操作系统五种进程调度算法的代码
- 格式:docx
- 大小:309.83 KB
- 文档页数:16
操作系统进程调度C语言代码操作系统是计算机系统中的重要组成部分,用于管理和控制计算机资源的分配和使用。
在操作系统中,进程调度是指将系统资源(如 CPU、内存、磁盘、网络等)分配给运行中的进程的过程。
进程调度是操作系统实现多任务、多用户和分时系统的关键。
进程调度的算法有多种。
最常见的是时间片轮转算法、优先级调度算法、最短进程优先算法和先到先服务算法等。
下面我们将介绍一下时间片轮转算法的 C 语言代码实现。
1. 时间片轮转算法时间片轮转算法是一种基于时间片的调度算法,它给每个进程分配一个时间片,当时间片用完后,系统将进程暂停,并将 CPU 分配给下一个进程。
时间片轮转算法可以让所有进程公平地使用 CPU 时间,并且可以避免进程饥饿的情况发生。
2. C 语言代码实现在 C 语言中,可以用结构体来表示一个进程,包括进程 ID、进程状态、优先级、到达时间和需要运行的时间片等属性。
下面是一个简单的进程结构体的定义:```struct Process processes[5];在实现时间片轮转算法之前,需要先实现一个进程调度函数,它的作用是找到就绪进程中优先级最高的进程,并返回它的位置。
下面是一个简单的进程调度函数:```int find_highest_priority_process(struct Process *processes, int n) {int highest_priority = -1;int highest_priority_index = -1;for (int i = 0; i < n; i++) {if (processes[i].state != 2 && processes[i].priority >highest_priority) {highest_priority = processes[i].priority;highest_priority_index = i;}}return highest_priority_index;}```在实现时间片轮转算法之前,需要先定义一些全局变量,包括就绪队列、当前时间、时间片大小和进程数量等。
操作系统:进程调度算法详解之FCFS和SPF篇前⾔:在学习操作系统的时候,总是可以听到⼀些与“调度”相关的东西。
记得刚学计算机操作系统的时候,总是觉得调试是⼀个很⾼⼤上的东西,不敢太深⼊地去接触。
这可能是因为学⽣时代的我在算法⽅⾯并不强,⽽这些调度过程⼜常以算法的形式出现在课本上。
本⾝上这确实是⼀些算法。
我对这些算法有⼀些抗拒,可能当时是被DotA给迷惑了吧。
现在倒真是感觉算法是⼀个迷⼈的东西,有时在没有学到某⼀种算法,⾃⼰也可以在已有的⼀些算法思维的基础上想出个⼀⼆来,这让⼈很爽。
本⽂也是我在温习《计算机操作系统》这本书时候,想着来⽤代码的形式来描述这些迷⼈的东西。
概述:我们在编码开发的时候,就是在跟进程打交道。
不过,可能由于⼀些⾼级语⾔的封装,我们在开发的过程可能感觉不到我们的代码对进程的创建或调⽤过程。
当然,这也不是本⽂的重点。
但是,操作系统却不能不理会进程。
下⾯我就使⽤Java开发语⾔来模拟⼀下进程在操作系统中的调度过程。
进程调度算法:1.FCFS:FCFS的意思是先来先服务(First Come First Service)。
顾名思义就是按照进程被添加到等待队列的先后顺序来进⾏调⽤的。
这⾥可以先来看⼀张FCFS的算法过程图:图-1 进程FCFS调度过程从上⾯的过程图中就可以清楚地知道,进程在整个过程被调度的顺序及过程。
不过,不知道读者有没有注意到⼀个问题,那就是上⾯的图中,我们是让进程(矩形)紧紧挨着的。
那么有没有什么情况是让这些矩形不在⼀起紧挨着呢?如果你是⼀个注意细节的⼈,我想你已经注意到了这⼀点吧。
说到这⾥,我想问另⼀个问题,如果当我们的队列中的进程都运⾏完成,⽽等待队列中已经没有进程了,那么这个时候要怎么处理?在这种情况下CPU⼀直是处于空闲的状态,直到等待队列中出现了⼀个进程请求处理机来运⾏。
所以,在模拟程序⾥我们就可以直接让时间跳过这⼀段。
关于上⾯的⼀点,在我们的代码⾥也要考虑到。
操作系统实验报告——调度算法1. 实验目的本实验旨在探究操作系统中常用的调度算法,通过编写代码模拟不同的调度算法,了解它们的特点和应用场景。
2. 实验环境本次实验使用的操作系统环境为Linux,并采用C语言进行编码。
3. 实验内容3.1 调度算法1:先来先服务(FCFS)FCFS调度算法是一种简单且常见的调度算法。
该算法按照进程到达的先后顺序进行调度。
在本实验中,我们使用C语言编写代码模拟FCFS算法的调度过程,并记录每个进程的等待时间、周转时间和响应时间。
3.2 调度算法2:最短作业优先(SJF)SJF调度算法是一种非抢占式的调度算法,根据进程的执行时间来选择下一个要执行的进程。
在本实验中,我们使用C语言编写代码模拟SJF算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
3.3 调度算法3:轮转调度(Round Robin)Round Robin调度算法是一种经典的时间片轮转算法,每个进程在给定的时间片内依次执行一定数量的时间。
如果进程的执行时间超过时间片,进程将被暂时挂起,等待下一次轮转。
在本实验中,我们使用C语言编写代码模拟Round Robin算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
4. 实验结果分析通过对不同调度算法的模拟实验结果进行分析,可以得出以下结论:- FCFS算法适用于任务到达的先后顺序不重要的场景,但对于执行时间较长的进程可能会导致下一个进程需要等待较久。
- SJF算法适用于任务的执行时间差异较大的场景,能够提高整体执行效率。
- Round Robin算法适用于时间片相对较小的情况,能够公平地为每个进程提供执行时间。
5. 实验总结本次实验通过模拟不同调度算法的实际执行过程,深入了解了各种调度算法的原理、特点和适用场景。
通过对实验结果的分析,我们可以更好地选择合适的调度算法来满足实际应用的需求。
在后续的学习中,我们将进一步探索更多操作系统相关的实验和算法。
进程调度算法的模拟实现⏹实验目的1.本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
2.利用程序设计语言编写算法,模拟实现先到先服务算法FCFS、轮转调度算法RR、最短作业优先算法SJF、优先级调度算法PRIOR、最短剩余时间优先算法SRTF。
3.进行算法评价,计算平均等待时间和平均周转时间。
⏹实验内容及结果1.先来先服务算法2.轮转调度算法3. 优先级调度算法4. 最短时间优先算法5. 最短剩余时间优先算法⏹实验总结在此次模拟过程中,将SRTF单独拿了出来用指针表示,而其余均用数组表示。
⏹完整代码【Srtf.cpp代码如下:】//最短剩余时间优先算法的实现#include<stdio.h>#include<stdlib.h>#include<time.h>typedef struct{int remain_time; //进程剩余执行时间int arrive_time; //进程到达时间int Tp; //进入就绪队列的时间int Tc; //进入执行队列的时间int To; //进程执行结束的时间int number; //进程编号}Process_Block; //定义进程模块typedef struct _Queue{Process_Block PB;struct _Queue *next;}_Block,*Process; //定义一个进程模块队列中结点typedef struct{Process head; //队列头指针Process end; //队列尾指针}Process_Queue; //进程队列Process_Queue PQ; //定义一个全局队列变量int t; //全局时间Process Run_Now; //当前正在运行的进程,作为全局变量void InitQueue(Process_Queue PQ){PQ.head ->next = NULL;PQ.end ->next = PQ.head;}/*初始化队列*/int IsEmpty(Process_Queue PQ){if(PQ.end->next == PQ.head)return 1; //队列空的条件为头指针指向尾指针并且尾指针指向头指针elsereturn 0;}/*判定队列是否为空队列*/void EnQueue(Process_Queue PQ,Process P){Process temp =(Process)malloc(sizeof(_Block));temp = PQ.end;temp->next->next = P;PQ.end->next = P;}/*插入队列操作*/Process DeQueue(Process_Queue PQ){if(IsEmpty(PQ))return NULL;Process temp = PQ.head->next;PQ.head->next= temp ->next;if(PQ.end->next == temp)PQ.end->next = PQ.head;return temp;}/*出列操作*/Process ShortestProcess(Process_Queue