ANSYS命令流学习笔记14-shell单元的铺层复合材料分析
- 格式:docx
- 大小:388.62 KB
- 文档页数:6
第一步: 定义壳单元;第二步:在Options 中定义单元属性;JTk Element TypesDefined Elemcii t Types \SHKLLlGyAdd- - , fl pi.ions, . J Delete :CloseHelpA SHELL1S3 element Type optionsOptions for Th in Sheill63, Flem^nt Ty pe R 衬 No. 1 Quadrature Rule高斯枳分"-5个积分点) 梯孫枳分(1-700个枳令U个枳分点可以代表压I ayered Composite Mode *|选择貝合材料类型;55p 碗l传(coring it B[ntegration rule ID [1-9999]|设置层数〔积分点pElement Fofintildt on枳份算決冷 Gauss(l-5 PtsQ 厂 TrapP7oidal第三步:设置实常数(包括壳单元厚度,即复合板的总厚度,本例子中复合板厚为0.2cm ;铺层方向,本例中总共五层,分别为0,90,45,90,0 度。
)点ok后进入厚度设置A Coritanl ■bpdcing ol inEegrdlicMi points[atlccates thickness associated with each inteqration poiint}每桧理漫,势瀚芟.星毀印寧呈屢厂Variable spacing '•Equdl spacingWC I Cancel |Help点ok后进入铺层角度设置A尺丹I匚o Ft却tht NuOK Cdntel ] He|p至此,壳单元的属性全部定义完毕。
在建模中对几何面赋予该单元时,复合板的厚度,每层的厚度及铺层角度同时赋予,这样复合材料板建模完毕。
欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
k --> Keypoints 关键点l --> Lines 线a --> Area 面v --> Volumes 体e --> Elements 单元n --> Nodes 节点cm --> component 组元et --> element type 单元类型mp --> material property 材料属性r --> real constant 实常数d --> DOF constraint 约束f --> Force Load 集中力sf --> Surface load on nodes 表面载荷bf --> Body Force on Nodes 体载荷ic --> Initial Conditions 初始条件目标:了解命令流的整体结构,掌握每个模块的标识!文件说明段/BATCH/TITILE,test analysis !定义工作标题/FILENAME,test !定义工作文件名/PREP7 !进入前处理模块标识!定义单元,材料属性,实常数段ET,1,SHELL63 !指定单元类型ET,2,SOLID45 !指定体单元MP,EX,1,2E8 !指定弹性模量MP,PRXY,1,0.3 !输入泊松比MP,DENS,1,7.8E3 !输入材料密度R,1,0.001 !指定壳单元实常数-厚度......!建立模型K,1,0,0,, !定义关键点K,2,50,0,,K,3,50,10,,K,4,10,10,,K,5,10,50,,K,6,0,50,,A,1,2,3,4,5,6, !由关键点生成面......!划分网格ESIZE,1,0,AMESH,1......FINISH !前处理结束标识/SOLU !进入求解模块标识!施加约束和载荷DL,5,,ALLSFL,3,PRES,1000SFL,2,PRES,1000......SOLVE !求解标识FINISH !求解模块结束标识/POST1 !进入通用后处理器标识....../POST26 !进入时间历程后处理器……/EXIT,SAVE !退出并存盘以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助/ANGLE !指定绕轴旋转视图/DIST !说明对视图进行缩放/DEVICE !设置图例的显示,如:风格,字体等/REPLOT !重新显示当前图例/RESET !恢复缺省的图形设置/VIEW !设置观察方向/ZOOM !对图形显示窗口的某一区域进行缩放第三天生成关键点和线部分1.生成关键点K,关键点编号,X坐标,Y坐标,Z坐标例:K,1,0,0,02.在激活坐标系生成直线LSTR,关键点P1,关键点P2例STR,1,23.