第三章 物理化学处理(2)
- 格式:ppt
- 大小:4.32 MB
- 文档页数:56
化工废弃物的处理与资源化利用第一章概述化工生产过程中产生的废弃物,如果不得当处理,会对人类和生态环境造成严重危害。
因此,对化工废弃物的处理和资源化利用是一个重要的问题。
本文将从化工废弃物的特点、处理方法、资源化利用等方面进行探讨。
第二章废弃物的特点及分类化工废弃物是指化工生产过程中产生的废弃物,包括废水、废气、废渣等。
它们的特点是含有大量的有机物、无机盐和重金属等物质,具有有毒、危险、腐蚀等性质。
根据其来源和性质的不同,废弃物可分为危险性废弃物和非危险性废弃物,其中,危险性废弃物是指具有可燃、易爆、有毒、有害等特性的废弃物,需要采取特殊的处理措施。
第三章废弃物的处理方法废弃物的处理是指采取各种方式把危险废弃物或非危险废弃物转化成无害物质,达到安全、环保、节能等目的的过程。
废弃物的处理方法有很多种,下面主要介绍常见的几种处理方式。
3.1 埋填废弃物埋填是指将废弃物填埋于土地之中,并通过固废填埋的排水和渗滤系统进行处理。
这种方法具有处理量大、成本低等优点,但也存在污染土壤、造成温室气体排放等问题。
3.2 焚烧焚烧是指将废弃物通过高温氧化分解的方式处理掉。
这种方法具有占地面积小、处理效果好等优点,但也存在烟气污染、能源消耗等问题。
3.3 物理化学处理物理化学处理是指采用物理和化学方法将废弃物转化成可无害化的物质。
这种方法具有处理效果好、适用范围广等优点,但处理成本较高。
第四章资源化利用废弃物的资源化利用是指对废弃物进行再加工、再利用的过程,目的是减少废弃物的产生量,提高其经济价值。
目前针对废弃物的资源化利用主要包括以下几个方面:4.1 回收再利用针对某些品种的废弃物,可以通过回收再利用的方式,将其变成有价值的资源。
例如,废旧电池中的铅、锌等金属可以通过化学反应进行提取和回收。
4.2 能源利用废弃物中含有丰富的可再生能源,如生物质能、沼气等。
通过生物质气化、沼气发电等方式,可以将废弃物转化为能源。
第五章废弃物的管理化工废弃物的处理和资源化利用是一项复杂的工程,需要采取全方位的管理措施。
第三章 化学势一、基本要求1、了解混合物的特点,熟悉多组分系统各种组成的表示法。
2、掌握偏摩尔量的定义与偏摩尔量的加与公式及其应用。
3.掌握化学势的狭义定义,知道化学势在相变与化学变化中的应用。
4.掌握理想气体化学势的表示式,了解气体标准态的含义。
5.掌握Roult 定律与He nry 定律的含义及用处,了解它们的适用条件与不同之处。
6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。
7、了解相对活度的概念,知道如何描述溶剂的非理想程度,与如何描述溶质在用不同浓度表示时的非理想程度。
8、掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。
二、把握学习要点的建议混合物就是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Raul t定律),所以处理起来比较简单。
一般就是先掌握对混合物的处理方法,然后再扩展到对溶剂与溶质的处理方法。
先就是对理想状态,然后扩展到对非理想的状态。
偏摩尔量的定义与化学势的定义有相似之处,都就是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。
但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。
偏摩尔量的下标就是等温、等压与保持除B 以外的其她组成不变(C B ≠)。
化学势的下标就是保持热力学函数的两个特征变量与保持除B 以外的其她组成不变。
唯独偏摩尔Gib bs 自由能与狭义化学势就是一回事,因为Gibbs 自由能的特征变量就是,T p ,偏摩尔量的下标与化学势定义式的下标刚好相同。
多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在最后多了一项,这项表示某个组成B 的物质的量发生改变B d n 时所引起的相应热力学函数值的改变。
最后一项中化学势B μ就是常数,说明B d n 的改变并不就是随意的,在数量一定的系统中只发生了B d n 的变化,或在数量很大的系统中改变了1mol,这样才能维持B μ不变。