PQ){if(IsEmpty(PQ)) //如果队列为空,返回{if(!Run_Now)return NULL;elsereturn Run_Now;}Process temp,shortest,prev;int min_time;if(Run_Now) //如果当前有进程正在执行,{shortest = Run_Now; //那么最短进程初始化为当前正在执行的进程,min_time = Run_Now->PB.remain_time;}else//如果当前没有进程执行,{shortest = PQ.head->next; //则最短进程初始化为队列中第一个进程min_time = PQ.head->next->PB.remain_time;}temp = PQ.head;prev = temp;while(temp->next){if(temp->next->PB.remain_time <min_time) //如果当前进程的剩余时间比min_time短,{shortest = temp->next; //则保存当前进程,min_time = shortest->PB.remain_time;prev=temp; //及其前驱}temp=temp->next;}if(shortest == PQ.end->next) //如果最短剩余时间进程是队列中最后一个进程,PQ.end->next = prev; //则需要修改尾指针指向其前驱prev->next = shortest->next; //修改指针将最短剩余时间进程插入到队头return shortest;}/*调度最短剩余时间的进程至队头*/void Run(){Run_Now->PB.remain_time--; //某一时间运行它的剩余时间减return;}/*运行函数*/void Wait(){return ;}int sum(int array[],int n){int i,sum=0;for(i=0;i<n;i++)sum+=array[i];return sum;}int main(){PQ.head = (Process)malloc(sizeof(_Block));PQ.end = (Process)malloc(sizeof(_Block));Run_Now = (Process)malloc(sizeof(_Block));Run_Now =NULL;InitQueue(PQ);int i,N,Total_Time=0; //Total_Time为所有进程的执行时间之和printf("请输入计算机中的进程数目:\n");scanf("%d",&N);Process *P,temp;P = (Process*)malloc(N*sizeof(Process));int *wt,*circle_t;wt =(int*)malloc(N*sizeof(int));circle_t =(int*)malloc(N*sizeof(int));for(i=0;i<N;i++){P[i] = (Process)malloc(sizeof(_Block));P[i]->PB.number =i+1;P[i]->next =NULL;wt[i] =0;circle_t[i] =0;printf("输入第%d个进程的到达时间及剩余执行时间:\n",i+1);scanf("%d %d",&P[i]->PB.arrive_time,&P[i]->PB.remain_time);}for(i=0;i<N;i++)Total_Time+=P[i]->PB.remain_time;printf("\n进程按顺序运行依次为:\n");i=0;int k=0;for(t=0;;t++){if(Run_Now) //如果当前有进程正在执行{Run();if(t == P[i]->PB.arrive_time) //如果当前时间正好有进程进入{if(P[i]->PB.remain_time < Run_Now->PB.remain_time){temp = P[i];P[i] = Run_Now;Run_Now = temp; //则调度它至运行队列中,Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}EnQueue(PQ,P[i]); //并将当前运行进程重新插入队列中P[i]->PB.Tp=t;k++;i=(i+1)>(N-1)?(N-1):(i+1);}if(Run_Now->PB.remain_time == 0) //如果当前进程运行结束,{Run_Now->PB.To=t; //进程运行结束的时间circle_t[Run_Now->PB.number-1] +=t-Run_Now->PB.arrive_time;free(Run_Now); //则将它所占资源释放掉,Run_Now =NULL; //并修改Run_Now为NULLRun_Now = ShortestProcess(PQ); //从就绪队列中调出最短剩余时间进程至队头,if(!Run_Now) //如果队列为空,转为等待状态{if(IsEmpty(PQ) && k >= N) break;Wait();continue;}else{Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}}}else//如果当前运行进程为空,那么{if(t == P[i]->PB.arrive_time) //如果正好这时有进程入队{k++;EnQueue(PQ,P[i]);Run_Now = DeQueue(PQ); //则直接被调入运行队列中Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;printf("%d ",Run_Now->PB.number);i=(i+1)>(N-1)?(N-1):(i+1);}else{Wait();continue;}}}printf("\n");printf("平均等待时间是:\n%f\n",((float)sum(wt,N))/N);printf("平均周转时间是:\n%f\n",((float)sum(circle_t,N))/N);return 0;}//////////////////////////////////////////////////////【Process.cpp代码如下:】#include<iostream>#include<string>using namespace std;class Process{public:string ProcessName; // 进程名字int Time; // 进程需要时间int leval; // 进程优先级int LeftTime; // 进程运行一段时间后还需要的时间};void Copy ( Process proc1, Process proc2); // 把proc2赋值给proc1void Sort( Process pr[], int size) ; // 此排序后按优先级从大到小排列void sort1(Process pr[], int size) ; // 此排序后按需要的cpu时间从小到大排列void Fcfs( Process pr[], int num, int Timepice); // 先来先服务算法void TimeTurn( Process process[], int num, int Timepice); // 时间片轮转算法void Priority( Process process[], int num, int Timepice); // 优先级算法void main(){int a;cout<<endl;cout<<" 选择调度算法:"<<endl;cout<<" 1: FCFS 2: 时间片轮换 3: 优先级调度 4: 最短作业优先 5: 最短剩余时间优先"<<endl; cin>>a;const int Size =30;Process process[Size] ;int num;int TimePice;cout<<" 输入进程个数:"<<endl;cin>>num;cout<<" 输入此进程时间片大小: "<<endl;cin>>TimePice;for( int i=0; i< num; i++){string name;int CpuTime;int Leval;cout<<" 输入第"<< i+1<<" 个进程的名字、cpu时间和优先级:"<<endl;cin>>name;cin>> CpuTime>>Leval;process[i].ProcessName =name;process[i].Time =CpuTime;process[i].leval =Leval;cout<<endl;}for ( int k=0;k<num;k++)process[k].LeftTime=process[k].Time ;//对进程剩余时间初始化cout<<" ( 说明: 在本程序所列进程信息中,优先级一项是指进程运行后的优先级!! )";cout<<endl; cout<<endl;cout<<"进程名字"<<"共需占用CPU时间 "<<" 还需要占用时间 "<<" 优先级"<<" 状态"<<endl;if(a==1)Fcfs(process,num,TimePice);else if(a==2)TimeTurn( process, num, TimePice);else