运筹学小论文
- 格式:doc
- 大小:108.00 KB
- 文档页数:8
摘要本文研究的是线性规划的可行点算法,一个由线性规划的内点算法衍生而来的算法.线性规划的内点算法是一个在线性规划的可行域内部迭代前进的算法.有各种各样的内点算法,但所有的内点算法都有一个共同点,就是在解的迭代改进过程中,要保持所有迭代点在可行域的内部,不能到达边界.当内点算法中的迭代点到达边界时,现行解至少有一个分量取零值.根据线性规划的灵敏度分析理论,对线性规划问题的现行解的某些分量做轻微的扰动不会改变线性规划问题的最优解.故我们可以用一个很小的正数赋值于现行锯中等于零的分量,继续计算,就可以解出线陛规划问题的最优解.这种对内点算法的迭代点到达边界情况的处理就得到了线性规划的可行点算法.它是一个在可行域的内部迭代前进求得线性规划的最优解的算法.在此算法中,只要迭代点保持为可行点.本文具体以仿射尺度算法和原始一对偶内点算法为研究对象,考虑这两种算法中迭代点到达边界的情况,得到相对应的’仿射尺度可行点算法’和’原始.对偶可行点算法,.在用理论证明线性规划的可行点算法的可行性的同时,我们还用数值实验验正了可行点算法在实际计算中的可行性和计算效果.关键词:线性规划,仿射尺度算法,原始一对偶内点算法,内点,可行点算法,步长可行点.AbstractderivedThisDaperfocusesonafeasiblepointalgorithmforlinearprogramming,analgorithmfromtheinteriorpointalgorithmsforlineza"programming.TheinteriorpointalgorithmsfindtheoptimalsolutionofthelinearprogrammingbysearchingwithinthefeasmleTe譬ionofthelinearprogramming.ThereareaUkindsofinteriorpointalgorithlrmalltheforlinearprogramnfing.Butalltheseinteriorpointalgorithmsshareaspeciality,whichissolution|terativeDointscannotreachtheboundsAccordingtothesensitivitytheory,theoptimalofthelinearprogrammingwillnotbechangedbylittledisturbancesofthepresentsolution·SoWeletthe{xjIzJ=o,J=1,2,-··)n)equalaverysmallpositivenunlber,goonwiththecomputatio“一andthenwegettheoptimalsolutionofthelinearprogramming.Alltheseleadtothedevelopment。
摘要运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。
通过对数据的调查、收集和统计分析,以及具体模型的建立。
收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。
此题研究的主要内容是根据早餐供应点早餐进货带来的一系列问题进行合理规划。
目的是依据各种食物的成本、标准要求规划各种食品的总利润,考虑每种早餐如何进货才能达到基准,如何进货才能使预期总利润最高,这完全符合运筹学线性规划的理论。
按照目标规划,添加整数约束,加入存储成本,求解计算出既科学又合理的最优进货方案:在使预期销量达到基准的情况下,用食品单价乘以餐配量计算出总花费,根据各种限定性因素得出目标函数和各个约束条件,运用运筹学计算软件(主要是指Lindo软件)求解所建立的运筹学模型。
所以对基本情况的分析,经过抽象和延伸,建立起了食品搭配研究的线性规划模型。
结合模型的特点,对模型的求解进行了讨论和分析,将模型应用于案例的背景问题,得出相应的最优解决方案,就可以对问题一一进行解答。
关键词:目标规划存储问题整数规划 lingo软件目录一、问题的提出1.1、意义 (2)1.2、背景 (2)1.3、问题的提出 (2)二、问题的实现2.1、问题思路总概 (2)2.2、基于问题的调查 (3)2.3、问题的实现 (4)三、问题的解决3.1、问题的分析 (6)3.2、问题的假设 (6)3.3、建模 (7)3.4、lingo软件求解 (8)四、结果分析及拓展4.1、结果分析 (14)4.2、联系实际分析 (15)4.3、建议方案 (15)五、心得体会 (16)六、附录 (17)一、问题1.1、意义:早餐是一天三餐中的第一餐。
俗话说:一年之计在于春,一日之计在于晨。
早餐不仅要营养丰富,而且很重要的一点是,一定要多样化,因为上午是一天中学习和工作任务最繁重的一个时段。
吴禹锟一院八队201101044032 运筹学摘要:临近年末,家中生产的冰糖橙到了一个大卖的时候,采摘下来的冰糖橙需要合理的保存,才能够长期保鲜。
而摘下来的冰糖橙需要进行进一步包装,才能卖到一个更好的价格。
最后就是运输问题,怎样用最少的运价运到更多的地方。
这就需要制定一个严密的计划,使自己所用的花费最少。
关键字:生产与存储 动态规划 经济批量订货模型 运输问题 lingo正文:研究背景:家中种有3000余棵冰糖橙树,每年到年底时,也就是冰糖橙成熟的时候。
冰糖橙采摘需分阶段,且采摘需要请员工,这会产生一个费用,存贮需要存储空间,就会产生一个存储费用。