环保行业工业废水处理与资源化利用方案第一章工业废水处理概述 (2)1.1 工业废水处理现状 (2)1.2 工业废水处理技术发展趋势 (3)第二章工业废水预处理技术 (3)2.1 物理预处理方法 (3)2.2 化学预处理方法 (4)2.3 生物预处理方法 (4)第三章主体处理技术 (5)3.1 物理处理技术 (5)3.1.1 格栅筛网处理 (5)3.1.2 沉淀池处理 (5)3.1.3 油水分离器处理 (5)3.2 化学处理技术 (5)3.2.1 中和处理 (5)3.2.2 氧化还原处理 (6)3.2.3 凝絮沉淀处理 (6)3.3 生物处理技术 (6)3.3.1 好氧生物处理 (6)3.3.2 厌氧生物处理 (6)3.3.3 混合生物处理 (6)第四章工业废水深度处理技术 (6)4.1 膜分离技术 (6)4.2 吸附技术 (7)4.3 氧化技术 (7)第五章工业废水处理设施运行与管理 (7)5.1 设施运行维护 (7)5.2 污染物排放监测 (8)5.3 处理效果评估 (8)第六章工业废水资源化利用概述 (8)6.1 资源化利用的意义 (8)6.2 资源化利用的技术路线 (9)第七章工业废水再生利用技术 (10)7.1 再生水处理技术 (10)7.1.1 概述 (10)7.1.2 物理处理技术 (10)7.1.3 化学处理技术 (10)7.1.4 生物处理技术 (10)7.2 回用技术 (10)7.2.1 概述 (10)7.2.2 预处理技术 (10)7.2.3 深度处理技术 (10)7.2.4 回用系统 (10)7.3 再生水利用途径 (11)7.3.1 工业生产用水 (11)7.3.2 生活用水 (11)7.3.3 农业灌溉 (11)7.3.4 环境用水 (11)第八章工业废水污泥处理与资源化 (11)8.1 污泥处理技术 (11)8.2 污泥资源化利用方法 (11)第九章环保行业工业废水处理案例分析 (12)9.1 案例一:某化工园区废水处理项目 (12)9.1.1 项目背景 (12)9.1.2 项目目标 (12)9.1.3 废水处理技术方案 (12)9.1.4 项目实施及效果 (12)9.2 案例二:某纺织企业废水处理与资源化利用项目 (13)9.2.1 项目背景 (13)9.2.2 项目目标 (13)9.2.3 废水处理与资源化利用技术方案 (13)9.2.4 项目实施及效果 (13)第十章工业废水处理与资源化利用政策与标准 (13)10.1 国家政策法规 (13)10.1.1 法律框架 (14)10.1.2 政策措施 (14)10.1.3 政策实施效果 (14)10.2 行业标准与规范 (14)10.2.1 标准制定 (14)10.2.2 标准实施 (14)10.2.3 标准修订 (14)10.3 政策与标准发展趋势 (14)10.3.1 政策导向 (14)10.3.2 标准修订 (15)第一章工业废水处理概述1.1 工业废水处理现状我国工业化的不断推进,工业废水处理已成为环保行业的重要任务。
第三章 多组分体系热力学内容提要只要指定两个强度性质便可以确定单组分体系的状态。
在多组分体系中,决定体系状态的变量还需包括组成体系的各物质的量。
在多组分体系热力学中,有两个重要的概念:偏摩尔量和化学势。
1、偏摩尔量(1)定义:设X 代表多组分体系中任一容量性质,在等温、等压、组成不变的条件下,体系中B 物质的容量性质Z 对B 物质的量n B 的偏微分称偏摩尔量,表示为Z 。
Z =(∂Z∂n B )T,p,nB(B ≠B )偏摩尔量是强度性质,和体系的总量无关,和组成体系各物质的浓度有关。
(2)偏摩尔量的集合公式∑==1B B B Z n Z多组分体系的广度性质等于体系中各组分物质的量与该物质偏摩尔性质的乘积之和。
(3)吉布斯-杜亥姆公式01=∑=B BB dZn该式表述了当发生一个无限小过程时,体系中各组分偏摩尔量变化值之间的关系。
它表明在均相体系中各组分的偏摩尔量之间是相互联系的,具有此消彼长的关系。
2、化学势(1)定义:偏摩尔吉布斯能G B,称为化学势,用μB 表示,单位为J·mol -1。
μB =(∂G∂n B )T,P,nB≠B广义的化学势:μB =(∂U ∂n B )s,v,nB(B≠B ) =(∂H ∂n B )s,p,nB(B≠B ) =(∂F ∂n B )T,V ,nB(B≠B ) =(∂G ∂n B )T,P,nB(B≠B ) (2)多组分组成可变体系的四个热力学基本公式:dU=TdS-pdV+B BBdn ∑μdH=TdS-pdV+B BBdn ∑μdF=sdT-Vpd+B BB dn ∑μdG=sdT-Vpd+B BBdn ∑μ(3)化学势的一些关系式 化学势集合公式∑=BB B n G μ等温、等压条件下化学势的吉布斯-杜亥姆公式∑BB Bd nμ化学势与温度的关系(∂μB∂T )p,nB=-V m ,B ) 化学势与压力的关系(∂μB ∂p )T,nB =v m ,B3、化学势判据等温、等压、W'=0条件下0≤∑B BB dn μ(1)相平衡:在等温、等压、W'=0的条件下,组分B 在α、β、…等各相达到平衡的条件是μB (α)=μB (β)=…在上述条件下,如果μB (α)>μB (β),则组分B 自发地从α相向β相转移。