if(a==3){Sort( process, num);Priority( process , num, TimePice);}else// 最短作业算法,先按时间从小到大排序,再调用Fcfs算法即可{sort1(process,num);Fcfs(process,num,TimePice);}}void Copy ( Process proc1, Process proc2){proc1.leval =proc2.leval ;proc1.ProcessName =proc2.ProcessName ;proc1.Time =proc2.Time ;}void Sort( Process pr[], int size) //以进程优先级高低排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.leval<pr[j-1].leval){pr[j] = pr[j-1];j--;}pr[j] = temp;} // 直接插入排序后进程按优先级从小到大排列for( int d=size-1;d>size/2;d--){Process temp;temp=pr [d];pr [d] = pr [size-d-1];pr [size-d-1]=temp;} // 此排序后按优先级从大到小排列}/* 最短作业优先算法的实现*/void sort1 ( Process pr[], int size) // 以进程时间从低到高排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.Time < pr[j-1].Time ){pr[j] = pr[j-1];j--;}pr[j] = temp;}}/* 先来先服务算法的实现*/void Fcfs( Process process[], int num, int Timepice){ // process[] 是输入的进程,num是进程的数目,Timepice是时间片大小while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}else if(process[num-1].LeftTime==0){cout<<" 进程"<<process[num-1].ProcessName<< " 已经执行完毕!"<<endl;num--;}else{cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<"";cout<<process[s].LeftTime <<" "<<process[s].leval<<" 等待"<<endl; ;}} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 时间片轮转调度算法实现*/void TimeTurn( Process process[], int num, int Timepice){while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}if( process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}else if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<"";cout<<process[s].LeftTime <<" "<<process[s].leval;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待"<<endl;}Process temp;temp = process[0];for( int j=0;j<num;j++)process[j] = process[j+1];process[num-1] = temp;} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 优先级调度算法的实现*/void Priority( Process process[], int num, int Timepice){while( true){if(num==0){cout<< "所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程" << process[0].ProcessName <<" 已经执行完毕! "<<endl;for( int m=0;m<num;m++)process[m] = process[m+1]; //一个进程执行完毕后从数组中删除num--; // 此时进程数目减少一个}if( num!=1 && process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" "; cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl; // 输出其他进程for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<" "; cout<<process[s].LeftTime <<" "<<process[s].leval ;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待 "<<endl;}} // elseSort(process, num);cout<<endl;system(" pause");cout<<endl;} // while}。
操作系统进程调度优先级算法C语言模拟```cstruct Processint pid; // 进程IDint priority; // 优先级};```接下来,我们使用一个简单的示例来说明操作系统进程调度优先级算法的模拟实现。
假设有5个进程需要调度执行,它们的初始优先级和运行时间如下:进程ID,优先级,已运行时间--------,--------,------------P1,4,2P2,3,4P3,1,6P4,2,1P5,5,3首先,我们需要将这些进程按照优先级排序,以得到调度队列。
可以使用冒泡排序算法实现,代码如下:```cvoid bubbleSort(struct Process *processes, int n)for (int i = 0; i < n - 1; i++)for (int j = 0; j < n - i - 1; j++)if (processes[j].priority > processes[j + 1].priority)struct Process temp = processes[j];processes[j] = processes[j + 1];processes[j + 1] = temp;}}}``````c#include <stdio.h>void bubbleSort(struct Process *processes, int n);int maistruct Process processes[] = {{1, 4, 2}, {2, 3, 4}, {3, 1, 6}, {4, 2, 1}, {5, 5, 3}};int n = sizeof(processes) / sizeof(struct Process);bubbleSort(processes, n);printf("初始调度队列:\n");printf("进程ID\t优先级\t已运行时间\n");for (int i = 0; i < n; i++)}//模拟进程调度printf("\n开始模拟进程调度...\n");int finished = 0;while (finished < n)struct Process *current_process = &processes[0];printf("执行进程 P%d\n", current_process->pid);finished++;printf("进程 P%d 执行完毕\n", current_process->pid);} else}bubbleSort(processes, n);}printf("\n所有进程执行完毕,调度队列的最终顺序为:\n"); printf("进程ID\t优先级\t已运行时间\n");for (int i = 0; i < n; i++)}return 0;```以上代码中,我们使用了一个变量`finished`来记录已完成的进程数量,当`finished`等于进程数量`n`时,所有进程执行完毕。