这就涉及到一个生产与存储的问题,可以建立一个数学模型。
采摘下来的冰糖橙,需要装入保鲜袋,然后装进箱子中,箱子需要订购。
这就会涉及到一个经济批量(EOQ )问题,是一个优化问题,且不允许缺货。
最后就是卖往各个地区,这里还可能产生产销不平衡的情况,需要寻求最优解。
研究内容:一、生产与存储问题:这是一个动态规划问题,需要合理的安排生产与库存的问题,达到既要满足需求,又要尽量降低成本费用。
一次,确定不同时期的的的生产量和库存量,以使总的雇佣费与库存费之和最小。
设d k 为第k 阶段对产品的需求量,x k 为第k 阶段该产品的生产数量,sk 为第k 阶段初的产品数量,则有z k =s k -1+x k -1-d k -1。
C k (x k )表示第k 阶段生产xk 数量的产品使的成本费用,它包括生产准备费用k 和产品城北ax k 两项费用。
即C k (x k )={0, xk =0k +axk,0<xk ≤mk其中m k 为第k 阶段生产xk 数量的上限。
用h k (s k )表示在地k 阶段初库存量为s k 时的存储费用。
因此,第k 阶段的成本费用为C k (x k )+h k (s k )所以,上述问题的数学模型为Minz=∑ck (xk )+ℎk(sk )n k=1s.t.{s0=0,sn +1=0sk =∑(xj −dj ), k =1,2,…,n −1k j=10≤xk ≤mk, k =1,2,…,n xk 为正整数用动态规划方法求解,s k 为状态变量,他表示第k 阶段开始时的库存量x k 为决策变量,他表示第k 阶段的生产量;状态转移方程为S k+1=s k +x k -d k , k=1,2,…,n 最优值函数f k (s k )表示从第k 阶段初始库存量为s k 到底n 阶段末的最小总费用。
运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。
首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。
1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。
运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。
本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。
2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。
它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。
2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。
常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。
3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。
通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。
3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。
运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。
3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。
通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。
4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。
中国矿业大学运筹学结课论文姓名:魏恒征学院:矿业工程学院班级:采矿工程09-7班学号:01090235教师:付乳燕运筹学的初步学习及认识背景:本学期在付老师的指导下学习了运筹学,初步了解运筹学的发展历史及运筹学在生活实例中的应用。
运筹学是一门和社会生活紧密联系的一门科学,学习运筹学不仅是仅仅的学习知识,运筹学的诸多思想在实际决策中很有指导意义。
关键词:运筹学历史特点学习收获前景一、运筹学简介英语全称为:Operational Research(英国)或者是Operations Resear ch(美国)在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。
运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
运筹学基础论文——单纯形乘子定理摘要:对偶理论是线性规划在早期发展中的重要成果之一,是线性规划的重要组成部分。
对偶理论深刻揭示了原问题与对偶问题之间深刻的内在联系。
对偶理论充分显示了线性规划理论逻辑的严谨和结构的对称美;对偶问题的对偶解是进行经济分析的重要工具。
正确理解单纯形乘子定理;最优基B是什么,在单纯形表中如何找到;Y*=CB﹣¹在单纯形表中的位置;原问题、对偶问题的最优值,在单纯形表中的确定;理解“对于原问题LP,其对偶问题DP的最优解就是LP最优单纯形表中松弛变量检验数的相反数。
”;CB﹣¹和CB﹣¹b的计算及体现。
关键字:运筹学线性规划单纯形法对偶问题单纯性乘子定理最优值单纯形表1954年美国数学家C.莱姆基提出对偶单纯形法。
