭地形,地处新寨河与⼤桥河分⽔岭地带,总体上呈中部⾼四周低的斜坡地形,中部的飞仙关组、长兴-⼤隆组形成陡坡地形。
区内最⾼处位于矿区东部⼤尖⼭,海拔标⾼1818.0⽶,最低处位于调查区北部⼚头,海拔标⾼1430.0⽶,相对⾼差约388⽶。
地形起伏较⼤,坡脚地形相对平缓。
矿区为中⾼⼭侵蚀地貌,地表冲沟发育,中部为砂页岩侵蚀陡坡,岩⽯风化程度⾼,植被不发育;四周地表坡度较缓,主要为残坡积物、冲积物。
各煤矿及村庄主要分布在陡坡向沟⾕过渡的相对平缓地带。
⑵、河流、⽔体由于地形地貌因素,降⽔形成后坡⾯迅速汇流形成⼭⾕溪沟,勘查区内地表⽔主要为其南侧径流⾄猪场坝⽽流⼊落⽔洞的⼀条⼩溪流,其流量约为100L/s,在落⽔洞流⼊标⾼为1317m,为勘查区最低侵蚀基准⾯。
书山有路勤为径,学海无涯苦作舟
各类矿床的主要水文地质特征
充沛,在区域上具有良好的补给条件。
砂砾石含水层本身一般都具有厚度大、含水性较均匀、分布范围广、贮水条件良好的特点。
因此多数矿床水文地质条件复杂、矿区涌水量大。
(四)矿体和含矿岩系构成下部弱含水的基岩裂隙含水层。
其顶部由于风化剥蚀而使裂隙发育,在水平方向和垂直方向上因裂隙发育不均一而导致富水性的不均一。
裂隙发育程度随深度增加而明显减弱并过渡到含水下限。
二、裂隙充水矿床的主要水文地质特征
(一)矿体上下部均由坚硬或半坚硬岩石构成,多数矿床的坚硬或半坚硬岩石均出露地表或其上覆盖着薄而零星分布的第四系松散沉积物。
(二)裂隙含水层的富水性取决于岩石的风化和构造破坏程度及裂隙发育程度。
一般这类含水层可以划分为风化裂隙含水带和构造裂隙含水带,前者分布于上部,后者则可以发育到较深部位。
(三)上部风化裂隙含水带,弱含水,其深度一般由地表向下可达数十米,而在地形低洼的沟谷地带可达近百米。
含水性在水平和垂直方向上不均一,随着深度的增加而明显减弱。
(四)构造裂隙含水带,分布范围有限,空间形状不规则、厚度变化大、富水性不均一充填和胶结情况较差的构造破碎带透水性较好,是地下水聚集的良好场所,富水性明显增强。
(五)这类矿床多产于分水岭及丘陵地带,水系发育,天然排泄条件良好,不利于地表水和地下水的汇集。
一般矿床水文地质条件简单,矿区涌水量不大。
三、岩溶充水矿床的主要水文地质特征。
矿床水文地质类型的划分
【摘要】:根据矿床充水的主要含水层的类型,将固体矿床划分为以下三类:第一类:以孔隙含水层充水为主的矿床,简称孔隙充水矿床。
第二类:以裂隙含水层充水为主的矿床,简称裂隙充水矿床。
第三类:以岩溶含水层充水为主的矿床,简称岩溶充水矿床。
矿床水文地质类型是指导矿床水文地质调查和研究,以便合理选择勘探方法、正确布署勘探工作、有效地防治与利用矿坑水的重要依据。
地质矿产部1982年颁发的《矿区水文地质工程地质普查勘探规范》,根据矿床充水的主要含水层的类型,将固体矿床划分为以下三类:
第一类:以孔隙含水层充水为主的矿床,简称孔隙充水矿床。
其矿床充水条件和矿坑涌水量的大小取决于充水岩层的颗粒成分、孔隙大小、胶结程度、埋藏条件及与地表水的水力联系程度
第二类:以裂隙含水层充水为主的矿床,简称裂隙充水矿床,其矿床充水条件和矿坑涌水量的大小取决于充水岩层的裂隙发育程度,构造复杂程度以及与地表水的水力联系程度。
第三类:以岩溶含水层充水为主的矿床,简称岩溶充水矿床。
其矿床充水条件和矿坑涌水量的大小主要决定于充水岩层的岩溶发育程度及分布和埋藏条件、矿区的构造复杂程度。
本类矿床又划分为三个亚类:
第一亚类:以溶蚀裂隙为主的岩溶充水矿床;
第二亚类:以溶洞为主的岩溶充水矿床;
第三亚类:以暗河为主的岩溶充水矿床。
各类充水矿床根据矿层与当地侵蚀基准面及地下水位的关系,地表水体的影响程度,主要含水层和构造破碎带的富水性补给条件,矿层直接顶底板隔水层的稳定性等影响水文地质条件复杂程度的因素,划分为三型:
第一型:水文地质条件简单的矿床
(1)主要矿体位于当地侵蚀基准面以上,地形条件有利于自然排水,矿床充水主要含水层或构造破碎带富水性弱。
(2)主要矿体位于当地侵蚀面以下,附近无地表水位,矿床充水主要含水层或构造破碎带富水性弱,补给条件差。
第二型:水文地质条件中等的矿床
(1)主要矿体位于当地侵蚀基准面以上,地下水位以下,矿床充水主要含水层富水性中等,区域补给条件好,但地形条件有利于自然排水。
(2)主要矿体位于当地侵蚀基准面以下,附近无地表水体或虽有地表水体但对矿床充水影响不大,矿床充水主要含水层的富水性中等,构造破碎带不沟通地表水体及富水性强的含水层。
第三型:水文地质条件复杂的矿床
(1)主要矿体位于当地侵蚀基准面以下,附近有地表水体并对矿床充水具有威胁,矿床充水主要含水层和构造破碎带富水性强。
(2)主要矿体位于当地侵蚀基准面以下,矿床充水主要含水层富水性强,补给条件好或构造破碎带沟通区域富水性强的含水层。