第6章 岩土爆破理论
- 格式:ppt
- 大小:650.50 KB
- 文档页数:41
5岩石爆破理论5.1岩石爆破破坏基本理论炸药爆炸引起岩石破坏,这是一个高能转化释放、传递作功的过程。
在这个过程中,岩石受力情况极其复杂,而历时又极为短暂,因此要正确地解释岩石爆破破碎机理,就极为困难,人们已作了多年的努力,仍没有一个确切全面的唯一的解释,而是各执一词。
但将多类解释的基本观点与理论依据归类,可概括为三大假说:5.1.1 爆生气体膨胀作用理论这种理论是从静力学的观点出发,认为:岩石的破碎主要是由爆炸气体产物的膨胀压力引起。
(1) 炸药爆炸时,产生高压膨胀气体,在周围介质中形成压应力场。
炸药爆炸生成大量气体产物,在爆热的作用下,处于高温高压的状态,而急剧膨胀,这些膨胀气体以极高的压力作用于周围介质,而形成压应力场。
(2) 气体膨胀推力使质点产生径向位移,而产生径向压应力,其衍生拉应力,产生径向裂隙。
很高的压应力场,势必使周围岩石质点发生径向移动,这种位移又产生径向压应力,形成径向压应力的传递;质点在受径向压应力时,将产生径向压缩变形,而在切向伴随有拉伸变形生产,这个拉伸应变就是径向压应力所衍生的切向拉应力所产生。
当岩石的抗拉强度低于此切向拉应力时,就将产生径向裂隙;岩石的抗拉强度远远地小于抗压强度(常为其1/10~1/15),所以拉伸破坏极易发生,而形成径向裂隙。
(3) 质点移动所受阻力不等,引起剪切应力,而导致径向剪切破坏。
质点位移受到周围介质的阻碍,阻力不平衡在介质中就会引起剪切应力,若药包附近有自由面时,质点位移的阻力在最小抵抗线方向最小,其质点位移速度最高,偏离最小抵抗线方向阻力增大,质点位移速度降低,这样在阻力不等的不同方向上,不等的质点位移速度,必然产生质点间的相对运动而产生剪切应力。
在剪切应力超过岩石抗剪强度的地方,将发生径向剪切破坏。
(4) 当介质破裂,爆炸气体尚有较高的压力时,则推动破裂块体沿径向朝外运动,形成飞散。
上述破坏发生将消耗大量的爆炸能,如果爆炸气体还有足够大的压力,则将推动破碎岩块作径向外抛运动,若压力不够就可能仅是松动爆破破坏,而没有抛散,甚至只是内部爆破。
第六章爆破基础知识第一节爆破原理一、炸药及爆炸的一般特征1、炸药及其主要特征炸药是在外界能量作用下,自身进行高速的化学反应,同时产生大量的高温高压气体和热量。
炸药的主要特征是:(1)具有相对稳定性和化学爆炸性。
(2)在微小的体积中蕴藏有大量能量。
(3)能够依靠自身的氧化实现爆炸反应。
2、炸药爆炸及其三要素(1)反应过程中能放出大量的热。
放出大量的热是化学爆炸进行所必须具备的首要条件。
(2)炸药反应速度快。
反应速度快是是形成爆炸的必须条件,也是爆炸反应的特点之一。
(3)能生成大量的气体立物。
炸药爆炸后生成大量的气体,如二氧化碳、氧气和水蒸气,还产生一些有毒气体如一氧化碳和氮的氧化物。
这些气体在膨胀过程中,能对周围介质发生破坏,把炸药的能量转换为机械能。
总之,炸药爆炸必须同时具备三个要素,三者又是相互相系的。
所以,高温、高压高速是炸药爆炸的重要特点。
二、炸药爆轰理论基础知识(一)炸药的起爆和感度1、炸药的起爆炸药在未受外界能量作用时,处于相对稳定状态。
