第四章_平面图形及其位置关系 培优
- 格式:doc
- 大小:241.00 KB
- 文档页数:5
七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。
将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。
将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。
结论:射线是直线的一部分,线段是射线和直线的一部分。
2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
3、直线公理过两点有且只有一条直线,简称两点确定一条直线。
4、线段的比较线段的比较有叠合比较法和度量比较法。
5、线段公理连接两点的线段是最短的,叫做这两点的距离。
6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。
若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。
例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。
2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。
3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。
二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。
角还可以看成是一条射线绕着他的端点旋转所成的图形。
2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)第四章几何图形初步单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第4章几何图形初步,共23题;考试时间:120分钟;总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·贵州安顺·中考真题)下列几何体中,圆柱体是()A.B.C.D.【答案】C【分析】根据圆柱体的定义,逐一判断选项,即可.【详解】解:A. 是圆锥,不符合题意;B. 是圆台,不符合题意;C. 是圆柱,符合题意;D. 是棱台,不符合题意,故选C.【点睛】本题主要考查几何体的认识,掌握圆锥、圆柱、圆台、棱台的定义,是解题的关键.2.(2022·全国·七年级专题练习)如图,用一个平面去截一个三棱柱,截面的形状不可能是( )A.三角形B.四边形C.五边形D.六边形【答案】D【分析】根据三棱柱的截面形状判断即可.【详解】解:用一个平面去截一个三棱柱,截面的形状可能是:三角形,四边形,五边形,不可能是六边形,故选:D.【点睛】本题考查了截一个几何体,熟练掌握三棱柱的截面形状是解题的关键.3.(2022·河北·中考真题)①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()A.①③B.②③C.③④D.①④【答案】D【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.4.(2022·四川内江·中考真题)如图是正方体的表面展开图,则与“话”字相对的字是( )A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.5.(2021·全国·七年级专题练习)如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D 是AC的中点,M是AB的中点,那么MD=( )cmA.4B.3C.2D.1【答案】C6.(2022·全国·七年级课时练习)如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒【答案】B 【分析】根据OC 平分AOD ∠且15COD ∠=︒可得30AOD ∠=︒,再结合68AOB ∠=︒即可求得答案.【详解】解:∵OC 平分AOD ∠且15COD ∠=︒,∴230AOD COD ∠=∠=︒,又∵68AOB ∠=︒,∴38BOD AOB AOD ∠=∠-∠=︒,故选:B .【点睛】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·全国·七年级课时练习)如图平面图形绕轴旋转一周,得到的立体图形是_______________.【答案】圆锥【分析】根据旋转的性质判定即可.【详解】∵平面图形绕轴旋转一周,得到的立体图形是圆锥,故答案为:圆锥.【点睛】本题考查了直角三角形的旋转,记住常见平面图形旋转的几何体是解题的关键.8.(2022·全国·七年级单元测试)一个几何体由若干个大小相同的小立方块搭成,从左面和上面看到的平面图形如图所示,则搭成这个几何体的小立方块的个数为_____.【答案】4【分析】根据左面看与上面看的图形,得到俯视图解答即可.【详解】解:根据左视图和俯视图,这个几何体的底层有3个小正方体,第二层有1个小正方体,所以有314+=个小正方体,故答案为:4.【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.9.(2019·湖北黄冈·中考真题)如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=o ,则CD 的最大值是_____.【答案】14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A关于CM的对称点'A,点B关于DM的对称点'B.120∠=oCMDQ,\∠+∠=o,60AMC DMB\''60∠+∠=o,CMA DMB\∠=o,''60A MBQ,=''MA MB\D为等边三角形A MB''Q,£++=++=''''14CD CA A B B D CA AM BD\的最大值为14,CD故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题10.(2021·山东·滕州市张汪镇张汪中学七年级阶段练习)有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.【答案】7【分析】从图形进行分析,结合正方体的基本性质,得到对面的数字,即可求得结果.【详解】一个正方体已知1,4,6,第二个正方体已知1,2,3,第三个正方体已知2,5,6,且不同的面上写的数字各不相同,可求得1的对面数字为5,6的对面数字为3,2的对面数字为4∴a+b=7故答案为:7.【点睛】本题考查正方体相对两个面的数字,根据相邻的面确定出对面上的数字是解题的关键.11.(2022·山东烟台·期中)2:35时,钟面上时针与分针所成的角等于________°.12.(2022·全国·七年级专题练习)一个长方体包装盒展开后如图所示(单位:cm),则其容积为_____cm3.【答案】6000【分析】根据题意分别求出长方体的长、宽、高,再根据长方体的体积公式计算即可求解.