单纯形法是从原始问题的一个可行解通过迭代转到另一个可行解,直到检验数满足最优性条件为止。
对偶单纯形法则是从满足对偶可行性条件出发通过迭代逐步搜索原始问题的最优解。
在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失。
设原始问题为min{cx|Ax=b,x≥0},则其对偶问题为max{yb|yA≤c}。
当原始问题的一个基解满足最优性条件时,其检验数cBB-1A-c≤0。
即知y=cBB-1(称为单纯形算子)为对偶问题的可行解。
所谓满足对偶可行性,即指其检验数满足最优性条件。
因此在保持对偶可行性的前提下,一当基解成为可行解时,便也就是最优解。
线性规划的对偶问题一、对偶问题的提出生产计划问题:某家具厂生产桌子和椅子,桌子售价50元/个,椅子售价30元/个。
需要木工和油漆工,生产一个桌子需要木工4小时,油漆工2小时,生产一个椅子需要木工3小时,油漆工1小时。
该厂每月可用木工工时120小时,油漆工工时50小时。
问:如何组织生产,使得每月销售收入最大?线性规划模型为(桌、椅数量为变量):12121212max 503043120..250,0z x x x x s t x x x x =++≤⎧⎪+≤⎨⎪≥⎩现考虑一个成本最小化的问题:另一厂商,接到上述生产订单后组织生产,其中的劳动力欲向家具厂雇佣,如何才能使得生产成本(工资)最小?分析: 确定决策变量1y =木工的工资,2y =油漆工的工资得对偶问题规划模型: 12121212min 12050 4250..330 ,0 z y y y y s t y y y y =++≥⎧⎪+≥⎨⎪≥⎩目标函数—使工资支出最小约束方程—向外转让的收入至少要大于自己生产的收入工资的非负约束二、对称形式的对偶问题的矩阵表述:原问题:既定的资源(成本)b 约束下产量X 最大化 m a x ..z CXAX b s t X O=≤⎧⎨≥⎩ 对偶问题:既定的产量C 约束下资源(成本)b 最小化: m i n ..w b YA Y C s t Y O'=''≥⎧⎨≥⎩ 三、对偶原理在经济学厂商理论中的应用:从实物形态研究生产——生产理论;从货币形态研究成本结构——成本理论 在完全竞争市场上,一定成本下产量最大化的投入组合问题互为对偶问题一定产量下成本最小化的投入组合问题1、 一定成本下产量最大化的投入组合问题:max (,)..Q f L K s t C wL rK==+令(,)()Z f L K C wL rK λ=+--,0Z Q w L Lλ∂∂=-=∂∂,0Z Q r K Kλ∂∂=-=∂∂ 得:Q Q w r L K ∂∂=∂∂, 即:L K w r P MP MP == 2、 一定产量下成本最小化的投入组合问题:min ..(,)C wL rK s t Q f L K =+=用拉格朗日乘数法求解:令((,))Z wL rK Q f L K λ''=+--,0Z Q w L L λ'∂∂'=-=∂∂, Z Q r K K λ'∂∂'=-∂∂,(,)0Z Q f L K λ∂=-='∂ 得:QQw r LK∂∂=∂∂,即:L K w r P MP MP == 四、如何将原问题转化为对偶问题 (一)约束条件为标准形式(见前例)目标函数的最大值max ←→ 目标函数的最小值min 目标函数的价值系数C ←→ 约束方程右端的资源量C ’ 约束系数矩阵A ←→ 约束系数矩阵A ’原问题的n 个变量(≥0)←→ 对偶问题的n 个约束方程 约束条件“AX ≤B ”←→ 对偶问题的约束条件“A !Y ≥C ” (二)约束条件为非标准形式将下列线性规划问题转化为对偶问题12312312323123min 7434262436415..53300,0z x x xx x x x x x s t x x x x x =+--+-≤⎧⎪---≥⎪⎨+=⎪⎪≤≥⎩取值无约束, 1、先化为标准形式,再根据标准形式进行转化:令11x x '=-,222x x x '''=-; 并将等式约束235330x x +=化为两个不等式约束235330x x +≤和235330x x +≥;对于min 问题,统一约束不等式为“≥”,得:1223122312232232231223m i n 7443422624366415..5533055330,,0z x x x x x x x x x x x x s t x x x x x x x x x x ''''=-+--''''--++≥-⎧⎪''''-+-≥⎪⎪'''-+≥⎨⎪'''-+-≥-⎪''''≥⎪⎩, → 1234121234123412341234max 2415303043726554..2655464333,,0w y y y y y y y y y y s t y y y y y y y y y y y =-++--+≤-⎧⎪--+-≤⎪⎪+-+≤-⎨⎪-+-≤-⎪≥⎪⎩,y2、将多余的量还原:第一个约束方程的右边还项原为正数,令11y y '=-,334y y y '=-,并将第三、第四约束方程合并为等式约束,得: 12312123123123max 2415304372654..64330,0w y y y y y y y y s t y y y y y ''=++'--≥⎧⎪''-+=⎪⎨''--+≤-⎪⎪''≤≥⎩取值无约束,y 结论:对于非标准约束的原问题和对偶问题,可得出约束条件和变量如下的对应逻辑关系:五、原问题化为对偶问题的2种求解思路:(一)根据表格中约束条件和变量对应的逻辑关系,直接转换为对偶问题; ——注意,对于min 原问题,应该从表格右列向左列转化(变量转为约束时,不等号相反);对于max 原问题,应该从表格左列向右列转化(变量转为约束时,不等号不变)(二)将约束条件和变量转化为标准形式后,转换过去,具体步骤稍微繁琐,但可靠性高——对于原问题为min ,其约束条件统一化为“C YA ≥'”,含义:资源的转让收入AY 要大于产品的市场价格C 。
