多路信号采集板卡硬件电路设计
- 格式:doc
- 大小:1.12 MB
- 文档页数:41
多路信号采集显示系统设计与实现多路信号采集显示系统是一种通过采集多种信号并进行实时显示的系统。
在很多领域中,如工业控制、医疗仪器、电力系统等,都需要采集多种信号来进行监测和控制。
设计一种高效可靠的多路信号采集显示系统具有重要的意义。
在设计多路信号采集显示系统时,需要考虑以下几个方面:1. 信号采集模块:该模块负责采集各种类型的信号,并将其转化为数字信号。
常用的信号采集方式包括模拟信号电压采集、数字信号摄像头采集、网络数据采集等。
不同的信号采集方式需要使用不同的采集卡或者传感器来实现。
2. 数字信号处理模块:该模块负责对采集到的数字信号进行处理和分析。
常用的数字信号处理技术包括滤波、均值计算、频谱分析等。
这些技术可以帮助我们提取信号中的有效信息,并进行实时显示。
3. 数据存储模块:该模块负责将采集到的信号数据进行存储,以备后续分析和查询。
常见的数据存储方式包括硬盘存储、数据库存储等。
根据系统需求可以选择不同的存储方式来满足数据容量和存取速度的要求。
4. 系统显示模块:该模块负责将采集到的信号经过处理后显示在人机界面上。
系统显示界面应该具有友好的操作界面和直观的图形显示,以便用户能够方便地进行信号监测和分析。
常用的显示方式包括曲线图、仪表盘、报表等。
1. 硬件设计:包括信号采集模块和数字信号处理模块的硬件选型和接口设计。
合理选择高性能的采集卡和传感器,同时考虑系统的数据传输和处理能力,确保系统的实时性和稳定性。
2. 软件设计:包括系统的软件架构和算法设计。
根据系统需求选择合适的开发平台和编程语言,编写采集和处理信号的程序,并将其与系统的其他模块进行集成。
3. 数据安全:在系统设计过程中,需要考虑信号数据的安全性和可靠性。
可以采用数据加密和备份方案,以确保数据的完整性和可恢复性。
4. 系统性能优化:在系统实现过程中,需要对系统进行性能测试和优化,以提高系统的实时性和可靠性。
可以采用并行计算和分布式处理等技术来提高系统的处理能力。
多信号采集功能信号电路设计信号调理电路设计中,软件和硬件设计是两个关键部分,本文主要从软件设计和硬件设计两大方面探讨多信号采集功能信号电路设计。
《电路与系统学报》(双月刊)是经过中国国家科委审定的高级学术刊物,由中国电子学会电路与系统专业学会支持,1996年创刊,在国内外公开发行。
本刊主要刊登电路与系统学科内具有重要理论与技术意义的、创新的和高水平的学术文章与技术报告,是电路与系统学科以及相关学科内的科研技术人员、高等学校教师及研究生、各级科研及高新技术产业管理人员阅读和参考的重要期刊,是各级科技图书情报机构和信息机构不可少的订藏刊物。
采集每个通道信号前还要采集两个不同的基准电压, 实现仪表在测量中的自校正功能。
电路中精密基准电源MAX872 输出的 2.5V 电压经精密电阻R1(66kΩ)、R3(192kΩ)分压后,将约为640mV 左右加在X9241 的0 号电位器分压。
此时继电器S4、S5、S6 断开,继电器P37 合上。
1、硬件设计信号调理电路单路输入的硬件结构,包括信号输入、放大、单片机控制等几大部分。
信号输入电路由精密基准电源MAX872、光继电器AQW212E、运放4502 及精密仪表开关电容模块LTC1043 等组成。
其中精密基准电源的使用一方面提升输入信号的电位, 避免低电位测量时的干扰误差;另一方面作为一路检测电路, 其测量结果可以修正其它回路的检测结果, 实现系统的在线自校正。
MAX872 具有较宽的电压输入范围(2.7~20V),输出精度可达 2.500V ± 0.2%。
LTC1043CN 是双精密仪表开关电容,电容外接, 多用于精密仪表放大电路、压频转换电路和采样保持电路等。
当内部开关频率被设定在额定值300Hz时,LTC1043CN 的传输精确度最高, 此时电容器CS 和CH大小均为 1 μ F。