【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm3),故答案为:6000.【点睛】本题考查了几何体的展开图,解题的关键是得到长方体的长宽高.三、(本大题共5小题,每小题6分,共30分)13.(2022·全国·七年级专题练习)如图是一个长方体纸盒的展开图,如果长方体相对面上的两个数字之和相等,求2x y -的值.【答案】16【分析】分别找到x 与y 相对的数字即可求解.【详解】因为这是长方体纸盒的展开图,所以“4”与“10”相对,“x ”与“2”相对,“6”与“y ”相对,所以26410x y +=+=+,所以12x =,8y =,所以2212816x y -=´-=.【点睛】本题考查了长方体的展开图,正确找出相对面是解题的关键.14.(2021·江西·南昌知行中学七年级阶段练习)已知:如图,AB =18cm ,点M 是线段AB 的中点,点C 把线段MB 分成MC :CB =2:1的两部分,求线段AC 的长.请补充完成下列解答:解:∵M 是线段AB 的中点,AB =18cm ,∴AM =MB = AB = cm .∵MC :CB =2:1,∴MC = MB = cm .∴AC =AM + = + = cm .15.(2021·广西玉林·七年级期末)如图,点C 在线段AB 的延长线上,3AC AB =,D 是AC 的中点,若15AB =,求BD 的长.16.(2022·全国·七年级专题练习)如图,点E 是线段AB 的中点,C 是EB 上一点,AC =12,(1)若EC :CB =1:4,求AB 的长;(2)若F 为CB 的中点,求EF 长,17.(2022·全国·七年级专题练习)已知四点A、B、C、D.根据下列语句,画出图形.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、射线BC,相交于点P.【答案】见详解【分析】根据直线、射线、线段的性质画图即可.【详解】解:如图【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.四、(本大题共3小题,每小题8分,共24分)AD=cm,18.(2022·山东济南·七年级期末)如图,C为线段AD上一点,点B为CD的中点,且9BC=cm.2(1)图中共有______条线段?(2)求AC的长;EA=cm,求BE的长.(3)若点E在直线AD上,且3【答案】(1)6;(2)5cm;(3)4cm或10cm.【分析】(1)固定A为端点,数线段,依次类推,最后求和即可;(2)根据AC=AD-CD=AC-2BC,计算即可;(3)分点E在点A左边和右边两种情形求解.【详解】(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)解:∵B 为CD 中点,2BC =cm∴24CD BC ==cm∵9AD =cm∴945AC AD CD =-=-=cm(3)7AB AC BC =+=cm ,3AE =cm第一种情况:点E 在线段AD 上(点E 在点A 右侧).734BE AB AE =-=-=cm第二种情况:点E 在线段DA 延长线上(点E 在点A 左侧).7310BE AB AE =+=+=cm .【点睛】本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.19.(2022·全国·七年级专题练习)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.【答案】(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.20.(2022·全国·七年级)如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数【答案】(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.五、(本大题共2小题,每小题9分,共18分)21.(2022·全国·七年级单元测试)如图一,已知数轴上,点A 表示的数为6-,点B 表示的数为8,动点P 从A 出发,以3个单位每秒的速度沿射线AB 的方向向右运动,运动时间为t 秒()0t >(1)线段AB=__________.(2)当点P运动到AB的延长线时BP=_________.(用含t的代数式表示)t=秒时,点M是AP的中点,点N是BP的中点,求此时MN的长度.(3)如图二,当3(4)当点P从A出发时,另一个动点Q同时从B点出发,以1个单位每秒的速度沿射线向右运动,①点P表示的数为:_________(用含t的代数式表示),点Q表示的数为:__________(用含t的代数式表示).②存在这样的t值,使B、P、Q三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t 值.______________.22.(2022·全国·七年级课时练习)已知∠AOB和∠COD均为锐角,∠AOB>∠COD,OP平分∠AOC,OQ平分∠BOD,将∠COD绕着点O逆时针旋转,使∠BOC=α(0≤α<180°)(1)若∠AOB=60°,∠COD=40°,①当α=0°时,如图1,则∠POQ= ;②当α=80°时,如图2,求∠POQ的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ的度数;(2)若∠AOB=m°,∠COD=n°,m>n,则∠POQ= ,(请用含m、n的代数式表示).∴∠AOC= m°+ a°,∵OP平分∠AOC,(m°+ a°),∴∠POC=12(n°+ a°),同理可求∠DOQ=12六、(本大题共12分)23.(2022·全国·七年级专题练习)如图,已知直线l 上有两条可以左右移动的线段:AB =m ,CD =n ,且m ,n 满足()2480m n -+-=,点M ,N 分别为AB ,CD 中点.(1)求线段AB ,CD 的长;(2)线段AB 以每秒4个单位长度向右运动,线段CD 以每秒1个单位长度也向右运动.若运动6秒后,MN =4,求此时线段BC 的长;(3)若BC =24,将线段CD 固定不动,线段AB 以每秒4个单位速度向右运动,在线段AB 向右运动的某一个时间段t 内,始终有MN +AD 为定值.求出这个定值,并直接写出t 在哪一个时间段内.的关键是掌握分类讨论思想.。