在两个关键点之间连线L,关键点P1,关键点P2例,1,2注:此命令会随当前的激活坐标系不同而生成直线或弧线4.由三个关键点生成弧线LARC,关键点P1,关键点P2,关键点PC,半径RAD例ARC,1,3,2,0.05注:关键点PC是用来控制弧线的凹向5.通过圆心半径生成圆弧CIRCLE,关键点圆心,半径RAD,,,,圆弧段数NSEG例:CIRCLE,1,0.05,,,,46.通过关键点生成样条线BSPLIN,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6例:BSPLIN,1,2,3,4,5,67.生成倒角线LFILLT,线NL1,线NL2,倒角半径RAD例FILLT,1,2,0.0058.通过关键点生成面A,关键点P1,关键点P2,关键点P3,关键点P4,关键点P5,关键点P6,P7,P8...例:A,1,2,3,49.通过线生成面AL,线L1,线L2,线L3,线L4,线L5,线L6,线L7,线L8,线L9,线L10例:AL,5,6,7,810.通过线的滑移生成面ASKIN,线NL1,线NL2,线NL3,线NL4,线NL5,线NL6,线NL7,线NL8,线NL9例:ASKIN,1,4,5,6,7,8注:线1为滑移的导向线第四天目标:掌握常用的实体-面的生成生成矩形面1.通过矩形角上定位点生成面BLC4,定位点X方向坐标XCORNER,定位点Y方向坐标YCORNER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH例:BLC4,0,0,5,3,02.通过矩形中心定位点生成面BLC5,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,矩形宽度WIDTH,矩形高度HEIGHT,矩形深度DEPTH注:与上条命令的不同就在于矩形的定位点不一样例:BLC5,2.5,1.5,5,3,03.通过在工作平面定义矩形X.Y坐标生成面RECTNG,矩形左边界X坐标X1,矩形右边界X坐标X2,矩形下边界Y坐标Y1,矩形上边界Y坐标Y2 例:RECTNG,0,5,0,3生成圆面4.通过中心定位点生成实心圆面CYL4,定位点X方向坐标XCENTER,定位点Y方向坐标YCENTER,圆面的内半径RAD1,内圆面旋转角度THETA1,圆面的外半径RAD2,外圆面旋转角度THETA2,圆面的深度DEPTH注:如要实心的圆面则不用RAD2,THETA2,DEPTH例:CYL4,0,0,5,3605.生成扇形圆面命令介绍如上例1实心扇形:CYL4,0,0,5,60例2扇形圆环:CYL4,0,0,5,60,10,60例3整的圆环:CYL4,0,0,5,360,10,360注:同时可通过定义圆面的深度以生成柱体6.通过在工作平面定义起始点生成圆面CYL5,开始点X坐标XEDGE1,开始点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2,圆面深度DEPTH例:CYL5,0,0,2,2,7.通过在工作平面定义内外半径和起始角度来生成圆面PCIRC,内半径RAD1,外半径RAD2,起始角度THETA1,结束角度THETA2例CIRC,2,5,30,1808.生成面与面的倒角AFILLT,面1的编号NA1,面2的编号NA2,倒角半径RAD例:AFILLT,2,5,2第五天目标:掌握多边形面和体的生成1.生成多边形面命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA例:RPR4,4,0,0,0.15,30注:这条命令可通过定义不同的NSIDES生成三边形,四边形,...,八边形2.生成多边形体命令:RPR4,多边形的边数NSIDES,中心定位点X坐标XCENTER,中心定位点Y坐标YCENTER,中心定位点距各边顶点的距离RADIUS,多边形旋转角度THETA,多边形的深度DEPTH例:RPR4,4,0,0,0.15,30,0.1注:多边形体和面命令唯一的不同就在于深度DEPTH的定义到此,关键点,线,面的生成讲解已结束第六天目标:掌握体的生成命令1.通过关键点生成体命令:V,关键点P1,关键点P2, P3, P4, P5, P6, P7, P8例:V,4,5,6,7,15,24,252.通过面生成体命令:VA,面A1,面A2, A3, A4, A5, A6, A7, A8, A9, A10例:VA,3,4,5,8,103.通过长方形角上定位点生成体命令:BLC4该命令前面在讲生成面的时候已作介绍,唯一的不同在于深度DEPTH的定义.4.通过长方形中心定位点生成面命令:BLC55.