操作系统五种进程调度算法的代码一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是操作系统处理进程调度时比较常用的算法,它的基本思想是按照进程的提交时间的先后顺序依次调度进程,新提交的进程会在当前运行进程之后排队,下面通过C语言代码来实现先来先服务(FCFS)调度算法:#include <stdio.h>#include <stdlib.h>//定义进程的数据结构struct Processint pid; // 进程标识符int at; // 到达时间int bt; // 执行时间};//进程调度函数void fcfs_schedule(struct Process *processes, int n)int i, j;//根据进程的到达时间排序for(i = 0; i < n; i++)for(j = i+1; j < n; j++)if(processes[i].at > processes[j].at) struct Process temp = processes[i]; processes[i] = processes[j];processes[j] = temp;//获取各个进程执行完毕的时间int ct[n];ct[0] = processes[0].at + processes[0].bt; for(i = 1; i < n; i++)if(ct[i-1] > processes[i].at)ct[i] = ct[i-1] + processes[i].bt;elsect[i] = processes[i].at + processes[i].bt; //计算各个进程的周转时间和带权周转时间int tat[n], wt[n], wt_r[n];for(i = 0; i < n; i++)tat[i] = ct[i] - processes[i].at;wt[i] = tat[i] - processes[i].bt;wt_r[i] = wt[i] / processes[i].bt;printf("P%d:\tAT=%d\tBT=%d\tCT=%d\tTAT=%d\tWT=%d\tWT_R=%f\n", processes[i].pid, processes[i].at, processes[i].bt, ct[i], tat[i], wt[i], wt_r[i]);//主函数int mainstruct Process processes[] ={1,0,3},{2,3,5},{3,4,6},{4,5,2},{5,6,4}};fcfs_schedule(processes, 5);return 0;输出:。
实验报告学院(系)名称:计算机与通信工程学院
【实验过程记录(源程序、测试用例、测试结果及心得体会等)】程序运行代码如下:
#include<>
#include <>
#include <>
struct PCB{n");
}
程序运行结果截图如下:
实验体会:
刚开始的时候不知道用什么数据结构,只知道PCB这个结构中有什么,根据题目得知其中包括进程的名字、优先运行数、运行时间。
在看了数据结构的书和一个已经写好的程序后得知,应该使用链式队列。
但是初始化链式队列之后,问题就来了,应该定义哪些函数来运行进程满足题目的要求??根据题目分析出,需要四个函数,对进程的优先数进行从小到大排列的sort()函数,对进程进行检查和判断的check()函数,对进程进行优先数减1和运行时间减1的running()函数,最后是主函数main()。
运行时出现了指针混乱的问题和记录运行的变量没有初始化的问题,最为困难的是sort函数的编写。
一、实验目的1. 理解进程的概念和进程状态转换。
2. 掌握进程同步与互斥的基本方法。
3. 学习使用信号量实现进程同步与互斥。
4. 熟悉进程调度算法。
二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发工具:Visual Studio/Code::Blocks三、实验内容1. 进程状态转换2. 进程同步与互斥3. 信号量实现进程同步与互斥4. 进程调度算法四、实验步骤1. 进程状态转换```c#include <stdio.h>#include <unistd.h>void print_status(int state) {switch (state) {case 1: printf("创建状态\n"); break; case 2: printf("就绪状态\n"); break;case 3: printf("运行状态\n"); break; case 4: printf("阻塞状态\n"); break; case 5: printf("终止状态\n"); break; default: printf("未知状态\n"); break; }}int main() {int state = 1;print_status(state);sleep(1);state = 2;print_status(state);sleep(1);state = 3;print_status(state);sleep(1);state = 4;print_status(state);sleep(1);state = 5;print_status(state);return 0;}```2. 进程同步与互斥```c#include <stdio.h>#include <pthread.h>pthread_mutex_t lock;void thread_func(void arg) {pthread_mutex_lock(&lock);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);pthread_mutex_unlock(&lock);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;pthread_mutex_init(&lock, NULL);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2); pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&lock);return 0;}```3. 信号量实现进程同步与互斥```c#include <stdio.h>#include <pthread.h>#include <semaphore.h>sem_t sem;void thread_func(void arg) {sem_wait(&sem);printf("线程 %d 进入临界区\n", (int )arg);sleep(2);printf("线程 %d 离开临界区\n", (int )arg);sem_post(&sem);return NULL;}int main() {pthread_t tid1, tid2;int arg1 = 1, arg2 = 2;sem_init(&sem, 0, 1);pthread_create(&tid1, NULL, thread_func, &arg1); pthread_create(&tid2, NULL, thread_func, &arg2);pthread_join(tid1, NULL);pthread_join(tid2, NULL);sem_destroy(&sem);return 0;}```4. 进程调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#define MAX_PROCESSES 5typedef struct {int pid;int arrival_time;int burst_time;int wait_time;int turnaround_time;} Process;int compare(const void a, const void b) {Process proc1 = (Process )a;Process proc2 = (Process )b;return proc1->arrival_time - proc2->arrival_time;}void fcfs(Process processes[], int n) {processes[0].wait_time = 0;processes[0].turnaround_time = processes[0].burst_time;for (int i = 1; i < n; i++) {processes[i].wait_time = processes[i - 1].turnaround_time + processes[i].arrival_time - processes[i].burst_time;processes[i].turnaround_time = processes[i].wait_time + processes[i].burst_time;}}int main() {Process processes[MAX_PROCESSES] = {{1, 0, 3, 0, 0},{2, 1, 6, 0, 0},{3, 4, 4, 0, 0},{4, 6, 5, 0, 0},{5, 8, 2, 0, 0}};qsort(processes, MAX_PROCESSES, sizeof(Process), compare);fcfs(processes, MAX_PROCESSES);for (int i = 0; i < MAX_PROCESSES; i++) {printf("PID: %d, Wait Time: %d, Turnaround Time: %d\n", processes[i].pid, processes[i].wait_time, processes[i].turnaround_time);}return 0;}```五、实验结果与分析通过以上实验,我们了解了进程状态转换、进程同步与互斥、信号量实现进程同步与互斥以及进程调度算法。
第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。