LTC1043CN 和运放LT1013 组成差分单端放大器,采用LTC1043CN为差分输入的电压采样值, 电压保持在电容器CS上并送到接地参考电容器CH 中, 而CH 的电压送到LT1013 的非反相输入端放大。
多路视频采集卡的设计与实现摘要:视频是人类信息的一个主要渠道。
想要获取影像信息,必须完成图像信息收集。
作为视频采集设备的基础,影像信息采集卡的设置非常关键。
而本章针对多路视频采集卡进行了分析,该视频采集卡以 FPGA为逻辑控制中心,采用SAA7111将 4路视频信号分别转换为数字图像数据,经 FIFO缓存后,由 PCI总线接口芯片 PCI9052将数据送入计算机,最后通过应用程序将图像显示出来。
实验分析表明该视频采集卡能实现 4路实时传输显示,能够真实的将采集卡采集到的影像信息通过驱动传递到应用监控软件,以便进行显示和存储,希望能为相关人员提供参考。
关键词:多路视频采集卡;设计;实现数字视频监控管理系统因其直观、便捷、内容丰富的优点日益引起人们的关注,已成为保安防范体系的主要部分。
视频采集子系统主要进行视频图像的采集与压缩工作,是数字化视频监测中最核心的组成部分,直接影响到了整个监测系统性能与品质的高低[1]。
针对新一代的视频监测系统对于视频图象的高品质与实时性的需求。
1相关概念概述1.1视频信号概述视频信号是一个比较复杂的信息,它不但包括了画面本身的数据内容,而且包含着某些供采集用的处理数据,将这些内容混杂在一起,并按照特定的顺序和规则加以传递。
标准的电视信号是黑白CCD摄像头,通过连接设备将光学数据转换成幅值恒定的电信号,再配合机会支持组合产生的最终电视信号,而信号是黑白全视频(也称为混合电视信号)主要由图像数据、消隐数字、同步数字、开槽脉冲和图像脉冲等几部分构成。
彩色图像的每一位像素值中不但包括了亮度数据,而且也包括了色彩数据RGB建模作为经典的色彩空间建模,广泛应用在计算机、显卡和监视器件上,它利用了红绿蓝黄三种色彩的通道,形成了一个色彩空间结构。
但由于RGB模式信息内容在数据传输中占有的巨大带宽,亮度数据容易引起色彩干涉,而且与黑白计算机并不兼容,所以在PAL制影像数据中采用了YUV建模。
多路信号采集显示系统设计与实现多路信号采集显示系统是一种可以同时采集多路信号并将其显示出来的电子系统。
该系统主要由信号采集部分和信号显示部分组成。
在信号采集部分,系统需要设计一套信号采集电路。
我们需要选择合适的传感器来采集不同类型的信号。
常见的传感器有温度传感器、压力传感器、电流传感器等。
接下来,我们需要设计合适的电路来转换传感器的模拟信号为数字信号。
一种常见的方法是使用模数转换器(ADC)将模拟信号转换为数字信号。
系统还需要设计一套数据传输电路,将采集到的信号传输给信号显示部分。
在信号显示部分,系统需要设计一套信号显示电路。
我们需要选择合适的显示设备来显示信号。
常见的显示设备有液晶显示屏、数码管等。
接下来,我们需要设计合适的电路来处理和驱动显示设备。
系统需要将数字信号转换为能够驱动显示设备的信号。
系统还需要设计一套用户界面,用户可以通过界面来监控和操作系统。
多路信号采集显示系统的实现需要注意以下几点。
系统需要选择合适的硬件平台来实现。
常见的硬件平台有单片机、FPGA等。
选择合适的硬件平台可以提高系统的性能和可扩展性。
系统需要选择合适的软件平台来实现。
常见的软件平台有C语言、LabVIEW等。
选择合适的软件平台可以简化系统的开发和维护。
系统在设计和实现过程中需要进行充分的测试和调试,确保系统的可靠性和稳定性。
多路信号采集显示系统是一种可以同时采集多路信号并将其显示出来的电子系统。
该系统可以广泛应用于工业自动化、仪器仪表等领域。
在设计和实现过程中需要注意硬件平台的选择、软件平台的选择以及系统的测试和调试。
基于 TMS320F28335的采集板卡设计摘要:针对生产企业对工业设备的运行过程中的电压、电流、控制指令等参数的采集监控需求,本文设计了一款基于TMS320F28335的采集板卡,该板块具备多路采样电路,宽幅度的采集电压输入范围。