通过定义长方体起始位置生成体命令:BLOCK,开始点X坐标X1,结束点X坐标X2, Y1, Y2, Z1, Z2例:BLOCK,2,5,0,2,1,36.生成圆柱体基本命令通生成圆形面,不同在于DEPTH的定义基本命令:CYL4基本命令:CYL5基本命令:CYLIND7.生成棱柱基本命令通生成多边形,不同在于DEPTH的定义基本命令:RPR48.通过球心半径生成球体命令:SPH4,球心X坐标XCENTER,球心Y坐标YCENTER,半径RAD1,半径RAD2例:SPH4,1,1,2,59.通过直径上起始点坐标生成球体命令:SPH5,起点X坐标XEDGE1,起点Y坐标YEDGE1,结束点X坐标XEDGE2,结束点Y坐标YEDGE2 例:SPH5,2,5,7,610.在工作平面起点通过半径和转动角度生成球体命令:SPHERE,半径RAD1,半径RAD2,转动角度THETA1,转动角度THETA2例:SPHERE,2,5,0,6011.生成圆锥体命令:CONE,底面半径RBOT,顶面半径RTOP,底面高Z1,顶面高Z2,转动角度THETA1,转动角度THETA2 例:CONE,10,20,0,50,0,180第七天目标:掌握常用的布尔操作命令1.沿法向延伸面生成体命令:VOFFST,面的编号NAREA,面拉伸的长度DIST,关键点增量KINC例:VOFFST,1,2,,2.通过坐标的增量延伸面生成体命令:VEXT,面1的编号NA1,面2的编号NA2,增量NINC,X方向的增量DX,Y方向的增量DY,Z方向的增量DZ, RX, RY, RZ例:VEXT,1,5,1,1,2,2,3.面绕轴旋转生成体命令:VROTAT,面1的编号NA1,面2的编号NA2,NA3, NA4, NA5, NA6,定位轴关键点1编号PAX1,定位轴关键点2编号PAX2,旋转角度ARC,生成体的段数NSEG例:VROTAT,1,2,,,,,4,5,360,44.沿线延伸面生成体命令:VDRAG,面1的编号NA1,面2的编号NA2, NA3, NA4, NA5, NA6,导引线1的编号NLP1,导引线2的编号NLP2, NLP3, NLP4, NLP5, NLP6例:VDRAG,2,3,,,,,8,5.线绕轴旋转生成面命令:AROTAT,线1的编号NL1, NL2, NL3, NL4, NL5, NL6,定位轴关键点1的编号PAX1,定位轴关键点2的编号PAX2,旋转角度ARC,生成面的段数NSEG例:AROTAT,3,4,,,,,6,8,360,46.沿线延伸线生成面命令:ADRAG,线1的编号NL1,NL2, NL3, NL4, NL5, NL6,导引线1的编号NLP1, NLP2, NLP3, NLP4, NLP5, NLP6例:ADRAG,3,,,,,,87.同理可以延伸关键点,相应的命令如下:LROTAT, NK1, NK2, NK3, NK4, NK5, NK6, PAX1, PAX2, ARC, NSEGLDRAG, NK1, NK2, NK3, NK4, NK5, NK6, NL1, NL2, NL3, NL4, NL5, NL6各选项的含义雷同于上.8.延伸一条线命令EXTND,线的编号NL1,定位关键点编号NK1,延伸的距离DIST,原有线是否保留控制项KEEP例EXTND,5,2,1.5,09.布尔操作:加命令COMB,线编号NL1,线编号NL2,是否修改控制项KEEP例COMB,2,5注:对面和体的相应为:VADD,AADD.选项的含义都类似10.布尔操作:粘接和搭接搭接的核心关键字为:OVLAP,随实体的不同略有不同,如:对体为VOVLAP对面为AOVLAP对线为LOVLAP粘接的核心关键字为:GLUE,随实体的不同略有不同,如:对体为VGLUE对面为AGLUE对线为LGLUE但其他的选项的含义是类似的,这里就不再累述.目标:掌握体素的移动,复制,删除,映射一.移动关键点命令:KMODIF,关键点编号NPT,移动后的坐标X,移动后的坐标Y,移动后的坐标Z例:KMODIF,5,0,0,2二.移动复制关键点命令:KGEN,复制次数选项ITIME,起始关键点编号NP1,结束关键点编号NP2,增量NINC,偏移DX,偏移DY,偏移DZ,关键点编号增量KINC,生成节点单元控制项NOELEM,原关键点是否被修改选项IMOVE例:KGEN,2,1,10,1,2,2,2,,,,注:IMOVE选项说明,设置为0时,不修改原关键点,即为复制,设置为1时,修改原关键点,即为移动,从而通过控制IMOVE选项实现移动或复制.三.移动复制线命GEN,ITIME,NL1,NL2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上四.