第四章 平面图形及其位置关系辅导题典例精讲:例1:如图,∠AOB 是平角,∠AOC=80°,∠COE=50°,OD 平分∠AOC ; 1)求∠DOE 的度数;2)OE 是∠BOC 的平分线吗?为什么?例2:如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD=8,求MC 的长. 随堂练习1、 下列说法正确的是( ) A. 一条直线就是一个平角 B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离2、平面上有任意三点,经过其中两点画一条直线,可以画( )直线A 、1条B 、2条C 、3条D 、1条或者3条3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )A 、AB=2ACB 、AC+BC=ABC 、BC=D 、AC=BC 4、按下列线段的长度,点A 、B 、C 一定在同一直线上的是( )AB MC D图9-14AB 21A 、AB=2cm ,BC=2cm ,AC=2cmB 、AB=1cm ,BC=1cm ,AC=2cmC 、AB=2cm ,BC=1cm ,AC=2cmD 、AB=3cm ,BC=1cm ,AC=1cm 5、8点30分时,时钟的时针与分针所夹的锐角是( )A. 60B. 55C. 75D. 706、 已知AB=6cm ,P 点是到A 、B 两点等距离的点,则PA 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定7、平面内,有两个角∠AOB=50°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A ) 30° B 70° C 30°或70° D 无法确定8、在一段火车路线上有四4个车站,在这段路线中往返行车,需要制几种不同的车票(每种车票都要印出上、下车站) ( )A .12种B .9种C .6种D .3种 9、下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( )二、填空题1. 如图9-1,AB________AC+BC (填“<”、“>”或“=”),依据是____________.2、如图,∠AOC 与∠BOD 都是直角,如果∠AOB=144°,则∠DOC=3、如果线段AB=5cm ,BC=3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.4、比较20°15′与20.15°的大小关系是5、图中共有________条线段,共有_______条射线,以点C 为端点的射线是____。
北师版七年级上册第四章基本平面图形4.5多边形和圆的初步认识培优训练卷一.选择题(共10小题,3*10=30)1.下列图形是多边形的个数是( )A.2个B.3个C.4个D.5个2.下列说法不正确的是( )A.三角形、四边形、五边形、六边形都是多边形B.正多边形的各边都相等C.各边相等的多边形是正多边形D.六个角相等的六边形不一定是正六边形3.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是( )A.6 B.7C.8 D.94.关于七边形的下列说法:①七边形有7条边;②七边形有7个内角;③七边形有7个顶点;④七边形有4条对角线.其中正确的有( )A.1个B.2个C.3个D.4个5.一个多边形的对角线的条数与它的边数相等,这个多边形的边数是( )A.7 B.6C .5D .46.下面的平面图形中,为扇形的是( )7.如图,从半径为3 cm 的圆形纸片中剪去13圆周的一个扇形,则剪去的扇形的圆心角是( )A .120°B .150°C .180°D .240°8.如图所示,在一个圆中任意画3条半径,可以把这个圆分成几个扇形( ) A .6 B .4 C .5 D .39.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是( ) A .①⑤ B .②④ C .③⑤ D .②⑤10.已知一个扇形的圆心角为45°,扇形所在圆的半径为3 cm , 则这个扇形的面积为( ) A.12π cm 2 B.92π cm 2 C.94π cm 2 D.98π cm 2二.填空题(共8小题,3*8=24)11. 如图,把边长为6 cm的正三角形纸板,剪去三个三角形,得到边长相等的正六边形,此六边形的边长为____cm.12.若一个多边形从一个顶点可以引六条对角线,则它是_______边形.13.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是_________.14.如图所示,阴影部分扇形的圆心角是___________.15.如果一个圆的面积是30 cm2,那么其中圆心角为60°的扇形面积是________cm2. 16.如图,甲、乙、丙三个扇形圆心角的度数分别为_________________.17.若将一个圆分割成四个小扇形,它们的圆心角的度数之比为1∶2∶3∶4,则这四个小扇形中圆心角度数最大的是_________°.18.如图,在边长为4的正方形ABCD中,分别以点A为圆心,AD长为半径画弧,再以AB为直径,AB中点为圆心画弧,则两弧阴影部分面积是_________.(结果保留π)三.解答题(共7小题,46分)19. (6分) 半径为3的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积.(结果保留π)20. (6分) 如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,求贴纸的面积.(用π表示)21. (6分) 已知从十边形的一个顶点出发,可以引m条对角线,这些对角线可以把这个十边形分成n个三角形,求m+n的值.22. (6分) 如图,扇形A,B,C的面积比为7∶3∶8,求各扇形的圆心角的度数.23. (6分) 如图4-5-1,将圆分成A,B,C三个扇形,且半径长为3 cm.(1)求扇形C的面积;(2)求扇形A和B的圆心角的度数.24. (8分) 将一个半径为2的圆分割成三个扇形.(1)它们的圆心角的比为3∶4∶5,求这三个扇形圆心角的度数.(2)若分成6个大小相同的扇形,每个扇形的圆心角为多少度?(3)若其中一个扇形的圆心角为90°,你会计算这个扇形的面积吗?25. (8分) ) 如图4-5-2的图案是由边长相等的黑.白两色正方形按一定规律拼接而成的,依此规律,第6个图案中的白色正方形有几个?第1个第2个第3个参考答案1-5 BCCCC 6-10DAADD 11. 2 12.九 13.8 14.54° 15. 516. 90°,108°,162° 17. 144 18. 2π19. 解:如下图,阴影部分即为所求:扇形AOB 的面积为:150°360°×π×32=154π20. 解:AB =25,BD =15,所以AD =10,即S 贴纸=2×(13×π×252-13×π×102)=2×175π=350π (cm 2)21. 解:因为从n 边形的一个顶点出发,可以引(n-3)条对角线,把n 边形分成(n-2)个三角形,所以当n 为10时,可以引7条对角线,把十边形分成8个三角形.所以m=7,n=8,所以m+n=15. 22. 解:扇形A :360°×718=140°扇形B :360°×318=60°扇形C :360°×818=160°23. 解:(1)扇形C 所占的百分比是1-15%-14=60%,扇形C 的面积是60%×π×32=5.4π(cm 2).(2)扇形A 的圆心角的度数是360°×15%=54°,扇形B 的圆心角的度数是360°×14=90°.24. 解:(1)一个圆周为360°,所以每个扇形的圆心角的度数为:360°×33+4+5=90°,360°×43+4+5=120°,360°×53+4+5=150°.(2)把一个圆平均分成6份,所以每个扇形圆心角的度数为360°6=60°.(3)圆心角为90°的扇形的面积为: S =n 360πR 2=90360×22π=π.25. 解:第1个图案中,白色正方形的个数为8; 第2个图案中,白色正方形的个数为13=5+8; 第3个图案中,白色正方形的个数为18=5×2+8;…… 所以第n 个图案中,白色正方形的个数为5(n-1)+8. 所以第6个图案中,白色正方形的个数为5×5+8=33.。