二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。
2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。
3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。
2. 实现进程调度函数,根据所选调度算法进行进程调度。
3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。
4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。
5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。
五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。
分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。
2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。
分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。
3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。
分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。
计算机操作系统—调度算法# 有些计算会有问题谅解经典进程的同步问题1、吃⽔果桌上有⼀只盘⼦,每次只能放⼊⼀只⽔果,爸爸专向盘⼦中放苹果(apple),妈妈专向盘⼦中放桔⼦(orange),⼀个⼉⼦专等吃盘⼦中的桔⼦,⼀个⼥⼉专等吃盘⼦中的苹果。
只要盘⼦中空则爸爸或妈妈可向盘⼦中放⼀只⽔果,仅当盘中有⾃⼰需要的⽔果时,⼉⼦或⼥⼉可从中取出。
把爸爸、妈妈、⼉⼦、⼥⼉看做四个进程,⽤wait、signal操作进⾏管理,使这4个进程能正确地并发执⾏。
如图所⽰。
.png)1、定义信号量的含义与赋值定义⼀个是否允许向盘⼦中存放⽔果的信号量S,其初值为“1” ;定义两个信号量SP和SO分别表⽰盘⼦中是否有苹果或桔⼦的消息,初值均为“0” ,⼀个互斥信号量\[SP=表⽰盘⼦中有苹果;SO=表⽰盘⼦⾥⾯有桔⼦ \]2、写伪代码begin:S,SP,SO:semaphere; //设置信号量S:=1; SP:=0; SO:=0; //进⾏初始赋值Process 爸爸{BeginL1:准备⼀个苹果;wait(S); //申请空盘⼦的互斥信号量将苹果放⼊盘⼦中signal(SP); //盘⼦中有苹果,返回SPGoto L1; //调⽤L1⼥⼉取⾛盘⼦中的苹果end;}Process 妈妈{BeginL2:准备⼀个桔⼦;wait(S); //申请空盘⼦的互斥信号量将桔⼦放⼊盘⼦中signal(SO); //盘⼦中有桔⼦,返回SOGoto L2; //调⽤L2⼉⼦取⾛盘⼦中的桔⼦end;}Process ⼉⼦{beginL3:.wait(SO); //等待盘⼦中有桔⼦从盘⼦中拿⾛桔⼦signal(S); //拿⾛桔⼦后,盘⼦为空;由SO向S转变end;}Process ⼥⼉{beginL4:.wait(SP); //等待盘⼦中有苹果从盘⼦中拿⾛苹果signal(S); //拿⾛苹果后,盘⼦为空;由SP向S转变end;}end;2、共享打印机现有四个进程R1,R2,W1,W2,它们共享可以存放⼀个数的缓冲区。
计算机操作系统的进程调度算法计算机操作系统是指控制和管理计算机硬件与软件资源的系统软件。
在操作系统中,进程调度算法起着至关重要的作用,它决定了系统中各个进程的执行顺序,合理的调度算法可以提高系统的性能和效率。
本文将对常见的进程调度算法进行介绍和分析。
一、先来先服务调度算法(First-Come, First-Served,FCFS)先来先服务调度算法是最简单的调度算法之一。
按照进程到达的先后顺序依次执行,即抢占后只有等待其他进程执行完毕才能执行。
该算法的优点是简单易实现,但缺点是平均等待时间较长,无法满足实时性要求,容易产生“饥饿”现象。
二、短作业优先调度算法(Shortest Job First,SJF)短作业优先调度算法是通过预测进程执行时间的长短来进行调度的。
当有多个进程同时到达时,选择执行时间最短的进程先执行。
该算法的优点是能够最大限度地减少平均等待时间,但缺点是无法应对长作业的到来,可能导致长作业的等待时间过长。
三、优先级调度算法(Priority Scheduling)优先级调度算法根据进程的优先级来进行调度,优先级高的进程先执行。
该算法可以根据实际需要为不同的进程设置不同的优先级。
该算法的优点是能够满足实时性要求,但缺点是可能导致优先级低的进程长时间等待,产生“饥饿”现象。
四、轮转调度算法(Round Robin,RR)轮转调度算法是一种按照时间片轮流分配CPU的调度算法。
每个进程被分配一个固定的时间片,当时间片用完时,进程被剥夺CPU,并放入就绪队列的末尾等待下一次调度。
该算法的优点是能够公平地分配CPU时间,避免长作业的等待时间过长,缺点是可能导致平均等待时间较长,无法满足实时性要求。
五、多级反馈队列调度算法(Multilevel Feedback Queue,MLFQ)多级反馈队列调度算法是一种综合利用多个调度算法的调度策略。
它将进程划分为多个队列,每个队列采用不同的调度算法。
实验三进程调度一. 实验目的加深理解并模拟实现进程(作业)调度算法。
1)熟悉常用的进程调度算法, 如FCFS、SPF、FPF、高响应比优先、时间片轮转;2)结合所学的数据结构及编程知识, 选择三种进程调度算法予以实现。
二. 实验属性该实验为设计性实验。
三. 实验仪器设备及器材普通PC386以上微机四. 实验要求本实验要求2学时完成。
1)本实验要求完成如下任务:2)编程实现单处理机系统中的进程调度, 要求从FCFS、SPF、FPF、高响应比优先、时间片轮转算法中至少选择三个;3)最后编写主函数对所做工作进行测试。
实验前应复习实验中所涉及的理论知识和算法, 针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A), 并要求用正规的实验报告纸和封面装订整齐, 按时上交。
五: 实验具体设计此程序模拟了两种调度算法, FCFS和SPF, 首先FCFS就是按照进程的创建顺序依次顺序进行, 流程图为:进程顺序执行SPF:每次都进行循环, 选出在该时间刻运行时间最短的进程优先执行。
1.程序代码具体详解:2.创建一结构体作为进程控制器typedef struct PCB{int ID;char state;int arrivetime;int starttime;int finishtime;int servicetime;struct PCB *next;}pcb;定义全局变量作为计时器int time;//计时器创建进程链表:从txt文件中读取数据, 构造一条不含头结点的单链表void Create_process(){ifstream inFile;inFile.open("test.txt");inFile>>n;inFile.get();int i=0;for (;i<n;i++){p=(pcb *)malloc(sizeof(pcb));inFile>>p->ID;inFile>>p->arrivetime;inFile>>p->servicetime;p->starttime=0;p->finishtime=0;p->state='F';p->next=NULL;if(head==NULL){head=p;q=p;time=p->arrivetime;}if(p->arrivetime < time)time=p->arrivetime;q->next=p;q=p;}若执行FCFS算法, 按顺序遍历链表void fcfs1(){int i;p=head;for(i=0;i<n;i++){if(p->state=='F')q=p;run_fcfs1(q);}p=p->next;}}void run_fcfs1(pcb *p1){time = p1->arrivetime > time? p1->arrivetime:time;p1->starttime=time;printf("\n现在时间: %d,开始运行作业%d\n",time,p1->ID);time+=p1->servicetime;p1->state='T';p1->finishtime=time;printf("ID号到达时间开始运行时间服务时间完成时间\n");printf("%d%10d%12d%12d%12d\n",p1->ID,p1->arrivetime,p1->starttime,p1->servicetime,p 1->finishtime);}若执行SPF算法, 每次都从链表头开始遍历链表, 找出arrivetime<=time并且运行时间最短的节点, 执行该节点进程, 最后再删除该节点。
计算机操作系统实验指导汤小丹版源代码```python#实验指导:操作系统进程调度算法实现#题目描述:#设计一个操作系统的进程调度算法,使得CPU能够合理地分配给各个进程时间片,并实现算法的模拟。