经验证,该板卡的性能功能均能满足设计要求。
关键词:板块;通信;A/D采集1引言国家智能制造2025战略对传统的制造业提出了更高的要求,为了提高设备利用率以及生产效率,越来越多的制造企业在设备运行的过程中加强对机器的运行电压、电流、控制信号等信息进行采集,实时监测设备的运行状态,收集设备的工作信息并进行分析做出生产调整决策。
同时也通过分析设备的长期运行参数进行设备故障预测,及时的对设备的进行检修,更换备件。
特别是针对老设备的改造,老设备一般不具备电流、电压、控制指令等的采集功能,需要对老设备进行改造升级,满足设备监控的要求。
基于以上原因,本文针对工业设备信息采集的需求,采用TI公司的TMS320F28335主控芯片设计了一款多路、宽电压采集板卡,并经试验验证,该板卡的功能性能能够满足要求。
2采集板卡的系统设计方案2.1系统整体方案采集板卡包含DSP最小系统电路、电源电路、采样信号调理电路、A/D采样电路、通信电路,具有最大可扩展48路电压采集功能。
通过调节信号调理电路的分压电阻输入采样电压范围可达为0~230V,测量精度不小于2%FS。
DSP主控芯片采用TI公司开发的TMS320F28332具有150MHz的高速处理能力32位浮点处理单元。
2.2系统的工作原理板卡的输入电压为DC5V,功率不大于0.5W,工作时将输入采集板卡的电压、电流、控制信号等进行调理、隔离变换后,输入至AD转换电路转变为数字信号送至DSP的数据总线,经DSP处理后经RS422通信对外输出。
2.3电路设计2.3.1板卡电源变换电路电源电路设计采用如下方案,采集板卡的输入电压为DC5V,经线性电源芯片AMS1117变换后变成3.3V系统数字电源供片内Flash编程使用。
基于单片机的多路数据采集系统设计摘要数据采集是指从带有模拟、数字被测单元的传感器或者其他设备中对非电量或电量信号进行自动采集,再送到上位机中进行分析和处理。
近年来,众人时刻关注着数据采集及其应用的发展和市场形势。
广大人们的关注使得数据采集系统的发展有了质的飞跃,它被广泛用于各种数字市场。
本文介绍了数据采集的相关概念和基本原理,设计了基于STM32F407的多路数据采集系统的硬件和软件的实现方法及实现过程,并经过调试完成其主要功能和主要技术指标。
硬件部分包括:主控电路、信号采集处理电路、TFT液晶显示电路、SD 卡存储电路、串口通讯电路。
实现过程是以STM32F407为控制核心,通过模数转换器,实时对输入信号进行采样,得到一串数据流,通过控制器的处理实现数据的采集和显示。
软件部分包括:信号采集分析算法、嵌入式操作系统移植、UC-GUI人机交互界面设计、文件管理系统移植。
主要实现了对采集数据的存储和分析,频率和幅值的计算,液晶屏的控制和界面显示。
程序是在keil uVision的集成开发环境中用C语言写成的,编程具有模块化的特点,因此可读性比较高,维护成本较低。
最后,用Altium designer(DXP)设计了数据采集系统的原理图,并制作了PCB电路板。
在实验室里制作了数据采集系统并进行了系统调试,经过调试,达到了所应该实现的功能和技术指标。
关键词:多路数据采集,STM32F407,液晶显示MULTI-CHANNEL DATA ACQUISITION SYSTEMBASED ON SINGLE CHIP DESIGNABSTRACTData acquisition is the automatic acquisition of non electric or electric quantity signals from sensors and other devices, such as analog and digital.In recent years, data acquisition and its application has gradually become the focus of attention. Therefore, the data acquisition