第四章 平面图形及其位置关系【同步教育信息】一. 教学内容:第四章:平面图形及其位置关系学习目标:1. 经历观察、测量、折叠、模型制作与图案设计等活动,发展空间观念。
2. 在现实情境中认识线段、射线、直线、角等简单图形。
3. 了解平面上两条直线的平行和垂直关系。
4. 能用符号表示角、线段、互相平行或垂直的直线。
5. 会进行线段或角的比较。
能估计一个角的大小,会进行角的单位的简单换算。
6. 经历在操作活动中探索图形性质的过程。
7. 了解线段、平行线、垂线的有关性质。
8. 借助三角尺、量角器、方格纸等工具;会画角、线段、平行线、垂线。
9. 能进行简单的图案设计,并能表达和交流自己的设计方案。
§4.1线段、射线、直线基本知识回顾:图形 名称 特征 端点 度量 表示方法直线向两方 无限延长 无不可以 A B 直线AB 或直线BAl 直线l射线 向一方 无限延长 1个 不可以O M射线OM线段 不可延长2个 可以A B 线段AB 或线段BA a线段a直线的相关知识:(1)过一点可以做无数条直线。
(2)过两点有且只有一条直线(两点确定一条直线) (3)过三点中的两个点最多可以做3条直线。
()过个点中的两个点最多可以做条直线。
4n n n ()12例1:过平面上的两个点最多可以作几条直线?若平面上有三个点、四个点、五个点……n 个点,过任意两点作一条直线,最多可以作多少条直线,完成下列表格。
点的个数 2 3 4 5 6 n最多可以作直线 1361015n n ()-12§4.2 比较线段的长短基本知识回顾:(1)两点之间,线段最短。
(2)两点之间线段的长度,叫做这两点之间的距离。
(3)点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点。
A M B表达式:∵M 是AB 中点∴==AM BM AB 12AB AM BM ==22(4)作一条线段等于已知线段。
a作法书P 123A C B∴线段AC 即为所求。
第四章 平面图形及其位置关系测试题三一、填空题:1. 我们平常看到沿平直公路架设的单根电缆,给我们以_______的感觉,吃饭用的筷子给我们以__________的形象,教师用的激光灯给我们以________的形象. 2. 如图9-1,AB ________AC+BC (填“<”、“>”或“=”),依据是____________. 3. 三条直线相交,有________个交点. 4. 图9-2中共有________个角.5. 对于同一平面内的直线a 、b 、c ,如果a ∥b ,c 与a 相交,那么c 与b 的位置关系是_____________.6. 7点整时,分针和时针之间的夹角度数是_________度.西东北西东南北1250°A BCDOA BAB图9-1 图9-2 图9-3 图9-4 7. 如图9-3,由点B 观察点A 的方向是____________________.8. 如果线段AB =5cm ,BC =3cm ,A 、B 、C 三点在同一条直线上,那么A 、C 两点间的距离是__________cm.9. 如图9-4,当图中∠1与∠2满足条件___________时,OA ⊥OB . 10. 如图9-5,利用表格画图.(1) 与AB 相互平行的线段CD ;(2) 与AB 互相垂直且垂足为B 的直线.二、选择题:11. 下列说法正确的是( )A. 一条直线就是一个平角B. 射线比直线短C. 过三点可以作一条直线D. 两点间的线段的长度叫两点间的距离 12. 过一条线段外一点画这条线段的垂线,垂足在( )A. 这条线段上B. 这条线段的端点上C. 这条线段的延长线上D. 以上都有可能13. 如图9-6,其中一定能相交的是( )A B C D图9-6abC EFO Ddc14. 如图9-7,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( )A. 过两点只有一条直线B. 过有点只能作一条直线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短 15. 在同一平面内,直线a 、b 相交于点P ,a ⊥c ,则b 与c 的关系是( ) A. 平行 B. 相交 C. 重合 D. 平行或相交16. 已知AB =6cm ,P 点是到A 、B 两点等距离的点,则P A 的长度为( )A. 3cmB. 4cmC. 5cmD. 不能确定17. 已知OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( )A. 30°B. 150°C. 30°或150°D. 不同于以上答案 18. 比较20°15′与20.15°的大小,正确的是( )A. 20°15′>20.15°B. 20°15′=20.15°C. 20°15′<20.15°D. 不能确定19. 如图9-8,PO ⊥OR ,OQ ⊥RP ,能表示点到直线的距离的线段有( ) A. 二条 B. 三条C. 四条D. 五条20. 如图9-9,右边的四个图形中,不是用左边这幅七巧板拼成的是( )图9-7O 图9-8三、解答题:21. 如图9-10,一副三角尺的直角顶点重合,请指出图中相等的角.22. 在图9-11中,①延长线段BA 到D ,使AD =BC ,连结DC②在DC 上截取DE =AD ,连结AE③过点A 作AF ∥DC 交BC 于F23. 如图9-12,矩形的长为3cm ,宽为2cm ,用刻度尺作出每条边上的中点,并顺次连接它们,猜一猜能得到什么图形?24. 画图并回答如图9-13,请作出由A 地经过B 地去河边l 的最短路线.并回答 (1) 确定A 地到B 地路线的依据是什么?(2) 确定B 地到河边l 路线的依据是什么?AB C 图9-11 图9-12图9-10 A B CD E A B l图9-1325. 如图9-14,B 、C 两点把线段AD 分成2∶3∶4三部分,M 是AD 的中点,CD =8,求MC 的长.AB MC D图9-1426. 如图9-15,AB 、CD 相交于O ,且OD 平分∠AOF ,OE ⊥OD ,∠AOE =48°,求∠BOC 、∠EOF 的度数.27. 如图9-16,∠AOB 是直角.(1) 利用三角尺画出∠AOB 的平分线OC ;(2) 在OC 上任取一点P ,用三角尺作OA 、OB 的垂线,垂足分别为D 、E ; (3) 比较PD 、PE 的大小; (4) 在OC 上任取一点Q ,过点Q 作OA 、OB 的垂线,垂足分别为M 、N ; (5) 比较QM 、QN 的大小你会得到什么结论? 你的结论是:图9-16 A BA B C D E O图9-15 F平面图形及其位置关系测试题三参考答案1. 直线线段射线2. < 两点之间线段最短3. 1或34. 65. 相交6. 150°7. 南偏西50°(或西偏南40°)8. 2或89. ∠1+∠2=90°10. 略11. D 12. D 13. A 14. C 15. D 16. D 17. C 18. A 19. D 20. C21. ∠DCA=∠BCE,∠D=∠E22. 略23. 菱形24. ①两点之间线段最短②垂线段最短25. 126. 42°,132°27. 角平分线上的点到这个角的两边的距离相等28. 略。