运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。
2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。
3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。
4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。
5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。
6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。
7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。
8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。
运筹学在工业工程中的运用分析论文运筹学在工业工程中的运用分析论文摘要:本文主要探究了运筹学的相关内容,对其在工业工程中相关应用进行了探究分析,希望可以为今后的相关研究提供理论支持。
关键词:运筹学;制造业工程;制造与控制基于定义的角度分析,工业工程的主要目的就是优化与完善现有的组织与效率,进而提高整体的生产质量。
在工业工程的相关工作开展过程中,要充分的利用相关运筹学相关知识与方法,为工业工程的发展起到一定的推动作用。
1工业工程中运筹学的应用在工程工作中提高产品以及服务的整体价值是其本质目的。
对此在工业工程相关企业要通过自身合理的分析与计划、合作与控制等相关活动,把各种资源转化为各种优质的服务。
基于工业工程企业来说,要在整个工程计划中始终贯穿运筹学的相关理论与方法,对此要做到以下几点:第一,基于工业工程行业的基础计划以及控制系统意义对其进行系统探究分析,进而对统筹学的相关方法与应用进行探讨,了解工业行业中运筹学的具体应用方式,在实际的计划中应用统筹学相关知识,要根据具体的计划内容进行系统分析,要对计划进行综合考量,对于原材料以及生产能力等因素进行系统考量,对于具体的工业工程生产计划以及短期活动中需求的各种原料以及相关生产能力进行系统探究,对于实际所需的原材料以及相应的生产能力进行详细的分析,明确详细的数据安排,要具体精细到每小时甚至每分钟;同时对于一些相对较为粗放的工业工程制造计划,要了解其长期库存以及相关时间,进而应用相关统筹学知识,保障工程的有序开展。
第二,标准生产软件包中典型的运筹学方法。
在现阶段商业常用的计划以及控制系统软件中,并没有系统的应用运筹学等相关方式。
即便在市场上包含了运筹学方式的软件相对较多,如库存模型、MRP以及优先法则等;但是在计划以及控制的行业的系统具体状况的角度来说,统筹学模型的内在潜力以及全面效能并没有得到充分的发掘。
主要是因为运筹学模型在工业工程的生产系统中有着较为巨大的潜力,在现阶段的发展中无法中分的发掘其内在优势,同时又因为时间等客观因素的限制,导致相关制作活动与现阶段的运筹学模型并不契合。
运筹学论文——旅游路线最短问题摘要:随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚,越来越多的人喜欢旅游。
而如何才能最经济的旅游也成为人民考虑的一项重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题随之出现,如何决策成为一道难题。
然而,如果运用运筹学方法来解决这一系列的问题,那么这些问题就能迎刃而解。
本文以旅游路线最短问题为列,给出问题的解法,确定最短路线,实现优化问题。
关键词:最短路 0-1规划约束条件提出问题:从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。
各城市之间的航线距离如下表:问题分析:1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先后到达的关系),有些城市之间就可能没有这种关系,所以给出的两两城市距离中有些在最后的最短路线距离计算中使用到了,有些则没有用。
这是一个0-1规划的问题,也是一个线性规划的问题。
2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就导致了这六个城市其中有的两个城市是直接相连的,另外也有两个城市是不连接的。
这就可以考虑设0-1变量,如果两个城市紧接着去旅游的则为1,否则为0。
就如同下图3.因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。
LINGO解法:为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点,将其标为1)重庆北京杭州桂林哈尔滨昆明1 2 3 4 5 6假设:设变量x11。
如果x11=1,则表示城市i与城市j直接相连(即先后紧接到达关系),否则若x11=0,则表示城市i与城市j不相连。
