光学课程设计光波在介质中界面上的反射及透射特性的仿真
- 格式:docx
- 大小:13.34 KB
- 文档页数:12
光课程设计——光波在介质中界面上的反射及透射特性的仿真西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以p s m E Et E E r imtm m im rm m ,,,0000===分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s 分量和p 分量垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E Et E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。
1. 如何确定入射面?答:入射光与反射光以及法线共同构成的平面即入射面2.什么是临界角?临界角是光疏到光密,还是光密到光疏时发生?答:临界角就是全反射角,他指的是光线由光密介质入射到光疏介质时正好发生全反射时的入射角。
3.利用全反射现象能否产生圆偏振光?答;利用全反射现象可以产生圆偏振光,一个偏振光在一定角度上经过两次全反射可以产生圆偏振光,菲涅耳棱镜就是利用这个原理所制成的。
4.解释反射系数及透射系数的概念。
答:当电磁波由一个磁导率为μ1、介电常数为ε1的均匀介质,进入另一个具有磁导率为μ2、介电常数为ε2的均匀介质时,一部分电磁波在界面上被反射回来,另一分电磁波则透射过去。
反射波与透射波的振幅同入射波振幅之比,分别称之为反射系数与透射系数。
5.根据仿真曲线解释反射及透射光的相位变化规律。
答:图中反应了他们的相位的变化规律,例如图三所示在布儒斯特角处它的相位发生了π的跃变,而根据一个确定的波的表达式来看它是由余弦函数的的变化来确定的,而rp在菲涅耳表达式中是两个确定的余弦函数之比,所以rp由正变为负的时候,其中有一个余弦函数肯定相位发生了变化(奇变偶不变,符号看象限),且在布儒斯特角处,而在全反射角处也会发生变化,而且是逐渐变化的,这是因为当入射角逐渐增大的时候,它满足一个公式tan(fai/2)=-√((sin θ)^2-n^2)/cosθ),从公式可以看出相位会随着入射角的变化而渐变,当θ=π/2时,tan(fai/2)为无穷,所以fai=π。
6.试说明布儒斯特角的概念。
答:布儒斯特角,又称偏振角,是自然光经电介质界面反射后,反射光为线偏振光所应满足的条件。
7.试分析布儒斯特角与临界角哪个大。
答:临界角大于布儒斯特角,我们从它们的公式可以简单的推导出来,布儒斯特角为arctan(n2/n1),全反射角为arcsin(n2/n2), 假设n2/n1=x,因为有光密入射到光疏,所以n2>n1,因此x>1,此时布儒斯特角为arctan(x),全反射角为arcsin(x),我们对它两个同时求导得到:(arctan(x))’=1/(1+x^2),而(arcsin(x))’=1/√(1+x^2),由此我们可以得出全反射角公式的倒数大,也就是说,在相同变量的情况下它的数值大,从而我们也就说明了临界角大于布儒斯特角。
第2章介质光波导分析方法2.1 平板介质光波导一般概念2.1 平板介质光波导一般概念波动理论法则是把平板介质光波导中的光波看作是满足波导边界条件的麦克斯韦方程组的解。
2.2 平板光波导分析的射线法振幅反射率和附加相移振幅反射率和附加相移S 波(TE 波——电矢量平行于界面)振幅反射率:光传播过程相位变化:光波不仅在介质中传播过程中相位会发生改变,在界面上反射时相位也会变化。
对于θ1 < θ1c ,界面上发生全反射,此时上式的分子和分母中第二个平方根内为负数,因此得到的振幅反射率r 为复数。
1.106分子分母同乘k )振幅反射率和附加相移振幅反射率和附加相移s 波( TE波——电矢量平行于界面) 附加相移为:p 波( TM波——磁矢量平行于界面)在界面发生全反射时引起的附加相移为:(1.145)(1.144)界面:n1、n2、n3的界面,不是入射面平板波导中的其他光场均可视为TEM 模:模式只有横向分量,而无纵导模特征方程导模特征方程入射光线两次反射后与入射光线同方向传输特征方程特征方程A、B 两点的距离为:C、D两点的距离为:光线CD 还经历了两个附加相移:分别是介质1、3 界面处全反射的附加相移ϕ3 和介质1、2 界面处全反射的附加相移ϕ2.平板光波导的特征方程:特征方程特征方程 界面处的附加相移会因入射光偏振方向的不同而有所差异,因此就能够得到两个不同模式下的特征方程电矢量平行于界面的导波式中:特征方程特征方程同样地,磁矢量平行于界面的导波TM 模的特征方程(代入ΦM2和ΦM3) :这里采用的是简单光线传播的射线理论。
实际上,从麦克斯韦方程出发,结合介质界面处的边界条件也可以推导出以上特征方程。
引入的几个重要参数——都是θ的函数,得到一个光波模式的波矢就可以求解其他引入的几个重要参数——都是θ的函数,得到一个光波模式的波矢就可以求解其他纵向波矢横向波矢衰减系数< n 1kn 2k << n 1k2.3 平板光波导中的TE模TE模的电磁理论求解TE模的电磁理论求解平板光波导中的TE模仅有E y由麦克斯韦方程:(2.30)TE模的电磁理论求解TE模的电磁理论求解的式子因此可以将H的分量表示为Ey代入式(2.30),可以得到关于Ey的波动方程,j = 1;2;3 表示分别是在芯层、衬底和覆盖层。
概述:一、光源在光纤通信系统中,光源器件可实现从电信号到光信号的转换,是光发射机以及光纤通信系统的核心器件,它的性能直接关系到光纤通信系统的性能和质量指标。
光纤通信系统要求光源具有合适的发射波长,处在光纤的低损耗窗口之中;有足够大的输出功率,从而有较长的传输距离;有较窄的发光谱线,可以减少光纤的色散对信号传输质量的影响;易于与光纤耦合,确保更多的光功率进入光纤;易于调制,响应速度要快,调制失真小,带宽大;在室温下能连续工作,可靠性高,寿命至少在10万小时以上。