system has been rapid development, it is widely used in various fields.The software part includes: signal acquisition and the embedded operating system transplant, UC-GUI man-machine interface design. Mainly realizes the storage and analysis of the collected data, calculate the frequency and am plitude of the LCD screen display and control interface. The program is written by C language in the integrated development environment KEIL uVision and modular programming makes the program readable and easy maintenance features Finally, using designer Altium to design and manufacture the digital oscilloscope circuit board PCB. In the laboratory, the digital oscilloscope has been made and the system has been debugged. After debugging, it has achieved the function and technical index that should be realized.KEY WORDS: Multi-channel data acquisition,STM32F407,liquid-crystal display目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1研究背景及其目的意义 (1)1.2国内外研究现状 (2)1.3研究的主要内容 (2)2系统总体方案设计 (4)2.1系统总体设计方案 (4)2.2系统总体框图 (4)2.3硬件系统方案设计 (4)2.3.1单片机的选择 (5)2.3.2信号衰减和放大电路 (5)2.3.3A/D模数转换器的选择 (6)2.3.4显示部分 (6)2.4软件系统方案设计 (6)2.5本章小结 (7)3硬件电路设计 (8)3.1电源部分 (8)3.2信号调理部分 (10)3.3信号采样 (12)3.4系统控制部分 (12)3.5本章小结 (14)1绪论1.1研究背景及其目的意义最近几年,众人时刻关注着数据采集及其应用的发展和市场形势。
多路数据采集系统毕业设计第一章绪论1.1课题研究背景和意义数据采集是指将位移、流量、温度、压力等模拟量采集、转换成数字量后,再由计算机进行存储、处理、显示或打印。
数据采集技术是信息科学的一个重要组成部分,信号处理技术、计算机技术,传感器技术是现代检测技术的基础。
数据采集技术则正是这些技术的先导,也是信息进行可靠传输,正确处理的基础。
在工业生产中,对生产现场的工艺参数进行采集、监视和记录,这样能提高产品的质量、降低成本。
在科学实验中,对应用数据进行实时采集,这样获得大量的动态信息,是研究物理过程动态变化的有效手段,也是获取科学奥秘的重要手段之一。
设计数据采集系统目的,就是把传感器输出的模拟信号转换成计算机能识别的数字信号,并把数字信号送入计算机,计算机将计算得到的数据加以利用观察,这样就实现对某些物理量的监视,数据采集系统性能的好坏,取决于它的精度和速度,在精度保证的条件下提高采样速度,满足实时采集、实时处理和实时控制的要求[1]。