特别说明:xij和xji是同一变量,都表示表示城市i与城市j是否有相连的关系。
这里取其中xij (i<j)的变量。
模型建立:由于这是一个最短路线的问题,且变量已经设好。
运筹学论文-运筹学案例分析报告一、背景运筹学是一门研究解决实际问题的科学,它专注于提高组织、企业和政府的生产效率,优化执行过程,使其能够有效地获得最大价值。
本案例旨在探讨一个具体的现实例子,概述如何使用运筹学进行解释以及识别和解决可能存在的潜在问题。
二、案例概述本案例涉及解决一个具体的实际问题,即如何利用有限的资源,有效的改变一个公司的业务流程,以降低其成本。
该方案涉及一家名为“关爱社会”的非营利组织,致力于为社会弱势群体提供支持和帮助。
该机构的活动主要集中在受支持者的社区中,提供技能培训、帮扶活动、营养指导和教育补助等服务。
该机构最近发现,其资金有限,从而导致社会服务无法有效现实受助者的需求。
通过运筹学方法分析,可以辨别机构拥有资源的可用性,从而重新安排和调整该机构对社会服务的投入,以优化执行过程。
三、运筹学原理运筹学方法可以帮助分析和解决实际问题。
运用运筹学,可以避免直接决策而遭受不必要的损失,改善组织的绩效,使其能够有效的改善锁定的资源,同时有效地改变业务流程,以获得最大价值。
四、案例分析针对本案例,我们首先对“关爱社会”机构的资源进行评估和分析,这包括人力资源、金融资源、工作经验和机构的实力等。
这样,我们可以更好的识别和分配公司的资源,以实现最优的结果。
在进而分析资源可用性的基础上,另一项重要的工作是对“关爱社会”机构所提供的服务的全面审查和审查。
由于公司的资源有限,因此必须仔细考虑每一项服务的重要性,并以此来决定机构把资源投入在哪里。
调整业务流程,将投入重点放到最需要的领域上是提高服务质量的最佳选择。
五、结论通过本次运筹学案例分析,我们有了更清晰的认识,即如何使用运筹学方法有效的改善现有的业务流程,使其能够更好的服务于受支持者的社区。
只有有效的资源安排和有效调整,“关爱社会”才能真正实现自身的价值,而运筹学正能够提供这样的解决方案。
浅谈企业管理中的运筹学***********学院摘要:运筹学自二战以来开始打来那个应用在除战争以外的许多领域,尤其在企业管理中表现的尤为突出。
运筹学的思想贯穿了企业管理的始终,在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用,对企业管理的发展产生重要影响。
本文主要通过对运筹学和企业管理的分析,浅谈了运筹学在企业管理中的具体应用以及运筹学对企业管理的影响。
关键词:运筹学;企业管理;企业发展运筹学是一门定量优化的决策科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。
运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。
它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。
运筹学早期应用在军事领域,二战后转为民用,并且在企业管理中的越来越广泛,取得了良好的经济效益。
运筹学的思想贯穿了企业管理的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。
优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。
只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。
作为企业的管理者,把握并运用好运筹学的理念定会取得“运筹帷幄之中,决胜千里之外”之功效。
一、运筹学的原则及工作步骤、企业管理的基本阐述运筹学在其发展过程中形成了一些原则,如:合伙原则、催化原则、互相渗透原则、独立原则、宽容原则、平衡原则。
而这些原则在企业管理中也得到了充分的应用。
比如说,在管理学中,“协调”是管理的重要职能之一,强调彼此之间的合作,管理者必须在组织分工的基础之上努力争取合作,使个人、部门目标与企业整体目标保持一致[1]。
1.线性规划1.1图解法1.1.1解题步骤1.图解法步骤2.建立坐标系3.找出可行域4.绘出目标函数图形5.求出最优解1.2单纯形法1.2.1 解题思想:保持最优性不断改善解的可行性1.2.2 解题步骤1.找到初始可行解确定基变量,没有合适的基变量时,引入人工变量。
2.列出单纯型表,通过检验系数σ=Cj-C B B-Pj 确定进基变量,通过θ=B-b-B-a 确定出基变量,不断迭代达到最优解。
3.判断标准:在Max的条件下,σ全部小于0时,停止迭代,达到最优解。
1.2.3 解的几种情况在终表上的体现1.唯一最优解:终表上所有非基检验数均小于0。
2.多重最优解(无穷):终表上存在非基检验数等于0,通过终表可以写出一个最优解X* Max Z。
3.无界解:终表上,存在正检验数相应的系数列中的所有系数均为非正(两出基θ均小于0)。
4.无解(只出现在使用人工变量的情况下)Ⅰ.大M法:最优解有X人工(X人工不等于0).Ⅱ.两阶段法:Minω不等于0,无解。
1.3对偶单纯形法1.3.1 解题思想:保证最优性,改善可行性1.3.2 解题步骤1.前提:保障最优性:σ=c j-z j=c j-C B B-1≤0。
2.检查可行性:检查B-1b(常数项),若非负,则得到最优解,若还有负数,则开始下一步。
3.判断出基变量:找出B-1b中负数最小值,min(B-1b I B-1b<0),这个数所在对应变量Xi就是出基变量。