移动复制面命:AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上五.移动复制体命令:VGEN,ITIME,NV1,NV2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE各选项的含义同上六.修改面的法向方向命令:ANORM,面的编号ANUM,单元的法向方向是否修改选项NOEFLIP例:ANORM,2七.体素的删除基本的命令为:*DELE组合不同的关键字形成不同的命令如:KDELE,LDELE,ADELE,VDELE基本的命令格式为:*DELE,起始体素编号N*1,结束体素编号N*2,增量NINC,是否删除体素下层的元素选项KSWP如DELE,2,5,1,1八.体素的映射基本的命令为:*SYMM组合不同的关键字形成不同的命令如:KSYMM,LSYMM,ARSYM,VSYMM基本的命令格式为:*SYMM,映射轴选项NCOMP,起始体素编号N*1,结束体素编号N*2,增量NINC,关键点编号增量KINC,NOELEM, IMOVE如:VSYMM,X,1,10,1,,,,ANSYS 的单位(讲得十分透)ANSYS 软件并没有为分析指定系统单位,在结构分析中,可以使用任何一套自封闭的单位制(所谓自封闭是指这些单位量纲之间可以互相推导得出),只要保证输入的所有数据的单位都是正在使用的同一套单位制里的单位即可。
ANSYS复合材料仿真分析在ANSYS 中可以定义多种材料属性:主菜单-> preprocesser -> Material Prop -> Material Models -> 打开Define Material Model Behavior 对话框-> 顶部菜单中:Material -> New Model ... -> 弹出Define Material ID 对话框-> 定义更多的材料ANSYS复合材料仿真分析2009-05-23 23:31复合材料,是由两种或两种以上性质不同的材料组成。
主要组分是增强材料和基体材料。
复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。
复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。
目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。
飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。
板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。
此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。
一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。
采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。
在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。
复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。
这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。
基于ANSYS铺层方向对复合材料的力学影响分析本文首先建立了一个复合材料的层合板模型,并利用ansys研究了不同铺层方向对其力学性能的影响,研究表明:5/-45/45/-45的等效应力最大;铺层方向为0/90/90/0的等效应力最小,为复合材料的优选提供了一种途径。
1 引言复合材料是一种多相材料,由多种性质极不相同的材料组成。
先进的复合材料在本世纪60年代初才发明,最具代表性的为聚合物为基的高性能的碳纤维和硼纤维复合材料。
纤维和基体的力学性能有很大的差异,他们组合起来构成的纤维增强复合材料在弹性常数、线膨胀系数及强度特性方面必然会表现出明显的各向异性。
通过对纤维取向的设计制成的复合材料结构会出现程度不同的各向异性,复合材料性能的可设计性,是复合材料所特有的主要优点。
纤维复合材料是由两种或两种以上不同强度和模量的材料所构成,在纤维和基体材料选定后,尚有许多材料参数和几何参数可变动,而且形成层合结构时每一层的铺设方向又可随意安排,这样就可以人为的改变组分材料的种类、含量,以及铺层方向和顺序。
在一定范围内满足设计中对材料强度、刚度和方向性的要求,可是结构的性能、重量和经济指标等都做到合理的优化组合。
为设计人员提供了一种在一定范围内可随意设计的材料,达到结构设计与材料设计高度统一的优化设计的目的。