数据采集常用的方式有在PC机,也可以在工控机内安装数据采集卡,如RS-422卡、RS-485卡及A/D卡;或专门的采集设备,包括PCI、PXI、PCMCIA、USB,无线以及火线FireWire接口等,可用于台式PC机、便携式电脑以及联网的应用系统中[2]。
数据采集系统起始于20世纪50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非成熟人员进行操作,并且测试任务是测试设备高速自动完成的。
近年来,数据采集及应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,数据采集系统也朝着微型化、小型化、便携式,低电压、低功耗发展。
当前市场出售的小型数据采集器相当于一个功能齐全计算机。
这些数据采集器功能强大,能够实现实时数据采集、处理的自动化设备。
具备实时采集、自动存储、即时显示、即时反馈、自动处理、自动传输功能[;不仅能保证现场数据的实时性、真实性、有效性、可用性,而且能很方便输入计算机,应用在各个领域。
基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
多路信号采集板卡硬件电路设计1 绪论1.1 课题的背景现代工业控制、自动检测技术及信号处理中数据是指现场采集来的电压、电流、压力、流量、液位、温度和角度等信号,此外还包括一些开关量信号。
在微型计算机应用于智能化仪器仪表、信号处理和工业自动化等过程中,都存在着模拟量的测量与控制问题,即将温度、压力、流量、位移及角度等模拟量转变为数字信号,再收集到微型机上进一步予以显示、处理、记录和传输,这个过程即称“数据采集”,相应的系统即为微机数据采集系统。
数据采集系统一般由信号调理电路,多路切换电路,采样保持电路,A/D,单片机组成。
随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。
它是计算机与外部物理世界连接的桥梁。
它在现代信息领域发挥着重要作用,是信息产品不可或缺的重要组成部分。
因此选择基于单片机数据采集系统设计是很有意义也是很有必要的。
在计算机广泛应用的今天,数据采集的重要性是十分显著的。
它是计算机与外部物理世界连接的桥梁。
各种类型信号采集的难易程度差别很大。
实际采集时,噪声也可能带来一些麻烦。
数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
在日常的工程设备检测过程中,如果采用传统的面板表显示,不仅占用设备多、实时性差,而且测量过程也十分繁琐,效率十分低下。
而近年来,随着控制技术、微电子技术、通信技术和计算机技术的高速发展,不仅促进了工程检测技术和仪器本身的变革,而且使它们增加了很多新的生长点。
检测系统与通信及计算机系统的结合,仪器和测试系统软硬件平台结构的新变化,都正在改变着测试和仪器的面貌。
就新出现的虚拟仪器系统而言,它将计算机资源(处理器、存储器、显示器等)和仪器硬件—插件卡(信号调理、定时、A/D、变换器、高速缓存、数字输入输出电路等)以及用于数据采集、通讯、系统仿真、数据分析以及图形用户界面的应用软件有效结合起来,用户不必了解电子线路及系统软件的细节,只要应用虚拟仪器系统提供的“用户软件接口”和“用户硬件接口”,再经过简单的二次开发,就可在较短的周期内开发出适用不同测控对象需要的仪器。
无疑这种新型测试仪不仅智能化程度高,且易于更新升级,灵活性强,但是对测试技术和测试设备要求的提高,无疑使测试成本也大幅增长。
显然,对于一般设备检测来讲,大可不必付出这样的耗费。
考虑单片机的特性,由于它可以提供A/D 输入通道,因此非常适用于模拟量 (温度、压力、流量)输入采样系统,而其超微型化的特点,无可比拟的价格性能比,无疑为仪器仪表的智能化提供了可能。
基于此情况,本课题拟在设计一种多路信号采集设备,这点与时下国际流行的“测试集成”思想不谋而合,因此它不仅是单片机在智能仪器仪表领域应用的又一实现,且因其功能完善与总体价格的优越性又使它具有实用价值。