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题4.7第4章基本平面图形单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•雅安期末)如图所示,下列对图形描述不正确的是()A.直线AB B.直线BC C.射线AC D.射线AB【分析】依据直线,线段以及射线的定义进行判断即可.【解析】解:由图可得,直线AB,线段BC,射线AC,射线AB,图中不存在直线BC,故选:B.2.(2019秋•东湖区校级期末)下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1B.2C.3D.4【分析】直接利用直线的性质和线段的性质分别判断得出答案.【解析】解:①用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不合题意;②从A地到B地架设电线,总是尽可能沿着线段AB架设,能用“两点之间,线段最短”来解释,故此选项符合题意;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,利用的是两点确定一条直线,故此选项不合题意;④把弯曲的公路改直,就能缩短路程,能用“两点之间,线段最短”来解释,故此选项符合题意.故选:B.3.(2020春•肇东市期末)在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为() A.5cm B.8cm C.5cm或8cm D.5cm或11cm【分析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解析】解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.4.(2019秋•铁西区期末)如图,小明从A处沿北偏东40°方向行走至B处,又从B处沿东偏南21°方向行走至C处,则∠ABC的度数为()A.131°B.129°C.109°D.101°【分析】根据平行线性质求出∠ABE,再求出∠EBC即可得出答案.【解析】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南21方向行走至点C处,∴∠DAB=40°,∠CBF=21°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣21°=69°,∴∠ABC=∠ABE+∠EBC=40°+69°=109°,故选:C.5.(2019秋•青山区期末)如图,下列说法错误的是()A.∠ECA是一个平角B.∠ADE也可以表示为∠DC.∠BCA也可以表示为∠1D.∠ABC也可以表示为∠B【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况下,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.【解析】解:A、∠ECA是一个平角,故正确,不符合题意;B、∠ADE也可以表示为∠D,故正确,不符合题意;C、∠BCA也可以表示为∠1,故正确,不符合题意;D、∠ABC也不可以表示为∠B,故错误,符合题意;故选:D.6.(2019秋•兰考县期末)如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°【分析】先利用OB平分平角∠AOD得到∠AOB=∠DOB=90°,再利用∠AOB:∠BOC=3:2得到∠BOC=60°,然后回家互余计算出∠COD的度数.【解析】解:∵OB平分平角∠AOD,∴∠AOB =∠DOB =12×180°=90°,∵∠AOB :∠BOC =3:2,∴∠BOC =23×90°=60°,∴∠COD =90°﹣60°=30°.故选:A .7.(2019秋•海淀区期末)若扇形的半径为2,圆心角为90°,则这个扇形的面积为( )A .π2 B .π C .2π D .4π【分析】直接利用扇形的面积公式计算.【解析】解:这个扇形的面积=90⋅π⋅22360=π.故选:B .8.(2019秋•通州区期末)如图,OC 为∠AOB 内的一条射线,下列条件中不能确定OC 平分∠AOB 的是()A .∠AOC =∠BOCB .∠AOB =2∠BOCC .∠AOC +∠COB =∠AOBD .∠AOC =12∠AOB【分析】根据角平分线的定义即可判断.【解析】解:A .∵∠AOC =∠BOC∴OC 平分∠AOB .所以A 选项正确,不符合题意;B .∵∠AOB =2∠BOC∴OC 平分∠AOB .所以B 选项正确,不符合题意;C .∵∠AOC +∠COB =∠AOB∴OC 不一定平分∠AOB .所以C 选项错误,符合题意;D .∵∠AOC =12∠AOB∴OC平分∠AOB.所以D选项正确,不符合题意.故选:C.9.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【分析】根据角平分线的定义即可判断.【解析】解:①由∠AOC=∠BOC能确定OC平分∠AOB;②如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;③∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;④如图2,∠BOC=12∠AOB,不能确定OC平分∠AOB;所以只有①能确定OC平分∠AOB;故选:A.10.(2019秋•埇桥区期末)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB的“巧分点”的个数是()A.3B.6C.8D.9【分析】根据“巧点”的定义即可求解.【解析】解:线段AB的3个等分点都是线段AB的“巧分点”.同理,在线段AB延长线和反向延长线也分别有3个“巧分点”.∴线段AB的“巧分点”的个数是9个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•新泰市期末)已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为2cm或8cm.【分析】分类讨论,C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解析】解:若C在线段AB上,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),故答案为2cm或8cm.12.(2019秋•沙坪坝区期末)已知线段AB,延长AB至点C,使BC=13AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=6cm.