冲击现象的共同特点是载荷强度高,作用时间短,尤其作用时间短是区别于其他一般力学现象的重要特征。
在冲击现象中,作用时间一般为毫秒、微秒,甚至毫微秒数量级,在这么短时间内完成施加高强度载荷,以及在被作用物体内造成极高的压力或应力,引起被作用物体内介质运动和材料破坏,这是一系列随时间变化的动态过程。
与冲击效应有关的主要复合材料层合板的材料参数,是层合板的密度和硬度等。
密度越大、硬度越高,由地面冲击反射所造成的层合板破坏程度越严重,对于小质量、高速撞击的弹体来说,高强度合金钢、钨合金和铀合金才是制作弹体的理想材料。
本文研究了不同铺层方式对其力学性能的影响规律。
第四章复合材料计算实例在有了前几章知识做铺垫,这一章我们来学习两个复合材料分析的例子,加深复合材料分析的理解,也希望读者能从中收获一些经验。
在这里将第二章的流程图再次拿出来,进一步熟悉ANSYS有限元分析的基本过程。
图7 Ansys 结构分析流程图4.1 层合板受压分析4.1.1 问题描述层合板指的是仅仅由FRP层叠而成的复合板材,中间不包含芯材,板材的性能不仅与纤维的弹性模量、剪切模量有关,还与纤维的铺层方向有着密切关系。
本例中的板材有4层厚度为0.025m的单元板复合而成,单元板的铺层方向为0°、90°、90°、0°,见图13所示。
单元板的材料属性见表4.1。
表 4.1 单元板材料属性EX/MP EY/MP EZ/MP GXY/MP GYZ/MP GXZ/MP PRXY PRYZ PRXZ12.5 300 300 50 20 50 0.25 0.25 0.01图13 复合材料板4.1.2 求解步骤根据问题描述,所要分析的问题为壳体结构的复合材料板,可以采用SOLID46单元建立3D有限元模型进行分析。
结合图7的一般步骤进行分析。
步骤一:选取单元类型,设置单元实常数⑴、在开始一个新分析前,需要指定文件保存路径和文件名。
文件保存路径GUI:【Utility Menu】|【File】|【Change Directory】见图14指定新的文件名GUI:【Utility Menu】|【File】|【Change Jobname】见图15所示图14 指定文件保存路径图15 修改文件名⑵、选取单元类型1)选取单元类型的GUI操作:【Main Menu】|【Preprocessor】|【Element Type】|【Add/Edit/Delete】,执行后弹出Element Types对话框。
2)在Element Types对话框点击Add定义新的单元类型,弹出“Library of Element Types”对话框,见图16所示,按图中所示选择,单元类型参考号输入框中输入数字1。
ansys复合材料铺层方向选择集警告复合材料是一种由两种或两种以上不同性质的材料组成的材料,通过它们的相互作用形成新的性能更优异的材料。
复合材料在航空航天、汽车、建筑和体育器材等领域得到广泛应用。
在设计复合材料结构时,铺层方向选择是一个非常重要的决策,它直接影响着复合材料的力学性能和使用寿命。
然而,ansys在复合材料铺层方向选择集警告中提醒我们需要谨慎选择。
我们来了解一下什么是复合材料的铺层方向。
复合材料的铺层方向是指纤维的方向,纤维通常是以纤维增强材料的形式存在于复合材料中,如碳纤维增强复合材料。
纤维的方向决定了复合材料的强度和刚度。
不同的铺层方向可以使复合材料在不同方向上具有不同的强度和刚度,因此铺层方向选择对于复合材料的设计至关重要。
ansys在复合材料铺层方向选择集警告中提醒我们,需要避免一些常见的错误。
首先,我们需要避免将铺层方向选择集限定在一个单一的方向上。
单一方向的铺层会导致材料在其他方向上的性能较差,容易出现断裂和破损。
因此,应该选择多个铺层方向,以提高复合材料在不同方向上的力学性能。
我们需要避免在铺层方向选择集中过于依赖材料的强度和刚度。
虽然材料的强度和刚度是选择铺层方向的重要因素,但我们不能只考虑这一点。
还需要考虑到复合材料在实际使用中的应力和载荷情况,选择适合的铺层方向来满足设计要求。
ansys还提醒我们要避免在铺层方向选择集中忽视材料的疲劳性能。
复合材料在长期使用中容易出现疲劳破坏,因此在选择铺层方向时,需要考虑疲劳性能,以延长复合材料的使用寿命。
ansys还强调了铺层方向选择集的重要性。
复合材料的铺层方向选择直接影响着结构的性能和可靠性。
因此,在设计复合材料结构时,需要进行详细的分析和优化,选择适合的铺层方向。
复合材料的铺层方向选择是一个非常重要的决策,它直接影响着复合材料的力学性能和使用寿命。
ansys在复合材料铺层方向选择集警告中提醒我们需要谨慎选择,避免一些常见的错误。