#要求:#1.设计进程调度算法#2.实现进程控制块#3.实现模拟CPU的运行过程#实验步骤:#1.定义进程控制块#进程控制块(PCB)存储了一个进程的相关信息,包括进程ID、优先级、进程状态等等。
以下是一个简单的PCB类的定义:class PCB:def __init__(self, pid, priority):self.pid = pidself.priority = priorityself.state = 'ready'#2.实现进程调度算法# 进程调度算法决定了CPU如何从就绪队列中选择下一个要执行的进程。
以下是一个简单的调度算法(Round-Robin算法)的实现:def schedule(processes):while True:for process in processes:if process.state == 'ready':print(f"Running process {process.pid}...")process.state = 'running'#3.实现CPU的模拟#在模拟CPU运行过程中,可以将每个进程表示为一个线程,通过调度算法选择要运行的线程,并模拟线程执行的过程。
import threadingclass CPU(threading.Thread):def __init__(self, process):threading.Thread.__init__(self)self.process = processdef run(self):print(f"CPU: Running process {self.process.pid}...")print(f"CPU: Process {self.process.pid} finished.") self.process.state = 'finished'#4.实验结果展示#定义几个进程process1 = PCB(1, 1)process2 = PCB(2, 2)process3 = PCB(3, 3)#将进程放入就绪队列processes = [process1, process2, process3]#调度进程schedule(processes)#模拟CPU运行for process in processes:cpu = CPU(process)cpu.startcpu.join#5.实验总结# 本次实验基于Python语言,实现了一个简单的操作系统进程调度算法模拟。
五种进程调度的算法实现(⼀)实验要求1、基于Event-Driven(事件驱动)实现模拟进程调度,包括最短⼯作优先(SJF);最短剩余时间优先(SRTF);最⾼响应⽐优先(HRRF);优先级调度(Priority);轮转调度(RR)。
其中,SJF、SRTF为⾮抢占式调度,其余为抢占式调度。
2、要求⽤C语⾔实现这五种调度算法。
(⽅便起见,引⼊了C++头⽂件使⽤cout进⾏输出)基础知识⼀、进程1.1 进程的含义⼴义地说,进程是⼀个具有独⽴功能的程序关于某个数据集合的⼀次运⾏活动。
进程是⼀种抽象的概念,是对程序的抽象。
程序是⼀连串的代码或指令,是静态的东西,就像⼀本书放在那⾥。
那什么时候,程序会“动”起来呢?当然是我们执⾏了它。
⽐如⽤⿏标双击Word的快捷⽅式,那么过⼀会⼉,Word程序就会呈现在你眼前。
究其过程,不是“你”执⾏了程序,⽽是你让计算机执⾏了程序。
那计算机是怎么执⾏程序的呢?众所周知,这就要涉及到它的内部,甚⾄是它的⼤脑——中央处理器(CPU)了。
CPU是⼲什么的呢?CPU就是⽤来执⾏特定指令的。
上⾯说道程序就如同⼀本书,那么CPU的⾓⾊就相当于读者,书上的⽂字相当于指令,CPU“读”了“书”之后,有所感悟,就去做相当的事情,完成相当的任务。
打个⽐⽅,要以书来⽐喻指令,那么⽤菜谱来说就再贴切不过了。
以菜谱为例,⽐如现在要做⼀道菜,按照菜谱上的10个步骤来。
这⾥,做菜的时候,⾸先要准备⾷材、调料等,这都不是指令是什么回事?其实,计算机中的程序⽂件(可执⾏⽂件)除了包含代码之外,还包含数据,例如应⽤程序的图标等。
接下来,“你”——CPU,就要按照步骤做菜了。
做菜途中要等,就得等。
⼀系列步骤下来,最终,⼀道上好的菜摆在你眼前,⾊⾹味俱全。
这印证着定义中“具有独⽴功能”的含义,做⼀道特⾊的菜,就是独⽴完成⼀种任务。
1.2 进程的状态最简单的概括(三态模型)是:进程的状态分为——等待态、就绪态、运⾏态。
操作系统常见算法⼀、常见作业调度(⾼级调度)算法1、先来先服务调度算法(FCFS):就是按照各个作业进⼊系统的⾃然次序来调度作业。
这种调度算法的优点是实现简单,公平。
其缺点是没有考虑到系统中各种资源的综合使⽤情况,往往使短作业的⽤户不满意,因为短作业等待处理的时间可能⽐实际运⾏时间长得多。
2、短作业优先调度算法(SPF): 就是优先调度并处理短作业,所谓短是指作业的运⾏时间短。
⽽在作业未投⼊运⾏时,并不能知道它实际的运⾏时间的长短,因此需要⽤户在提交作业时同时提交作业运⾏时间的估计值。
3、最⾼响应⽐优先算法(HRN):FCFS可能造成短作业⽤户不满,SPF可能使得长作业⽤户不满,于是提出HRN,选择响应⽐最⾼的作业运⾏。
响应⽐=1+作业等待时间/作业处理时间。
基本概念:作业周转时间(Ti)=完成时间(Tei)-提交时间(Tsi)作业平均周转时间(T)=周转时间/作业个数作业带权周转时间(Wi)=周转时间/运⾏时间响应⽐=(等待时间+运⾏时间)/运⾏时间4.基于优先数调度算法(HPF):每⼀个作业规定⼀个表⽰该作业优先级别的整数,当需要将新的作业由输⼊井调⼊内存处理时,优先选择优先数最⾼的作业。
5.均衡调度算法,即多级队列调度算法。
⼆、常见进程调度(低级调度)算法1、先进先出算法(FIFO):按照进程进⼊就绪队列的先后次序来选择。
即每当进⼊进程调度,总是把就绪队列的队⾸进程投⼊运⾏。
2、时间⽚轮转算法(RR):分时系统的⼀种调度算法。
轮转的基本思想是,将CPU的处理时间划分成⼀个个的时间⽚,就绪队列中的进程轮流运⾏⼀个时间⽚。
当时间⽚结束时,就强迫进程让出CPU,该进程进⼊就绪队列,等待下⼀次调度,同时,进程调度⼜去选择就绪队列中的⼀个进程,分配给它⼀个时间⽚,以投⼊运⾏。
确定时间⽚长度要从进程数⽬、切换开销、系统效率和响应时间等多⽅⾯因素加以考虑。
如果时间⽚取值太⼩,将导致⼤多数进程/线程都不可能在⼀个时间⽚内运⾏完毕,就会频繁切换,开销显著增⼤,所以从系统效率来讲,时间⽚应该⼤些好;如果时间⽚长度较⼤,那么随着就绪队列中进程/线程数⽬的增加,轮转⼀次所耗费的总时间加长,即对每个进程/线程的响应速度放慢,甚⾄时间⽚⼤到让进程/线程⾜以完成其所有任务,时间⽚调度算法便退化为FCFS算法。
操作系统中进程调度算法的比较与选择操作系统中的进程调度算法是决定进程如何被分配和调度执行的重要机制。
不同的调度算法采用不同的策略来优化处理器利用率、响应时间、吞吐量等性能指标。
本文将比较几种常见的进程调度算法,并介绍如何选择适合的算法应用于特定场景。
一、先来先服务(FCFS)调度算法先来先服务调度算法是最简单的调度算法之一。
按照进程到达的先后顺序进行调度,先到达的进程先执行,直到执行完毕或者出现某种阻塞情况。
尽管该算法简单易懂,但是由于无法考虑进程的执行时间和优先级等因素,可能会导致长作业优先的现象,造成短作业的等待时间过长,影响系统的吞吐量。
二、短作业优先(SJF)调度算法短作业优先调度算法根据每个进程的执行时间进行排序,选择执行时间最短的进程优先执行。
这种调度算法能够最大限度地减少平均周转时间和平均等待时间,适用于短作业频繁出现的场景。
然而,该算法存在无法预测进程执行时间、难以精确评估的缺点,可能会导致长作业等待时间过长。
三、优先级调度算法优先级调度算法根据进程的优先级来决定进程的调度顺序。
优先级可以由系统管理员或者其他调度算法赋予,数值越高表示优先级越高。
该算法能够保证高优先级进程优先执行,但是可能导致低优先级进程长时间等待,产生饥饿现象。
为了解决饥饿问题,可以引入动态优先级调度算法,即根据进程等待时间进行动态调整优先级。
四、时间片轮转调度算法时间片轮转调度算法将时间划分为固定大小的时间片,每个进程在一个时间片内执行。
当时间片用完后,进程被挂起,而后续的进程获得执行机会。
这种调度算法可以公平地分配处理器时间,并降低长作业等待时间,适用于多个进程需要竞争处理器的情况。
然而,时间片的大小需要合理设置,过小会引起上下文切换开销过大,过大会导致响应时间较长。
五、多级反馈队列调度算法多级反馈队列调度算法采用多个队列,每个队列的优先级不同。
新到达的进程最先进入最高优先级队列,如果在时间片内没有完成,则进入下一级队列继续执行。
进程调度算法的模拟实现⏹实验目的1.本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
2.利用程序设计语言编写算法,模拟实现先到先服务算法FCFS、轮转调度算法RR、最短作业优先算法SJF、优先级调度算法PRIOR、最短剩余时间优先算法SRTF。
3.进行算法评价,计算平均等待时间和平均周转时间。
⏹实验内容及结果1.先来先服务算法2.轮转调度算法3. 优先级调度算法4. 最短时间优先算法5. 最短剩余时间优先算法⏹实验总结在此次模拟过程中,将SRTF单独拿了出来用指针表示,而其余均用数组表示。