【分析】设BC=x,则AB=3x,于是得到AC=4x,根据线段中点的定义得到AD=12AC=2x,AE=12AB=32x,于是得到结论.【解析】解:设BC=x,则AB=3x,∴AC=4x,∵点D为线段AC的中点,点E为线段AB的中点,∴AD=12AC=2x,AE=12AB=32x,∴DE=AD﹣AE=2x−32x=12x=1,∴x=2,∴AB=6cm,故答案为:6.13.(2019秋•沙河口区期末)如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是两点确定一条直线.【分析】由直线公理可直接得出答案.【解析】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.14.(2020春•舒兰市期末)34°18′36″=34.31°.【分析】根据小单位华大单位除以进率,可得答案.【解析】解:34°18′36″=34.31°.故答案是:34.31.15.(2019秋•曲阳县期末)如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为2个①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.【分析】根据角平分线的定义进行判断即可.【解析】解:AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,∴AE平分∠BAC,④正确;故答案为:2个.16.(2019秋•兰考县期末)如图所示,OB是∠AOC的平分线,OC是∠AOD的平分线,若∠COD=76°,那么∠AOD=152°,∠BOC=38°.【分析】根据角平分线的定义,利用OC是∠AOD的平分线得到∠AOC=∠COD=76°,∠AOD=2∠COD=152°,然后利用OB是∠AOC的平分线得到∠BOC=12∠AOC.【解析】解:∵OC是∠AOD的平分线,∴∠AOC=∠COD=76°,∠AOD=2∠COD=2×76°=152°,∵OB是∠AOC的平分线,∴∠BOC=12∠AOC=12×76°=38°.故答案为152°;38°.17.(2019秋•北仑区期末)将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为16°.【分析】根据角的和差进行计算即可.【解析】解:如图∵∠1+α+β=90°∠1+α=90°﹣46°∠1+β=90°﹣28°∴∠1=90°﹣46°+90°﹣28°﹣90°=16°.故答案为16°.18.(2019秋•吉州区期末)过一个多边形的一个顶点的所有对角线把多边形分成2019个三角形,则这个多边形的边数为2021.【分析】经过n边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形,根据此关系式求边数.【解析】解:设多边形有n条边,则n﹣2=2019,解得n=2021.故这个多边形的边数是2021.故答案是:2021.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•襄城县期末)如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有6条射线.(3)从点C到点B的最短路径是CB,依据是两点间线段最短.【分析】(1)按题意,直接作图即可.(2)根据射线的定义进行判断,写出即可.(3)根据两点间线段最短的性质即可求解.【解析】解:(1)如图所示:直线AB、射线AC、线段BC即为所求.(2)图中共有3+2+1=6条射线.(3)最短路径是CB ,依据:两点间线段最短.故答案为:6;CB ,两点间线段最短.20.观察下面图形,并回答问题.(1)四边形有 2 条对角线;五边形有 5 条对角线;六边形有 9 条对角线?(2)根据规律七边形有 14 条对角线,n 边形有n(n−3)2 条对角线. 【分析】(1)根据图形查出即可;(2)根据对角线条数的数据变化规律进行总结,然后填写.【解析】解:(1)四边形有2条对角线;五边形有5条对角线;六边形有9条对角线;∵从一个顶点可以作(n ﹣3)条对角线,∴n 边形有n(n−3)2条对角线.(2)七边形有14条对角线,n 边形有n(n−3)2条对角线. 故答案为:(1)2,5,9,(2)14,n(n−3)2.21.(2019秋•潮州期末)如图所示,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠EOC =65°,∠DOC =25°,求∠AOB 的度数.【分析】由角的和差求出∠DOE=40°,再根据角平分线的定义,角的和差求出∠AOB的度数为130°.【解析】解:如图所示:∵∠EOC=∠DOE+∠DOC,∠EOC=65°,∠DOC=25°,∴∠DOE=65°﹣25°=40°,∵OC是∠AOD的平分线,∠BOD=2∠EOD=2×40°=80°,同理可得:∠AOD=50°又∵∠AOB=∠AOD+∠BOD∴∠AOB=130°.22.(2020春•河口区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值:(2)在(1)的条件下,求线段CD的长,【分析】(1)由(a﹣16)2+|2b﹣8|=0,根据非负数的性质即可推出a、b的值;(2)根据(1)所推出的结论,即可推出AB和CE的长度,根据图形即可推出AC=8,然后由AE=AC+CE,即可推出AE的长度,由D为AE的中点,即可推出DE的长度,再根据线段的和差关系可求出CD的长度.【解析】解:(1)∵(a﹣16)2+|2b﹣8|=0,∴a﹣16=0,2b﹣8=0,∵a、b均为非负数,∴a=16,b=4,(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=12AB=8,∴AE=AC+CE=12,∵点D为线段AE的中点,∴DE=12AE=6,∴CD=DE﹣CE=6﹣4=2.23.(2019秋•宁都县期末)某一野外探险队由基地A处向北偏东30°方向前进了40千米到达B点,然后又向北偏西60°方向前进了30千米到达C点处工作.(1)请在图中画出行走路线图.(1厘米表示10千米)(2)通过度量,请你算出C点离基地A的距离.(精确到1千米)(3)若基地要派一指导员赶往C点,要求在2小时内赶到,问指导员应以不低于多大的平均速度前进才能按时到达?【分析】(1)根据方位角的意义,按要求的比例尺画图,确定B点位置,再在B点处画方位角以相同的比例尺确定C点;(2)连接AC,量出图上距离,再按比例尺算出实际距离;(3)根据速度=路程÷时间即可求解.【解析】解:(1)如图所示:(2)连接AC,度量出AC=5厘米,即C点离基地A的实际距离为50千米;(3)50÷2=25(千米/时).答:指导员的平均速度应不低于25千米/时.24.(2019秋•海州区校级期末)如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.