最新Ansys复合材料结构分析总结汇总A n s y s复合材料结构分析总结Ansys复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。
(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys 中都有相应的处理方法。
笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL语言),下面就重点写Ansys的内容。
! ANSYS命令流学习笔记14-shell单元的铺层复合材料分析!学习重点:
!1、熟悉复合材料的材料特点
工程应用中典型的复合材料为纤维增强复合材料。
玻璃纤维增强塑料(玻璃钢)、碳纤维、石墨纤维、硼纤维等高强度和高模量纤维。
复合材料各层为正交各向异性材料(Orthotropic)或者横向各向异性材料(Transversal Isotropic),材料的性能与材料主轴的取向有关。
各向异性Anisotropic,一般的各项同性材料需要两个材料参数弹性模量E和泊松比v。
而各向异性在XYZ有着不同的材料属性,而且拉伸行为和剪切行为互相关联。
定义其几何方程需要21个参数。
正交各向异性orthotropic,在XYZ有着不同的材料属性,而且拉伸行为和剪切行为无关,定义材料需要9个参数:Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz。
横向各向异性Transversal Isotropic,属于各向异性材料,但是在某个平面上表现出二维上的各向同性。
!2、熟悉复合材料分析所用的ANSYS单元
复合材料单元关键在于能够实现铺层。
不同截面属性的梁单元(beam188, beam189, elbow290),2D对称壳单元(shell208, shell209),3D铺层壳单元(shell181, shell281, shell131, shell132),3D铺层实体单元(solid185, solid186, solsh190, solid278, solid279),均能实现复合材料的搭建。
其中Beam单元和2D对称壳单元很少使用。
SHELL91、SHELL99、SOLID46、SOLID191用于一些以前的分析教程中,但是现在这些单元已经被淘汰,最好选择下列单元区替代他们。
用越来越少的单元做越来越多的事情也是趋势。
Shell208和shell209,2D对称壳单元
前者为2节点3自由度单元,后者为3节点3自由度单元,均能用于薄板和中厚板结构(L/h > 5-8)。
能够用于复合材料铺层,三明治结构建模。
shell181和shell281, 3D铺层壳单元
前者为4节点6自由度单元,后者为8节点6自由度单元,均能用于薄板和中厚板结构(L/h > 5-8)。
能够用于复合材料铺层,三明治结构建模。
复合材料计算精度由一阶剪切变形理论决定。
shell131, shell132为热分析单元,单元类型分别类似于shell181,shell281。
[注:经典变形理论假设变形后的中位线仍然垂直于中面,且长度不变。
一阶变形理论假设变形后的法线仍然为直线且长度不变。
三阶阶变形理论假设变形后的法线为三阶曲线。
]
solid185和solid186, 3D铺层实体单元
前者为8节点3自由度单元,后者为20节点3自由度单元,用于厚板和实体的复合材料分析,均为六面体单元,均可退化为六棱柱单元。
Solid278, solid279为热分析单元,单元类型分别类似于solid185,solid186。
Solsh190,3D铺层实体壳单元
8节点3自由度单元,类似实体单元,但是用于薄板和中厚度板的壳结构分析,其结构行为遵循一阶剪切变形理论。
!3、熟悉复合材料的失效准则
失效准则用于获知在所加载荷下,各层是否失效。
用户可从三种预定义好了的失效准则中选择失效准则,或者自定义多达六种的失效准则。
三种预定义失效准则是:最大应变失效准则,它允许有九个失效应变;
最大应力失效准则,它允许有九个失效应力;
Tsai-Wu失效准则,它允许有九个失效应力和三个附加的耦合系数,类似Von Mises 应力将拉压状态综合考虑。
失效准则还有Tsai-Hill,Hashin,Puck,LaRC,Cuntze,Face Sheet Wrinkling,Core Failure,Hoffman等,需要根据场合需要选择分析,以后有机会详细展开。
!4、 ACP分析结果与APDL分析结果的对比
本例子采用ACP进行分析时,发现与APDL分析结果不同,不知道什么原因。
有可能是铺层问题,也有可能是单位问题。
但是并没有找出问题所在,,尴尬。
如有高手,请评论区留言。
ACP铺层非常直观,而APDL铺层不容易分辨。