⏹完整代码【Srtf.cpp代码如下:】//最短剩余时间优先算法的实现#include<stdio.h>#include<stdlib.h>#include<time.h>typedef struct{int remain_time; //进程剩余执行时间int arrive_time; //进程到达时间int Tp; //进入就绪队列的时间int Tc; //进入执行队列的时间int To; //进程执行结束的时间int number; //进程编号}Process_Block; //定义进程模块typedef struct _Queue{Process_Block PB;struct _Queue *next;}_Block,*Process; //定义一个进程模块队列中结点typedef struct{Process head; //队列头指针Process end; //队列尾指针}Process_Queue; //进程队列Process_Queue PQ; //定义一个全局队列变量int t; //全局时间Process Run_Now; //当前正在运行的进程,作为全局变量void InitQueue(Process_Queue PQ){PQ.head ->next = NULL;PQ.end ->next = PQ.head;}/*初始化队列*/int IsEmpty(Process_Queue PQ){if(PQ.end->next == PQ.head)return 1; //队列空的条件为头指针指向尾指针并且尾指针指向头指针elsereturn 0;}/*判定队列是否为空队列*/void EnQueue(Process_Queue PQ,Process P){Process temp =(Process)malloc(sizeof(_Block));temp = PQ.end;temp->next->next = P;PQ.end->next = P;}/*插入队列操作*/Process DeQueue(Process_Queue PQ){if(IsEmpty(PQ))return NULL;Process temp = PQ.head->next;PQ.head->next= temp ->next;if(PQ.end->next == temp)PQ.end->next = PQ.head;return temp;}/*出列操作*/Process ShortestProcess(Process_Queue PQ){if(IsEmpty(PQ)) //如果队列为空,返回{if(!Run_Now)return NULL;elsereturn Run_Now;}Process temp,shortest,prev;int min_time;if(Run_Now) //如果当前有进程正在执行,{shortest = Run_Now; //那么最短进程初始化为当前正在执行的进程,min_time = Run_Now->PB.remain_time;}else//如果当前没有进程执行,{shortest = PQ.head->next; //则最短进程初始化为队列中第一个进程min_time = PQ.head->next->PB.remain_time;}temp = PQ.head;prev = temp;while(temp->next){if(temp->next->PB.remain_time <min_time) //如果当前进程的剩余时间比min_time短,{shortest = temp->next; //则保存当前进程,min_time = shortest->PB.remain_time;prev=temp; //及其前驱}temp=temp->next;}if(shortest == PQ.end->next) //如果最短剩余时间进程是队列中最后一个进程,PQ.end->next = prev; //则需要修改尾指针指向其前驱prev->next = shortest->next; //修改指针将最短剩余时间进程插入到队头return shortest;}/*调度最短剩余时间的进程至队头*/void Run(){Run_Now->PB.remain_time--; //某一时间运行它的剩余时间减return;}/*运行函数*/void Wait(){return ;}int sum(int array[],int n){int i,sum=0;for(i=0;i<n;i++)sum+=array[i];return sum;}int main(){PQ.head = (Process)malloc(sizeof(_Block));PQ.end = (Process)malloc(sizeof(_Block));Run_Now = (Process)malloc(sizeof(_Block));Run_Now =NULL;InitQueue(PQ);int i,N,Total_Time=0; //Total_Time为所有进程的执行时间之和printf("请输入计算机中的进程数目:\n");scanf("%d",&N);Process *P,temp;P = (Process*)malloc(N*sizeof(Process));int *wt,*circle_t;wt =(int*)malloc(N*sizeof(int));circle_t =(int*)malloc(N*sizeof(int));for(i=0;i<N;i++){P[i] = (Process)malloc(sizeof(_Block));P[i]->PB.number =i+1;P[i]->next =NULL;wt[i] =0;circle_t[i] =0;printf("输入第%d个进程的到达时间及剩余执行时间:\n",i+1);scanf("%d %d",&P[i]->PB.arrive_time,&P[i]->PB.remain_time);}for(i=0;i<N;i++)Total_Time+=P[i]->PB.remain_time;printf("\n进程按顺序运行依次为:\n");i=0;int k=0;for(t=0;;t++){if(Run_Now) //如果当前有进程正在执行{Run();if(t == P[i]->PB.arrive_time) //如果当前时间正好有进程进入{if(P[i]->PB.remain_time < Run_Now->PB.remain_time){temp = P[i];P[i] = Run_Now;Run_Now = temp; //则调度它至运行队列中,Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}EnQueue(PQ,P[i]); //并将当前运行进程重新插入队列中P[i]->PB.Tp=t;k++;i=(i+1)>(N-1)?(N-1):(i+1);}if(Run_Now->PB.remain_time == 0) //如果当前进程运行结束,{Run_Now->PB.To=t; //进程运行结束的时间circle_t[Run_Now->PB.number-1] +=t-Run_Now->PB.arrive_time;free(Run_Now); //则将它所占资源释放掉,Run_Now =NULL; //并修改Run_Now为NULLRun_Now = ShortestProcess(PQ); //从就绪队列中调出最短剩余时间进程至队头,if(!Run_Now) //如果队列为空,转为等待状态{if(IsEmpty(PQ) && k >= N) break;Wait();continue;}else{Run_Now->PB.Tc=t;wt[Run_Now->PB.number-1]+=Run_Now->PB.Tc-Run_Now->PB.Tp;printf("%d ",Run_Now->PB.number);}}}else//如果当前运行进程为空,那么{if(t == P[i]->PB.arrive_time) //如果正好这时有进程入队{k++;EnQueue(PQ,P[i]);Run_Now = DeQueue(PQ); //则直接被调入运行队列中Run_Now->PB.Tp=t;Run_Now->PB.Tc=t;printf("%d ",Run_Now->PB.number);i=(i+1)>(N-1)?