4.判断进基变量:看出基变量Xi所在行的每一个系数aij,若aij≥0,则无可行解,若存在aij<0,则计算θ=min((σ/aij)I aij<0).5.主元迭代(初等行变换),直到B-1b≥0时结束。
2.对偶问题2.1对偶问题的一般性质1.对偶性:对偶问题的对偶问题是原问题。
2.弱对偶性:若拔X是原问题的可行解,则拔Y是对偶问题的可行解,cX≤Yb(出让价格大于盈利)。
3.无界性:若原问题(对偶)为无界解,则其对偶问题(原问题)无可行解。
.毕业设计(论文)论文(设计)题目:运筹学在运输问题中的应用姓名¥¥¥学院¥¥学院专业¥¥¥年级¥¥¥级指导教师¥¥¥2013年5 月23 日.目录摘要 (1)正文 (3)1、前言 (3)1.1论文研究的背景与意义 (3)1.2运筹学在运输问题中的现状 (3)1.3本文的主要工作及结构安排 (3)2、预备知识 (4)2.1运筹学的基本问题及概念 (4)2.11运筹学简介: (4)2.12 线性规划问题 (5)2.13多阶段决策问题 (6)2.14动态规划的最优化原理 (6)2.2几种常见的运输物流问题 (7)2.21最短路问题 (7)2.22产销平衡的运输问题 (7)2.23产销不平衡的运输问题 (7)2.3解决运输问题的几种方法 (8)2.31最小元素法 (8)2.32伏格尔方法(Vogel) (8)2.33表上作业法 (9)3、经典运输问题中运筹学的应用 (9)3.1最短路问题 (9)3.11提出问题 (9)3.12分析问题 (10)3.13解决问题 (10)3.2产销平衡的运输问题 (12)3.21提出问题 (12)3.22分析问题 (12)3.23解决问题 (13)3.24结果分析: (23)4、总结与反思 (23)参考文献: (24)附录 (25)摘要运筹帷幄之中,决胜千里之外。
运筹学作为一种科学决策的方法,早在《孙子兵法》中其思想和方法就被古人实施运用。
在运输问题领域里,可以运用运筹学的知识,通过分析、计算得出最优的方案,以提高运输效率,节约运输成本,为运输企业和整个社会创造更高的经济效益。
随着社会的发展和人们生活水平的提高,运输路线越来越复杂、运输企业也越来越多,在资源和人员有限的情况下,进行资源的优化配置和人员的合理分工,显得越来越重要。
本文将从理论知识和实际应用这两大方面,对运输方案的优化进行全面、系统的解析,力求能让更多的人了解运筹学,应用运筹学,在提高企业效益的基础上,为运筹学的发展壮大尽一份力。
运筹学课程设计摘要作为一门应用科学,运筹学是用科学的方法研究现实世界运行系统的现象和其中具有典型意义的优化问题,从中提出具有共性的模型,寻求模型的解决方法。
随着经济的不断发展及运筹学自身的渐趋完善,运筹学模型在经济领域中已经得到了越来越多的广泛应用,在现代经济管理中起着日胜一日的重要作用。
资源是人们进行生产活动从事生产经营的基础,然而资源总是具有经济性和稀缺性的,这就决定了资源的合理利用、科学分配有着极其重要的现实意义。
本文通过对该食品工厂基本情况的调查、分析,进行合理的理想化及简化处理,建立出该食品工厂最大总产值的策略研究的通用线型规划模型;结合模型的具体特点,用手算求解及计算机软件求解两种方法实现模型的求解,并对该数学模型的解进行结果分析与情况讨论;将所得模型应用于案例的具体背景,得出该种情况之下工厂的最佳分配方案以及最大总产值,同时作以灵敏度分析;追加三个后续问题,并进行问题求解和相关分析;针对各步骤分析得出最终结论,加以总结,同时提出具体改进建议和相应对策。
关键词:生产配比线型规划总产值最大化灵敏度分析●正文 (3)1.问题描述 (3)1.1背景描述 (3)1.2主要内容与目标 (3)1.3研究的意义 (3)1.4研究的主要方法与思路 (4)2.数学模型的建立 (4)2.1基础数据的确定 (4)2.2变量的设定 (5)2.3目标函数的建立 (5)2.4限制条件的确定 (5)2.5模型的建立 (6)3.模型的求解及结果分析 (6)3.1使用运筹学方法进行手算求解 (6)3.2使用运筹学软件进行计算机求解 (10)3.3解的分析与评价 (12)4.结论与建议 (13)4.1研究结论 (13)4.2建议与对策 (13)●感言及致谢 (15)●参考文献 (16)1.问题描述1.1背景描述鉴于市场竞争日益激烈,消费者需求渐趋多样,工厂——作为市场消费品的产出源头——惟有对这种形势深刻理解、深入分析,同时具体地应用于生产实践的计划和安排,才能使自身获益,不断发展壮大,在汹涌的商业浪潮中屹立不倒。
运筹学论文论文摘要:运筹学是一门定量决策科学,它利用定量分析的方法(数学、管理科学、计算机科学)进行科学决策以实现最有效的管理来获得满意的经济效益,是现代管理的重要理论基础。
以下是结合个人所学专业,经济学,对运筹学的一些理解。
一、运筹学的产生人们一般认为运筹学最早出现在第二次世界大战初期,英国军事部门迫切需要研究如何将非常有限的屋子以及人力分配与使用到各种军事活动中,已达到最好的作战效果。
在世界第二次大战期间,德国已经拥有一支强大的空军,飞机从德国起飞17分钟即到达英国本土。
在如此短的时间内,如何预警和拦截成为一大难题。
1935年,为了对付德国空军力量的严重威胁,德国在海岸的鲍德西成立了关于作战控制技术的研究机构。
1938年,鲍德西科学小组负责人把他们从事的工作称为运筹学。
因此,人们把鲍德西作为运筹学的诞生地,将1935—1938年这一段时间作为运筹学产生的酝酿时期。
第二次世界大战期间,运筹学成功地解决了许多重要作战问题,显示了科学的巨大物质威力,这也为运筹学后来的发展铺平了道路。