【分析】(1)利用∠AOB =180°﹣∠AOM ﹣∠BON ,即可求出结论;(2)利用∠AOM +∠BON =180°+∠AOB ,即可得出关于t 的一元一次方程,解之即可得出结论;(3)分0≤t ≤18及18≤t ≤60两种情况考虑,当0≤t ≤18时,利用∠AOB =180°﹣∠AOM ﹣∠BON =90°,即可得出关于t 的一元一次方程,解之即可得出结论;当18≤t ≤60时,利用∠AOM +∠BON =180°+∠AOB (∠AOB =90°或270°),即可得出关于t 的一元一次方程,解之即可得出结论.综上,此题得解.【解析】解:(1)当t =3时,∠AOB =180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t +6t =180+72,解得:t =1265. 答:当∠AOB 第二次达到72°时,t 的值为1265.(3)当0≤t ≤18时,180﹣4t ﹣6t =90,解得:t =9; 当18≤t ≤60时,4t +6t =180+90或4t +6t =180+270,解得:t =27或t =45.答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9、27或45.25.(2019秋•肇庆期末)已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图①,若∠AOC =30°,求∠DOE 的度数.(2)在图①中,若∠AOC =a ,求∠DOE 的度数(用含a 的代数式表示).(3)将图①中的∠DOC 绕顶点O 顺时针旋转至图②的位置,且保持射线OC 在直线AB 上方,在整个旋转过程中,当∠AOC 的度数是多少时,∠COE =2∠DOB .【分析】(1)由已知可求出∠BOC =180°﹣∠AOC =150°,再由∠COD 是直角,OE 平分∠BOC ,即可求出∠DOE 的度数;(2)由(1)中的方法可得出结论∠DOE =12∠AOC ,从而用含α的代数式表示出∠DOE 的度数;(3)设∠AOC =α,则∠BOC =180°﹣α,依据OE 平分∠BOC ,可得∠COE =12×(180°﹣α)=90°−12α,再依据∠COE =2∠DOB ,即可得到∠AOC 的度数.【解析】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)由(1)知∠DOE=∠COD−12∠BOC,∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC=12α;(3)设∠AOC=α,则∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=12×(180°﹣α)=90°−12α,∠BOD=90°﹣(180°﹣α)=α﹣90°,∵∠COE=2∠DOB,∴90°−12α=2(α﹣90°),解得α=108°.综上所述,当∠AOC的度数是108°时,∠COE=2∠DOB.26.(2019秋•金牛区期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=6;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM﹣2MN的值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN长度(用含m的代数式表示).【分析】(1)设AN=x,BM=y,则CN=3x,CM=3y.由AB=8列出方程,求得x+y,再进而求得MN;(2)把MN=AM+AN代入CN+2AM﹣2MN中计算便可知道结果;(3)设AN=x,BM=y,则CN=3x,CM=3y,①当C点在B点右边时,不符合题意,会去;②当点C在点A的左边,由AB=CB﹣CA得出y﹣x=14m,进而得MN=3(y﹣x)=34m;③当点C在线段(AB上时,由AB=CB+CA得y+x=14m,进而得MN=3(y+x)=34m,最后总结结论.【解析】解:(1)设AN=x,BM=y,则CN=3x,CM=3y.∵AB=AN+CN+CM+MB=m,∴x+3x+3y+y=m=8,∴x+y=2,MN=NC+CM=3x+3y=3(x+y)=6.(2)CN+2AM﹣2MN的值与m无关.理由如下:如图1,∵CN=3AN,∴CN+2AM﹣2MN=3AN+2AM﹣2(AN+AM)=AN∵AN与m的取值无关,∴CN+2AM﹣2MN的值与m无关;(3)设AN =x ,BM =y ,则CN =3x ,CM =3y ①当C 点在B 点右边时,∵满足CM =3BM ,M 在线段AB 上,如图2此时,M 不是线段BC 上的点,不符合题意,会去; ②当点C 在点A 的左边,如图3,∵AB =CB ﹣CA =(CM +MB )﹣(CN +AN )=m , ∴(3y +y )﹣(x +3x )=m ,∴y ﹣x =14m ,∴MN =CM ﹣CN =3y ﹣3x =3(y ﹣x )=34m ; ③当点C 在线段(AB 上时,如图4,∵AB =CB +CA =(CM +MB )+(CN +AN )=m , ∴(3y +y )+(x +3x )=m ,∴x +y =14m ,∴MN =CM +CN =3y +3x =3(y +x )=34m ;∴MN 长度为34m . 综上,MN 长度为34m .。
1.线段、射线、直线习题精选一、选择题1.下列语句错误的是()A.画出3厘米长的直线B.点A在直线AB上C.两条直线相交,只有一个交点D.点A在直线l上和直线l经过点A意义一样2.经过三点中的任意两点能画直线()A.1条B.3条C.l条或3条D.无数条3.下列写法中,正确的是().A.直线ac,bd相交于点m B.直线AB,CD相交于点mC.直线ac,bd相交于点M D.直线AB,CD相交于点M4.如下图,下列四个语句中,叙述正确的是().A.点A在直线l上B.点B在直线l上C.点B在直线l内D.点D在直线l里5.平面内四点,任何三点都不在一条直线上,过每两点引一条直线共能引().A.3条B.4条C.5条D.6条6.下列说法错误的是().A.两条直线相交只一个交点B.无数条直线可经过同一点C.三条直线相交,有三个交点D.直线MN 和直线NM是同一条直线7.已知同一平面内的四点,过其中任意两点画直线,仅能画四条,则这四条的位置关系是().A.任意三点不在同一条直线上B.四点都不在同一直线上C.最多三点在一直线上D.三点在一直线上,第四点在直线外8.下图中表示正确的是().A.点a B.直线ab C.直线AB D.直线l9.下列语句中不正确的是()A.射线无法度量它的长度B.两条射线可能没有公共点C.直线没有端点D.线段AB可以向两方无限延伸10. 如图,下列两条线中能相交的是()11. 如图,共有线段()A.4条B.5条C.6条D.7条12. 如图中四个点,过这四个可画线段的条数为()A.4条B.5条C.6条D.7条13.下列说法正确的是().A.延长射线OA B.延长直线ABC.延长线段AB D.作直线AB=CD14. 下面的说法错误的是().A.直线AB与直线BA是同一条直线B.射BA与射线AB是同一条射线C.线段AB与线段BA表示同一条线段D.直线、射线、线段上都有无限多个点15. 三条直线两两相交的图形中,线段有()条.A.0 B.3 C.0或3 D.与交点个数相同二、填空题1.线段有_______个端点,直线_______端点;2.如图,直线a与b交于点_______,点A在直线_______上,又在直线_______外.图中共有_______条线段.3.木匠在木料上画线,先确定两个点的位置,就能把线画得很准,这是因为_______.4.课桌的棱长可以看做是一条_______两个车站之间的路程可以看做是一条_______。