(N-1):(i+1);}else{Wait();continue;}}}printf("\n");printf("平均等待时间是:\n%f\n",((float)sum(wt,N))/N);printf("平均周转时间是:\n%f\n",((float)sum(circle_t,N))/N);return 0;}//////////////////////////////////////////////////////【Process.cpp代码如下:】#include<iostream>#include<string>using namespace std;class Process{public:string ProcessName; // 进程名字int Time; // 进程需要时间int leval; // 进程优先级int LeftTime; // 进程运行一段时间后还需要的时间};void Copy ( Process proc1, Process proc2); // 把proc2赋值给proc1void Sort( Process pr[], int size) ; // 此排序后按优先级从大到小排列void sort1(Process pr[], int size) ; // 此排序后按需要的cpu时间从小到大排列void Fcfs( Process pr[], int num, int Timepice); // 先来先服务算法void TimeTurn( Process process[], int num, int Timepice); // 时间片轮转算法void Priority( Process process[], int num, int Timepice); // 优先级算法void main(){int a;cout<<endl;cout<<" 选择调度算法:"<<endl;cout<<" 1: FCFS 2: 时间片轮换 3: 优先级调度 4: 最短作业优先 5: 最短剩余时间优先"<<endl; cin>>a;const int Size =30;Process process[Size] ;int num;int TimePice;cout<<" 输入进程个数:"<<endl;cin>>num;cout<<" 输入此进程时间片大小: "<<endl;cin>>TimePice;for( int i=0; i< num; i++){string name;int CpuTime;int Leval;cout<<" 输入第"<< i+1<<" 个进程的名字、cpu时间和优先级:"<<endl;cin>>name;cin>> CpuTime>>Leval;process[i].ProcessName =name;process[i].Time =CpuTime;process[i].leval =Leval;cout<<endl;}for ( int k=0;k<num;k++)process[k].LeftTime=process[k].Time ;//对进程剩余时间初始化cout<<" ( 说明: 在本程序所列进程信息中,优先级一项是指进程运行后的优先级!! )";cout<<endl; cout<<endl;cout<<"进程名字"<<"共需占用CPU时间 "<<" 还需要占用时间 "<<" 优先级"<<" 状态"<<endl; if(a==1)Fcfs(process,num,TimePice);else if(a==2)TimeTurn( process, num, TimePice);else if(a==3){Sort( process, num);Priority( process , num, TimePice);}else// 最短作业算法,先按时间从小到大排序,再调用Fcfs算法即可{sort1(process,num);Fcfs(process,num,TimePice);}}void Copy ( Process proc1, Process proc2){proc1.leval =proc2.leval ;proc1.ProcessName =proc2.ProcessName ;proc1.Time =proc2.Time ;}void Sort( Process pr[], int size) //以进程优先级高低排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.leval<pr[j-1].leval){pr[j] = pr[j-1];j--;}pr[j] = temp;} // 直接插入排序后进程按优先级从小到大排列for( int d=size-1;d>size/2;d--){Process temp;temp=pr [d];pr [d] = pr [size-d-1];pr [size-d-1]=temp;} // 此排序后按优先级从大到小排列}/* 最短作业优先算法的实现*/void sort1 ( Process pr[], int size) // 以进程时间从低到高排序{// 直接插入排序for( int i=1;i<size;i++){Process temp;temp = pr[i];int j=i;while(j>0 && temp.Time < pr[j-1].Time ){pr[j] = pr[j-1];j--;}pr[j] = temp;}}/* 先来先服务算法的实现*/void Fcfs( Process process[], int num, int Timepice){ // process[] 是输入的进程,num是进程的数目,Timepice是时间片大小while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}else if(process[num-1].LeftTime==0){cout<<" 进程"<<process[num-1].ProcessName<< " 已经执行完毕!"<<endl;num--;}else{cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<"";cout<<process[s].LeftTime <<" "<<process[s].leval<<" 等待"<<endl; ;}} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 时间片轮转调度算法实现*/void TimeTurn( Process process[], int num, int Timepice){while(true){if(num==0){cout<<" 所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程"<<process[0].ProcessName<< " 已经执行完毕!"<<endl;for (int i=0;i<num;i++)process[i]=process[i+1];num--;}if( process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}else if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" ";cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl;for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<"";cout<<process[s].LeftTime <<" "<<process[s].leval;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待"<<endl;}Process temp;temp = process[0];for( int j=0;j<num;j++)process[j] = process[j+1];process[num-1] = temp;} // elsecout<<endl;system(" pause");cout<<endl;} // while}/* 优先级调度算法的实现*/void Priority( Process process[], int num, int Timepice){while( true){if(num==0){cout<< "所有进程都已经执行完毕!"<<endl;exit(1);}if(process[0].LeftTime==0){cout<<" 进程" << process[0].ProcessName <<" 已经执行完毕! "<<endl;for( int m=0;m<num;m++)process[m] = process[m+1]; //一个进程执行完毕后从数组中删除num--; // 此时进程数目减少一个}if( num!=1 && process[num-1].LeftTime ==0 ){cout<<" 进程" << process[num-1].ProcessName <<" 已经执行完毕! "<<endl;num--;}if(process[0].LeftTime > 0){cout<<endl; //输出正在运行的进程process[0].LeftTime=process[0].LeftTime- Timepice;process[0].leval =process[0].leval-1;cout<<" "<<process[0].ProcessName <<" "<<process[0].Time <<" "; cout<<process[0].LeftTime <<" "<<process[0].leval<<" 运行";cout<<endl; // 输出其他进程for(int s=1;s<num;s++){cout<<" "<<process[s].ProcessName <<" "<<process[s].Time <<" "; cout<<process[s].LeftTime <<" "<<process[s].leval ;if(s==1)cout<<" 就绪"<<endl;elsecout<<" 等待 "<<endl;}} // elseSort(process, num);cout<<endl;system(" pause");cout<<endl;} // while}。