当战后的工业恢复繁荣时,由于组织内与日俱增的复杂性和专门化所产生的问题,使人们认识到这些问题基本上与战争中所曾面临的问题类似,只是具有不同的现实环境而已,运筹学就这样潜入工商企业和其它部门,在50年代以后得到了广泛的应用。
对于系统配置、聚散、竞争的运用机理深入的研究和应用,形成了比较完备的一套理论,如规划论、排队论、存贮论、决策论等等,由于其理论上的成熟,电子计算机的问世,又大大促进了运筹学的发展,世界上不少国家已成立了致力于该领域及相关活动的专门学会,美国于1952年成立了运筹学会,并出版期刊《运筹学》,世界其它国家也先后创办了运筹学会与期刊,1957年成立了国际运筹学协会。
二、运筹学在当今社会的发展与应用运筹学发展至今,它的应用已经不仅仅局限于军事领域了,运筹学已被广泛应用于工商企业,民政企业等研究组织内的统筹协调问题,既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效。
运筹学毕业论文运筹学毕业论文运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涵盖了数学、统计学和计算机科学等多个学科的知识,通过建立数学模型和运用各种优化方法,帮助人们解决实际问题。
作为一门交叉学科,运筹学在现代社会中扮演着重要的角色,对于提高效率、优化资源利用以及解决各种决策问题具有重要意义。
一、运筹学的基本原理运筹学的基本原理可以概括为三个要素:模型建立、优化方法和决策分析。
首先,模型建立是运筹学的基础。
通过对问题进行抽象和建模,将实际问题转化为数学问题,从而能够运用数学方法进行求解。
模型建立需要考虑问题的目标、约束条件以及相关的变量和参数,以此来描述问题的本质和特点。
其次,优化方法是解决运筹学问题的核心。
优化方法包括线性规划、整数规划、动态规划、图论等多种方法,根据问题的性质和特点选择不同的方法进行求解。
优化方法的目标是寻找问题的最优解,即在满足约束条件的前提下,使目标函数达到最小或最大值。
最后,决策分析是对优化结果进行评估和决策的过程。
通过对优化结果进行分析,评估其对问题的解决程度和可行性,从而为决策者提供决策依据。
决策分析需要综合考虑问题的经济、社会和环境等方面因素,以及决策者的偏好和目标。
二、运筹学在实际问题中的应用运筹学在各个领域都有广泛的应用,下面以物流管理和生产调度为例,介绍其在实际问题中的应用。
物流管理是指对物流过程进行规划、组织、实施和控制的管理活动。
在物流管理中,通过建立供应链网络模型和运用优化方法,可以实现最优的物流路径选择、仓库位置布局、运输调度等,从而降低物流成本、提高物流效率。
例如,通过运筹学方法,可以确定最佳的配送路线和配送车辆数量,使得物流成本最小化,同时满足客户需求。
生产调度是指对生产过程进行规划和控制的管理活动。
在生产调度中,通过建立生产调度模型和运用优化方法,可以实现最优的生产计划和生产调度,从而提高生产效率、降低生产成本。
例如,在工厂生产调度中,通过运筹学方法可以确定最佳的生产顺序和机器调度,使得生产效率最大化,同时满足交货期限和资源约束。
运输问题
摘要:
运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在。
引言:
物流的运输则专指“物”的载运及输送。
它是在不同地域围间(如两个城市.两个工厂之间,或一大企业相距较远的两车之间),以改变“物”的空间位置为目的的活动,是对“物”进行的空间位移。
运输一般分为运输和配送。
关于运输和配送的区分,有许多不同的观点,可以这样来说,所有物品的移动都是运输,而配送则专指短距离、小批量的运输。
因此,可以说运输是指整体,配送则是指其中的一部分,而且配送的侧重点在于一个''配''字,它的主要意义也体现在''配''字上;而''送''是为最终实现资源配置的''配''而服务的。
运输功能要素。
包括供应及销售物流中的车、船、飞机等方式的运输,生产物流中的管道、传送带等方式的运输。
运输是指把人.财.物由一个地方转移到另外一个地方的过程.运输又被认为是国民经济的根本.
运输的主要工具有自行车.板车.三轮车.摩托车.汽车.火车.飞机.轮船.宇宙飞船.火箭.等等
运输按服务对象不同分为客运和货运
公共运输,泛指所有收费提供交通服务的运输方式。
轿车托运:(轿车运输)是指将汽车做为商品出厂后,通过大型汽车运输工具,到达指定地方的运输方式</CN>
运输运价的构成
发到基价,运行基价构成,货物运输杂费
零担货物年车运价=每吨运价×计费重量
整车货物每吨运价= 发到基价+运行基价×运价里程
集装箱货物每箱运价= 发到基价+运行基价×运价里程
运输问题的数学模型
某公司经营某种产品,该公司下设A、B、C三个生产厂,甲、乙、丙、丁四个销售点。
公司每天把三个工厂生产的产品分别运往四个销售点,由于各工厂到各销售点的路程不同,所以单位产品的运费也就不同案。
各工厂每日的产量、各销售点每日的销量,以及从各工厂到各销售点单位产品的运价如表4-1所示。
问该公司应如何调运产品,在满足各销售点需要的前提下,使总运费最小。
表4-1
于是可构造如下数学模型:
(;运出的商品总量等于其产量)
(;运来的商品总量等于其销量)
通过该引例的数学模型,我们可以得出运输问题是一种特殊的线性规划问题的结论,其特殊性就在于技术系数矩阵是由“1”和“0”两个元素构成的。
将该引例的数学模型做一般性推广,即可得到有个产地、个销地的运输问题的一般模型。
注意:在此仅限于探讨总产量等于总销量的产销平衡运输问题,而产销不平衡运输问题将在本章的后续容中探讨。
(;运出的商品总量等于其产量)