以后要使ACP和APDL结果一致,懂得其原理之后,尽量使用ACP进行处理。
!5、 APDL分析步骤
(1) 定义各向异性材料,包括各向弹性模量、泊松比、剪切模量,应力失效参数,应变失效参数。
(2) 铺层。
(3) 建立模型,施加边界条件
(4) 定义求解条件。
(5) 求解。
(6) 后处理查看各层应力位移结果,查看危险系数。
!问题描述
! 一个长方形层合板,长0.05m,宽0.02m,每层厚度5e-4m,共6层,铺层角度为0,-30,30,-45,45,0。
力F=10N。
复合材料为横向正交各向异性Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz分别为195e9Pa, 35e9Pa, 35e9Pa,0.28, 0.3, 0.3, 15e9Pa, 3.78e9Pa, 15e9Pa。
应力失效参数:+X:767E6Pa; -X:392E6Pa; +Y:20E6Pa; -Y:70E6Pa; +Z:30E6Pa; -
Z:55E6Pa; Sxy: 41E6Pa; Syz: 30E6Pa; Sxz: 41E6Pa。
应变失效参数:+X:0.05; -X:0.045; +Y:0.08; -Y:0.06; +Z:0.04; -Z:0.045; Sxy: 0.035; Syz: 0.042; Sxz:0.025。
!APDL命令:
finish
/clear
/title, composite
/prep7
et,1,shell181 !选择单元181
keyopt,1,8,1 !保存每一层的数据
mptemp,1,0
mpdata,ex,1,,195e9
mpdata,ey,1,,35e9
mpdata,ez,1,,35e9
mpdata,prxy,1,,0.28
mpdata,pryz,1,,0.3
mpdata,prxz,1,,0.3
mpdata,gxy,1,,15e9
mpdata,gyz,1,,3.78e9
mpdata,gxz,1,,15e9 !定义各向同性材料
fc,1,s,xten,767e6
fc,1,s,yten,20e6
fc,1,s,zten,30e6
fc,1,s,xcmp,-392e6
fc,1,s,ycmp,-70e6
fc,1,s,zcmp,-55e6
fc,1,s,xy,41e6
fc,1,s,yz,30e6
fc,1,s,xz,41e6 !定义应力失效准则
fc,1,epel,xten,0.05
fc,1,epel,yten,0.08
fc,1,epel,zten,0.04
fc,1,epel,xcmp,-0.045
fc,1,epel,ycmp,-0.06
fc,1,epel,zcmp,-0.045
fc,1,epel,xy,0.035
fc,1,epel,yz,0.042
fc,1,epel,xz,0.025 !定义应变失效准则
!用到Tasi-Wu失效准则还需定义应力耦合系数,默认为-1,-1,-1。
实际值需要通过双轴试验测定,较难得到。
sectype,1,shell,, !sectype, secID,type,subtype,name,refinekey,定义截面类型
secdata, 5e-4,1,0,3 !积分点为3个
secdata, 5e-4,1,-30,3
secdata, 5e-4,1,30,3
secdata, 5e-4,1,-45,3
secdata, 5e-4,1,45,3
secdata, 5e-4,1,0,3 !定义铺层secplot,1 !查看ID为1的section
k,1,
k,2,0.05,0,0
k,3,0.05,0.02,0
K,4,0,0.02,0
a,1,2,3,4
aesize,all,0.002
mshape,0,2d
mshkey,1
amesh,all !建模划分网格
nsel,s,loc,x,0
d,all,all
allsel
nsel,s,loc,y,0
f,all,fy,-10
allsel !施加载荷
finish
!##################------------------------ /solu
solve
finish !求解完成
!##################------------------------ /post1
layer,0
plnsol,u,sum
plnsol,s,eqv !查看整体结构
layer,2 !查看第2层结果
plnsol,s,eqv
layer,0 !切换回查看整体结果
plnsol,fail,emax
plnsol,fail,smax
plnsol,fail,twsr !校核三种准则下的危险系数,均小于1,则合格。
finish。