利用炸药进行爆破作业时,必须由外界给予足够的能量,使炸药的局部活化,失去平衡,发生爆炸反应,使炸药局部失去相对稳定状态到开始发生爆炸反应的过程称为起爆。
井下爆破工程常用的起爆能有爆炸能和热能。
2、炸药的感度炸药材料在在外界能量作用下,引起炸药爆炸的难易程度称为感应度。
炸药的感应的必须适中,以6号和8号雷管能够起爆为宜。
(二)炸药的殉爆炸药(主爆药)爆轰时引起与相隔一定距离的另一炸药(受爆药)爆轰的现象称为殉爆。
主爆药与受爆药之间发生殉爆的概率为100%的最大距离,称为殉爆距离。
对一定量的炸药来说,殉爆距离越大,表明爆感度越高。
产生殉爆现象的原因,主要是由于受爆药接受了主爆药卷的爆炸气流和冲击波形式传来的足够的激发能量。
(三)炸药爆炸的稳定性传播(1)传爆,炸药由起爆到爆炸结束的过程中,爆炸反应在炸药中自行传播的过程称为传爆。
(2)冲击波和爆轰波。
炸药起爆后,产生大量的热能和气体,形成了高温、高压、瞬间膨胀并高速运行的气浪,这种气浪具有极大的冲击作用,即冲击波。
岩土中爆炸的基本理论第一节 岩石的动态特性和可爆性一、岩石的物理性质 (一)岩石的孔隙度岩石的孔隙度η是指岩石中各孔隙的总体积V 0。
对岩石总体积V 之比,用百分率 表示。
100%V Vη=⨯ 孔隙的存在削弱了岩石颗粒之间的连接力而使岩石强度降低,孔隙度越大,岩石强度的降低就越严重。
(二)岩石的密度和重力密度岩石的密度ρ是指构成岩石的物理质量M 对该物质所具有的体积0V V -之比,即M V V ρ=-岩石的重力密度γ是指岩石的重力G 对包括孔隙在内的岩石体积V 之比,即G Vγ=岩石的密度和重力密度性质不同,一般情况下,岩石的密度和重力密度越大,岩石就 越难以破碎,在抛掷爆破时需消耗较多的能量去克服重力的影响。
(三)岩石的波阻抗岩石的波阻抗是指岩石密度ρ与纵波在该岩石中传播速度p c 的乘积。
其物理意义是 使岩石介质产生单位质点运动速度所需要的应力波的应力值,它反应了应力波使岩石质点 运动时,岩石阻止波能传播的作用。
岩石的波阻抗值对爆破能量在岩石中的传播效率有直 接影响,通常认为炸药的波阻抗与岩石的波阻抗相匹配(相等或相接近)时,爆破传给岩石的能量最多,在岩石中引起的应变值就大,可获得较好的爆破效果。
(四)岩石的碎胀性岩石破碎后因碎片间孔隙增多而总体积增大,这一性质称为岩石的碎胀性。
碎胀性可 用碎胀系数η表示,其值为岩石破碎膨胀后的体积1V 与原岩破碎前体积V 之比,即1V Vη=二、岩石爆破荷载特性炸药爆炸施加于岩石的是冲击荷载,压力峰值高、作用时间短,即加载速度高,属动 力学范畴,研究岩石的爆破破碎就必须研究岩石的动态特性。
(一)岩石爆破的荷载性质静载时,岩石内应力场与时间无关,岩石呈静态。
爆炸荷载作用时,岩石内引起应力,应变以波的形式在岩石中传播,即岩石内应力场随时间变化,岩石呈动态。
区别动、静荷载,一般用应变率或加载速度作为指标。
应变率为应变随时间的变化率,它表征在时间增量dt 内,外荷载所引起的岩石应变增量d ε与dt 的比值,即d dtεε=式中t ——岩石受载时间;ε——岩石应变,l l ε∆=,l ∆为岩石受载后的变形量。