在工业现场,我们会安装很多的各种类型的传感器,如压力的温度的流量的声音的电参数的等等,受现场环境的限制传感器信号如压力传感器输出的电压或者电流信号不能远传或者因为传感器太多布线复杂,我们就会选用分布式或者远程的采集卡(模块)在现场把信号较高精度地转换成数字量,然后通过各种远传通信技术(如485、232、以太网、各种无线网络)把数据传到计算机或者其他控制器中进行处理。
这种也算作数据采集卡的一种,只是它对环境的适应能力更强,可以应对各种恶劣的工业环境。
如果是在比较好的现场或者实验室,如学校的实验室,就可以使用USB/PCI 这种采集卡。
和常见的内置采集卡不同,外置数据采集卡一般采用USB接口和1394接口,因此,外置数据采集卡主要指USB采集卡和1394采集卡,T510-数据采集卡。
1.2 数据采集卡的发展及研究现状数据采集(DAQ),是指从传感器和其它待测设备等模拟和数字被测单元中自动采非电量或者电量信号,送到上位机中进行分析,处理。
数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。
数据采集卡,即实现数据采集(DAQ)功能的计算机扩展卡,可以通过USB、PXI、PCI、PCI Express、火线(1394)、PCMCIA、ISA、Compact Flash、485、232、以太网、各种无线网络等总线接入个人计算机。
早在五十年代末期,就出现了一种集中式的半自动数据采集系统,其主要的功能是对测量结果进行统计、处理和间接测量的计算等等。
到了六十年代末和七十年代初,随着检测技术和计算机的进一步结合,出现了所谓第一代计算机检测系统,即采用计算机的数据采集系统、数据自动分析系统和综合自动检测系统。
这些系统的检测过程主要通过模拟/数字(A/D )转换器,把检测仪表与计算机连接在一起,组成以小型机为基础的数据采集系统。
其特点是检测过程可以对数据进行处理并将结果贮存、显示、打印或生成报表。
到了七十年代中期,又产生了第二代计算机自动检测系统。
由于通用标准接口总线(IEEE-488,RS-232C等)的出现,解决了仪器仪表相互之间和仪器仪表同计算机之间的连接问题,这样就形成了以计算机为核心,有多台可程控的仪表按积木方式组合成成套装置。
这种检测系统占领了仪器仪表市场,而且还在不断的完善和发展。
微型计算机的诞生,使测试技术发生了深刻的变革,目前正在发展的以微处理器为基础的智能仪表和检测系统是属于第三代计算机自动检测系统。
这种智能化检测系统的突出特点是把微处理器和仪表结合在一起并构成一个整体,其特点是许多仪表中的硬件功能可以由软件代替,这样不仅使系统大大简化,降低成本、减小体积和重量及提高系统的可靠性,而且由于软件编程工作具有很大的灵活性,因此可以使系统的功能大大增强。
通过微型计算机可以对电压、电流、压力、温度等物理量进行直接采样和计算,经过计算处理后,能立即得出试验设备的各种参数和性能,从而大大减轻了劳动强度,使劳动生产率得到成倍增长,测试数据和计算结果能自动打印,克服和消除了人为因素造成的误差,最终使系统的可靠性和测试精度及测试效率大大提高。
而且这种智能化仪表一般都具有与计算机相连接的标准接口,作为一台智能控制仪表单元接入系统,从而可以组成功能更强、规模更大的自动检测系统,通过软件编程将各种数据处理技术应用于检测系统中,使系统精确度提高。
除此之外,还可以采用程控人-机对话功能、故障诊断功能、记录显示功能、量程切换功能和结果判断功能,使检测系统的自动化水平及智能化程度大大提高。
随着计算机技术的飞速发展和普及,数据采集系统也迅速地得到应用。
在生产过程中,应用这一系统可对生产现场的工艺参数进行采集,监视和记录,为提高产品质量,降低成本提供信息和手段。
在科学研究中,应用数据采集系统可获得大量的动态信息,是研究瞬间物理过程的有力工具,也是获取科学奥秘的重要手段之一。
总之,不论在哪个应用领域中,数据采集与处理越及时,工作效率就越高,取得的经济效益也越高。