(;运来的商品总量等于其销量)
供应约束确保从任何一个产地运出的商品等于其产量,需求约束保证运至任何一个销地的商品等于其需求。
除非负约束外,运输问题约束条件的个数是产地与销地的数量和,即;而决策变量个数是二者的积,即。
由于在这个约束条件中,隐含着一个总产量等于总销量的关系式,所以相互独立的约束条件的个数是个。
运输问题的求解:
运输问题的求解采用表上作业法,该方法是单纯形法求解运输问题的一种特定形式,其实质是单纯形法。
既然表上作业法是一种特定形式的单纯形法,它自然与单纯形法有着完全相同的解题步骤,所不同的只是完成各步采用的具体形式。
表上作业法的基本步骤可参照单纯形法归纳如下:
1.找出初始基可行解:即要在阶产销平衡表上给出“”个数字格(基变量);
2.求各非基变量(空格)的检验数,判断当前的基可行解是否是最优解,如已得到最优解,则停止计算,否则转到下一步;
3.确定入基变量,若,那么选取为入基变量;
4.确定出基变量,找出入基变量的闭合回路,在闭合回路上最大限度地增加入基变量的值,那么闭合回路上首先减少为“0”的基变量即为出基变量;
5.在表上用闭合回路法调整运输方案;
6.重复2、3、4、5步骤,直到得到最优解。
确定初始基可行解
与一般的线性规划不同,产销平衡的运输问题一定具有可行解(同时也一定存在最优解),这一点是显然的。
确定初始基可行解的方法有很多,下面是最小元素法。
最小元素法
最小元素法的基本思想是就近供应,即从单位运价表中最小的运价开始确定产销关系,依此类推,一直到给出基本方案为止。
下面就用例4-1说明最小元素法的应用。
第一步:从表4-1中找出最小运价“1”,这表示先将B生产的产品供应给甲。
由于B 每天生产4个单位产品,甲每天需求3个单位产品,即B每天生产的产品除满足甲的全部需求外,还可多余1个单位产品。
在(B,甲)的交叉格处填上“3”,形成表4-2;将运价表的甲列运价划去得表4-3,划去甲列表明甲的需求已经得到满足。
表4-2
第二步:在表4-3的未被划掉的元素中再找出最小运价“2”,最小运价所确定的供应关系为(B,丙),即将B余下的1个单位产品供应给丙,表4-2转换成表4-4。
划去B行的运价,划去B行表明B所生产的产品已全部运出,表4-3转换成表4-5。
表4-4
第三步:在表4-5中再找出最小运价“3”,这样一步步地进行下去,直到单位运价表上的所有元素均被划去为止。
最后在产销平衡表上得到一个调运方案,见表4-6。
这一方案的总运费为86个单位。
表4-5
表4-6
最小元素法各步在运价表中划掉的行或列是需求得到满足的列或产品被调空的行。
一般情况下,每填入一个数相应地划掉一行或一列,这样最终将得到一个具有“”个数字格(基变量)的初始基可行解。
然而,问题并非总是如此,有时也会出现这样的情况:在供需关系格()处填入一数字,刚好使第个产地的产品调空,同时也使第个销地的需求得到满足。
按照前述的处理方法,此时需要在运价表上相应地划去第行和第列。
填入一数字同时划去了一行和一列,如果不加入任何补救措施的话,那么最终必然无法得到一个具有“”个数字格(基变量)的初始基可行解。
为了使在产销平衡表上有“”个数字格,这时需要在第行或第列此前未被划掉的任意一个空格上填一个“0”。
填“0”格虽然所反映的运输量同空格没有什么不同;但它所对应的变量却是基变量,而空格所对应的变量是非基变量。
表4-7
第一步在(B,甲)处填入“3”,划去甲列运价;第二步在(B,丙)处填入“1”,划去B 行运价,此二步的结果见表4-8和表4-9。
表4-8
表4-10
表4-11
表4-9中剩下的最小元素为“3”,其对应产地A的产量是4,销地丙的剩余需要量也是4,在格(A,丙)中填入“4”,需同时划去A行和丙列。
在填入“4”之前A行和丙列中除了(A,丙)之外,还有(A,乙)、(A,丁)和(C,丙)三个空格未被划去;因此,可以在(A,乙)、(A,丁)和(C,丙)任选一格填加一个“0”,不妨选择(A,乙),结果可见表4-10和表4-11。
注意这个“0”是不能填入(A,甲)或(B,丙)的,因为在填入“4”之前它们已经被划去了。
实例分析:
有三个化肥厂供应四个地区的化肥需求,假定等量化肥在这些地区的使用效果相同。
各化肥厂年产量、各地区年需要量及从各化肥厂到各地区运送单位化肥的单位运价如表38所示,试求出总的运费最节省的化肥调拨方案。
表38(单位:万吨)
这是一个产销不平衡的运输问题,总产量为160万吨,四个地区的最低需求为110万吨,最高需求为无限。
根据现有产量,除满足地区1、地区2和地区3的最低需求外,地区4每年最多能分配到60()万吨,这样其不限的最高需求可等价认为是60万吨。
按最高需求分析,总需求为210万吨,大于总产量160万吨,将此问题定义为销大于产的运输问题。
为了求得平衡,在产销平衡表中增加一个假想的化肥厂D,令其年产量为50()万吨。
各地区的需要量包含最低和最高两部分:如地区1,其中30万吨是最低需求,故这部分需求不能由假想的化肥厂D来供给,因此相应的运价定义为任意大正数M;而另一部分20万吨满足与否都是可以的,因此可以由假想化肥厂D来供给,按前面讲的,令相应运价为“0”。
凡是需求分两种情况的地区,实际上可按照两个地区来看待,这样可以将表4-38所示的运输问题转换为表39所示的运输问题。
表39 (单位:万吨)
这个问题的最优方案,如表40所示。
表40 (单位:万吨)
结论:
运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在,运用此类方法,可以大大减少成本,提高运输效率。