下面简单介绍已广泛应用的两类半导体光源:半导体发光二极管(LED )和半导体激光二极管(LD )。
1 发光二极管(LED )发光二极管(LED )是低速、短距离光波通信系统中常用的光源。
其寿命很长,受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜。
驱动电路简单,不存在模式噪声等问 题。
发光二极管结构简单,是一个正向偏置的PN 同质结,电子-空穴对在耗尽区辐射复合发光,称为电致发光。
发出的部分光耦合进入光纤供传输使用。
LED 所发出的光是非相干光,具有较宽的谱宽(30~60nm )和较大的发射角(≈100°)。
自发辐射产生的功率是由正向偏置电压产生的注入电流提供的,当注入电流为I ,在稳态时,电子-空穴对通过辐射和非辐射复合,其复合率等于载流子注入率I/q ,其中发射电子的复合率决定于内量子效率ηint ,光子产生率为(I ηint/q),因此LED 内产生的光功率为()int int /P w q η= (2.1)式中,ω 为光量子能量。
假定所有发射的光子能量近似相等,并设从LED 逸出的功率占内部产生功率的份额为ηext ,则LED 的发射功率为()int int /e ext ext P P w q I ηηη== (2.2) ηext 亦称为外量子效率。
由上式可知,LED 发射功率P 和注入电流I 成正比。
光学实验实验报告课程名称:光学实验姓名:伍金霄学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:指导教师:刘娟2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。
二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。
现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。
进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。
折射定律又称为斯涅耳(Snell)定律。
2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。
为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。
图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。
西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律三、课程设计原理根据麦克斯韦电磁理论,利用电矢量和磁矢量来分析光波在两介质表面的反射特性,把平面光波的入射波、反射波和折射波的电矢量分成两个分量:一个平行于入射角,另一个垂直于入射角,对平面光波在电介质表面的反射和折射进行分析,推导了菲涅尔公式,并结合MATLAB研究光波从光疏介质进入光密介质,以及光波从光密介质进入光疏介质时的反射率、透射率、相位等随入射角度的变换关系。
同时对光波在不同介质中传播时的特性变化进行仿真研究,根据仿真结果分析了布鲁斯特角、全反射现象及相位变化的特点。
有关各量的平行分量与垂直分量依次用指标p和s来表示,s分量、p分量和传播方向三者构成右螺旋关系。
假设界面上的入射光,反射光和折射光同相位,根据电磁场的边界条件及S分量,P分量的正方向规定,可得Eis+Ers=Ets. 由著名的菲涅耳公式:rs=E0rs/E0is=-(tanθ1-tanθ2)/(tanθ1+tanθ2);rp=E0rp/E0ip=(sin2θ1-sin2θ2)/ (sin2θ1+sin2θ2);ts=E0ts/E0is=2n1cosθ1/n1cosθ1+n2cosθ2;tp=E0tp/E0ip=2n1cosθ1/n2cosθ1+n1cosθ2;反射与折射的相位特性1.折射光与入射光的相位关系S分量与P分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。
2.反射光与入射光的相位关系1)光波由光疏介质射向光密介质n1<n2时,反射系数rs<0,说明反射光中的s分量与入射光中的s分量相位相反,即存在一个π的相位突变。
邮电大学光学报告学院:电子工程学生:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。
三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。
由于平面光波的横波特性,电矢量可在垂直传播方向的平面的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。
菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。
(1)s分量和p分量p s m E Et E E r imtm m im rm m ,,,0000===垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E E t E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。
绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。
(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ围,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0); 在1θ>B θ围,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的围,s 分量的反射系数s r >0。