数据采集卡,绝大多数集中在采集模拟量、数字量、热电阻、热电偶,其中热电阻可以认为是非电量(其实本质上还是要用电流驱动来采集)其中模拟量采集卡和数字量采集卡用得是最广泛的。
现在市场上有一种二合一采集卡,二合一,指的是数字模拟采集卡,AV+DV采集卡,数字、模拟二合一,数字输入输出,模拟接口输入(DV/AV/S-video)。
最后虽然说是采集卡,但实际应用中经常需要它输出控制信号。
采集卡广泛应用于安防监控、教育课件录制、大屏拼接、多媒体录播录像、会议录制、虚拟演播室、虚拟现实、安检X光机、雷达图像信号、VDR纪录仪、医疗X光机、CT 机、胃肠机、阴道镜、工业检测、智能交通、医学影像、工业监控、仪器仪表、机器视觉等领域。
2 信号采集板卡总体方案设计2.1 系统设计的基本原则1)确保性能指标的完全实现系统设计的根本依据是所达到的性能指标,它必须首先得到保证,如采样速率、系统分辨率、系统精度等等。
要保证系统性能指标,主要应考虑输入信号的特性,如输入信号的通道数、是模拟量还是数字量、信号的强弱及动态范围、信号的输入方式(单端输入还是差动输入,单极性还是双极性,信号源接地还是浮地等)、是周期信号还是瞬态信号、信号的频带宽度、信号中的噪声及其共模电压大小、信号源的阻抗等。
2)系统的结构合理选择系统结构的合理与否,对系统的可靠性、性价比等有直接影响。
首先是硬件软件功能的合理分配。
原则上要尽可能“以软代硬”,只要软件能做到的就不要用硬件。
其次要考虑系统的布局以及接口性。
接口特性包括采用什么样的总线、采样数据的输出形式(串行还是并行)、数据的编码格式等。
3)对于较大型的应用软件,应参考软件工程学的方法进行设计。
软件工程是建立在科学基础上的一整套开发方法,它强调结构化分析、结构化设计和结构化编程。
按着软件工程学的方法进行设计,可以保证有较高的软件开发效率,保证所开发的软件有较长的生存周期,才能取得较高的经济效益。
4)安全可靠,有足够的抗干扰能力。
要保证在规定的工作环境下,系统能稳定、可靠的工作,保证系统精度能符合要求,同时也要保证系统应用人员的人身安全。
这方面要充分利用各种标准,尽可能按法律法规办事。
这里要指出,标准仪器的总线为数据采集系统的设计提供了很多方便。
这些标准总线已经对系统结构、通行方式及接口、可靠性甚至于机箱结构尺寸等都做了充分的考虑,设计人员需按着标准的规定设计自己要开发的部分即可。
2.2 硬件设计的基本原则1)良好的性价比系统硬件设计中,一定要注意在满足性能指标的前提下,尽可能地降低价格,以便得到高的性能价格比,这是硬件设计中优先考虑的一个主要因素。
因为系统在设计完成后,主要的成本便集中在硬件方面,当然也成为产品争取市场关键因素之一。
2)安全性和可靠性选购设备要考虑环境的温度、湿度、压力、振动、粉尘等要求,以保证在规定的工作环境下,系统性能稳定、工作可靠。
要有超量程和过载保护,保证输人、输出通道正常工作。
要注意对交流市电以及电火花等的隔离。
3)较强抗干扰能力有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。
例如强电与弱电之间的隔离措施,对电磁干扰的屏蔽,正确接地、高输人阻抗下的防止漏电等。
2.3 系统设计要求在工控系统设计中,通常涉及到多路传感器输出的模拟信号采集、开关量采集、频率量采集、显示输出、模拟信号输出、PWM信号输出、和上位机进行通信的应用。
本设计采用Silicon labs公司的C8051F020芯片设计通用的开发板,可以满足上述功能应用。
本设计只要求硬件设计,采用功能较强的芯片以简化电路,增强可靠性;冗余设计(考虑以后的扩展及修改)。
设计高性能的数据采集系统 ,需要对系统的每一部分都要周密考虑、精心设计 ,否则难以实现设计目标。
应该首先给出数据采集系统设计中应考虑的问题 ,并针对这些问题 ,从信号源开始到信号的调理、直至多路信号选择、数字化器件及其与微计算机接口,最后到计算机 ,即从数据采集系统始端到末端逐个环节进行问题分析 ,根据分析结果以及经验给出解决问题的实用技术。