西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。
二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律三、课程设计原理根据麦克斯韦电磁理论,利用电矢量和磁矢量来分析光波在两介质表面的反射特性,把平面光波的入射波、反射波和折射波的电矢量分成两个分量:一个平行于入射角,另一个垂直于入射角,对平面光波在电介质表面的反射和折射进行分析,推导了菲涅尔公式,并结合MATLAB研究光波从光疏介质进入光密介质,以及光波从光密介质进入光疏介质时的反射率、透射率、相位等随入射角度的变换关系。
同时对光波在不同介质中传播时的特性变化进行仿真研究,根据仿真结果分析了布鲁斯特角、全反射现象及相位变化的特点。
有关各量的平行分量与垂直分量依次用指标p和s来表示,s分量、p分量和传播方向三者构成右螺旋关系。
假设界面上的入射光,反射光和折射光同相位,根据电磁场的边界条件及S分量,P分量的正方向规定,可得Eis+Ers=Ets.由着名的菲涅耳公式:rs=E0rs/E0is=-(tanθ1-tanθ2)/(tanθ1+tanθ2);rp=E0rp/E0ip=(sin2θ1-sin2θ2)/ (sin2θ1+sin2θ2);ts=E0ts/E0is=2n1cosθ1/n1cosθ1+n2cosθ2;tp=E0tp/E0ip=2n1cosθ1/n2cosθ1+n1cosθ2;反射与折射的相位特性1.折射光与入射光的相位关系S分量与P分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。
2.反射光与入射光的相位关系1)光波由光疏介质射向光密介质n1<n2时,反射系数rs<0,说明反射光中的s分量与入射光中的s分量相位相反,即存在一个π的相位突变。
而p分量的反射系数rp在θ1<θb的范围内,rp>0,说明反射光中的p 分量与入射光中的p 分量相位相同;在θ1>θb 的范围内,rp<0,说明反射光中的p 分量与入射光中的p 分量有一个π的相位突变。
2)光波由光密介质射向光疏介质n 1>n2时,入射角在0_θc 之间时,rs>0,说明反射光中的s 分量与入射光的s 分量的相位相同。
p 分量的反射系数rp 在θ1<θb 范围内,rp<0,说明反射光中的p 分量相对入射光的p 分量有一个π的相位突变,而在θb<θ1<θc 范围内,rp>0,说明反射光中的p 分量与入射光的中的p 分量相位相同。
四、课程设计步骤(流程图)五、仿真结果分析1.折射光与入射光的相位关系S 分量与P 分量的透射系数t 总是取正值,因此,折射光总是与入射光同相位。
2.反射光与入射光的相位关系1)光波由光疏介质射向光密介质n1<n2时,反射系数rs<0,说明反射光中的s 分量与入射光中的s 分量相位相反,即存在一个π的相位突变。
而p 分量的反射系数rp在θ1<θb 的范围内,rp>0,说明反射光中的p 分量与入射光中的p 分量相位相同;在θ1>θb 的范围内,rp<0,说明反射光中的p 分量与入射光中的p 分量有一个π的相位突变。
2)光波由光密介质射向光疏介质n 1>n2时,入射角在0_θc之间时,rs>0,说明反射光中的s分量与入射光的s分量的相位相同。
p分量的反射系数rp在θ1<θb范围内,rp<0,说明反射光中的p分量相对入射光的p分量有一个π的相位突变,而在θb<θ1<θc范围内,rp>0,说明反射光中的p分量与入射光的中的p分量相位相同。
六、仿真小结如果已知界面两侧的折射率n1,n2和入射角θ1,就可由折射定律确定折射角θ2,进而可由上面的菲涅耳公式求出反射系数和透射系数。
仿真结果图a绘出了按光学玻璃(n=1.5)和空气界面计算,在n1<n2(光由光疏介质射向光密介质)和n1>n2(光由光密介质射向光疏介质)两种情况下,反射系数,透射系数岁入射角θ1的变化曲线七、程序St=linspace(0,90,1000);st1=St.*pi./180;n1=1;n2=1.52;st2=asin(n1.*sin(st1)./n2);stb=atan(n2/n1);subplot(3,2,1);rs=-(tan(st1)-tan(st2))./(tan(st1)+tan(st2));plot(St,rs,'r','LineWidth',1);hold on;rp=(sin(2.*st1)-sin(2.*st2))./(sin(2.*st1)+sin(2.*st2));plot(St,rp,'g','LineWidth',1);hold on;ts=(2.*n1.*cos(st1))./(n1.*cos(st1)+n2.*cos(st2));plot(St,ts,'b','LineWidth',1);hold on;tp=(2.*n1.*cos(st1))./(n2.*cos(st1)+n1.*cos(st2));plot(St,tp,'m','LineWidth',1);hold on;frs=0;STB=stb*180/pi;plot(STB,frs,'-bo');hold on;hold on;frs=0;plot(St,frs,'-k');xlabel('st1'),ylabel('r,t');title('n1<n2 rs(红),rp(绿),ts(蓝),tp(品红)随入射角st1的变化曲线')n3=1.52;n4=1;stc=asin(n4/n3);stc=stc.*180/pi;st=atan(n4/n3);St=0:0.001:stc;st3=St.*pi./180;st4=asin(n3.*sin(st3)./n4);subplot(3,2,2);rs=-(tan(st3)-tan(st4))./(tan(st3)+tan(st4));plot(St,rs,'r','LineWidth',1);hold on;rp=(sin(2.*st3)-sin(2.*st4))./(sin(2.*st3)+sin(2.*st4)); plot(St,rp,'g','LineWidth',1);hold on;ts=(2.*n3.*cos(st3))./(n3.*cos(st3)+n4.*cos(st4));plot(St,ts,'b','LineWidth',1);hold on;tp=(2.*n3.*cos(st3))./(n4.*cos(st3)+n3.*cos(st4));plot(St,tp,'m','LineWidth',1);hold on;St=stc:0.001:90;rp=1;plot(St,rp,'r','LineWidth',1);hold on;rs=1;plot(St,rs,'g','LineWidth',1);hold on;ts=0;plot(St,ts,'b','LineWidth',1);hold on;tp=0;plot(St,tp,'m','LineWidth',1);hold on;frs=0;ST=st*180/pi;plot(ST,frs,'-bo');hold on;frs=0;plot(stc,frs,'-go');hold on;frs=0;plot(St,frs,'-k');xlabel('st1'),ylabel('r,t');title('n3>n4 rs(红),rp(绿),ts(蓝),tp(品红)随入射角st1的变化曲线')n1=1;n2=1.52;n=n2/n1;stb=atan(n2/n1);St=linspace(0,90,1000);st1=St.*pi./180;subplot(3,2,3);for st1=0:pi/2000:pi/2st2=asin(n1.*sin(st1)./n2);rs=-(tan(st1)-tan(st2))./(tan(st1)+tan(st2));if rs<0frs=pi;elsefrs=0;endendhold on;STB=stb*180/pi;plot(STB,frs,'-bo');hold on;plot(St,frs,'r','LineWidth',1);hold on;xlabel('st1'),ylabel('frs');title('(a)n1<n2')stb=stb*180/pi;St=linspace(0,stb,1000);st1=St.*pi./180;subplot(3,2,4);for st1=0:stb/1000:stbst2=asin(n1.*sin(st1)./n2);rp=(sin(2.*st1)-sin(2.*st2))./(sin(2.*st1)+sin(2.*st2)); if rp<0frp=pi;elsefrp=0;endendplot(St,frp,'r','LineWidth',1);hold on;St=linspace(stb,90,1000);st1=St.*pi./180;for st1=stb:(pi/2-stb)/1000:pi/2st2=asin(n1.*sin(st1)./n2);rp=(sin(2.*st1)-sin(2.*st2))./(sin(2.*st1)+sin(2.*st2)); if rp<0frp=pi;elsefrp=0;endendplot(St,frp,'r','LineWidth',1);hold on;frp=0;plot(stb,frp,'-bo');xlabel('st1'),ylabel('frp');title('(b)n1<n2')n3=1.52;n4=1;m=n4/n3;stc=asin(n4/n3);stc=stc*180/pi;St=linspace(0,stc,1000);st3=St.*pi./180;subplot(3,2,5);frs=0;plot(St,frs,'r','LineWidth',1);hold on;St=linspace(stc,90,1000);st3=St.*pi./180;frs=2.*atan(((sin(st3).*sin(st3)-m.*m)).^(1/2)./cos(st3)); plot(St,frs,'r');hold on;frs=0;stb=atan(n4/n3);stb=stb.*180./pi;plot(stb,frs,'-bo');hold on;plot(stc,frs,'-go');xlabel('st1'),ylabel('frs');title('(c)n3>n4')stb=atan(n4/n3);stb=stb*180/pi;St=linspace(0,stb,1000);st3=St.*pi./180;subplot(3,2,6);frp=pi;plot(St,frp,'b','LineWidth',1);hold on;stc=asin(n4/n3);stc=stc*180/pi;St=linspace(stb,stc,1000);frp=0;plot(St,frp,'b','LineWidth',1);hold on;St=linspace(stc,90,1000);st3=St.*pi./180;frp=2.*atan(((sin(st3).*sin(st3)-m.*m)).^(1/2)./(cos(st3)*(m.*m )));plot(St,frp,'b','LineWidth',1);hold on;frp=0;plot(stb,frp,'-bo');hold on;plot(stc,frp,'-go');xlabel('st1'),ylabel('frp'); title('(d)n3>n4')。