平面图形及其位置关系知识总结1.线段、射线、直线(1)线段:绷紧的琴弦、人行道横线都可以近似地看做线段.线段的特点:是直的,它有两个端点.(2)射线:将线段向一方无限延伸就形成了射线.射线的特点:是直的,有一个端点,向一方无限延伸.(3)直线:将线段向两个方向无限延长就形成了直线. 直线的特点:是直的,没有端点,向两方无限延伸. 2.线段的中点把一条线段分成两条相等的线段的点,叫做线段的中点. 利用线段的中点定义,可以得到下面的结论: (1)因为AM =BM =12AB ,所以M 是线段AB 的中点.(2)因为M 是线段AB 的中点,所以AM =BM =12AB 或AB =2AM =2BM .3.角由两条具有公共端点的射线组成的图形叫做角,公共端点叫做角的顶点,两条射线叫做角的边.角也可以看成是由一条射线绕着它的端点旋转而成的.一条射线绕着它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角. 4.角平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. 5.平行线在同一个平面内,不相交的两条直线叫做平行线.平行的关系是相互的,如果AB ∥CD ,则CD ∥AB ,其中符号“∥”读作“平行”. 6.两条直线垂直当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,其交点叫做垂足,•如直线AB •与直线CD 垂直,记作AB ⊥CD .7.两点之间的距离两点之间的线段的长度,叫做这两点之间的距离.8.点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.1.直线的性质:经过两点有且只有一条直线,其中“有”表示“存在性”,“只有”表示“惟一性”.2.线段的性质:两点之间的所有连线中,线段最短.3.与平行线有关的一些性质(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.4.垂线性质(1)经过一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点连接的所有线段中,垂线段最短.平面图形及其位置关系经典例题1.考查学生发现问题、解决问题的能力.【例1】(2003年黑龙江)从哈尔滨开往A市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,不同的票价有()A.4种B.6种C.10种D.12种【例2】(无锡)L1与L2是同一平面内的两条相交直线,它们有1个交点,•如果在这个平面内,再画第三条直线L3,那么这3条直线最多可有_______个交点;•如果在这个平面内再画第4条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想在同一平面内,6条直线最多可有_______个交点,n(n为大于1的整数)条直线最多可有_______个交点(用含n的代数式表示).2.线段长度的计算,线段的中点【例3】某大公司员工分别住在A,B,C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,位置如图所示,该公司的接送车打算只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()3.角的度量与换算【例4】(山西)时钟在3点半时,它的时针和分针所成的锐角是()A.70°B.75°C.85°D.90°4.七巧板问题在中考中主要考查图形的拼摆.【例5】(2002年济南)如图1,用一块边长为22的正方形ABCD厚纸板,•按照下面做法,做了一套七巧板:作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF 于G,•交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCE沿画出的线剪开.现用它拼出一座桥(如图2),这座桥的阴影部分的面积是().(图1)(图2)A.8 B.6 C.4 D.5平面图形及其位置关系解题方法与技巧方法1:见比设元【例1】如图所示,B、C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=9,求线段MC的长.【分析】题中给出了线段的长度比,那么设每一分为K是常见的解法.【解】∵AB:BC:CD=2:4:3∴设AB=2K BC=4K CD=3K∴AD=3K+2K+4K=9K∵CD=9∴3K=9 ∴K=3∴AB=6 BC=12 AD=27∵M为AD中点,∴MD=12AD=12×27=13.5∴MC=MD-CD=13.5-9=4.5【规律总结】不论是有关线段还是有关角的问题,只要有比值,就设未知数.方法2:利用线段的和差判断三点共线【例2】判断以下三点A、B、C是否共线.(1)有三点A、B、C,且AB=10cm,AC=2cm,CB=8cm;(2)AB=10cm,AC=3cm,CB=9cm.【解】(1)∵AB=10cm,AC=2cm,CB=8cm,∴AB=AC+CB∴A、C、B三点在同一条直线上(2)∵AB=10cm,AC=3cm,CB=9cm,∴AB≠AC+CB∴A、C、B三点不共线方法3:寻找规律(一)数直线条数:过任三点不在同一直线上的n点一共可画(1)2n n-条直线.(二)数n个人两两握手能握(1)2n n-次.(三)数线段条数:线段上有n个点(包括线段两个端点)时,共有(1)2n n-条线段.(四)数角的个数:以0为端点引n条射线,当∠AOD<180°时,则(如图)•小于平角的角个数为(1)2n n-.(五)数交点个数:n条直线最多有(1)2n n-个交点.(六)数对顶角对数:n条直线两两相交有n(n-1)对对顶角.(七)数直线分平面的份数:平面内n条直线最多将平面分成1+(1)2n n-个部分.【例3】同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条B.4条C.6条D.1条或4条或6条【例4】一张饼上切七刀,最多可得到几块饼.【分析】从原始状态开始,当切1刀时,一张饼被分成两部分;当切2刀时,一张饼最多可被分成四部分;当切了3刀时,一张饼被最多分成七部分;……若用n•表示切的刀数,饼被最多分成S部分.则:n=1时S=2;n=2时S=4;n=3时,S=7;n=4时,S=11.【解】设一张饼被切n刀,最多分成S部分,如图2-6可知:n=1时S=1+1n=2时S=1+1+2n=3时S=1+1+2+3n=4时S=1+1+2+3+4……则S=1+1+2+3+4+…+n=1+(1)2n n-∴当n=7时,S=1+782⨯=29答:当上张饼上切7切时,最多可得到29块饼.【规律总结】许多规律性问题应回到原始状态,按照从特殊到一般的方法寻找规律,再按照从一般到特殊的方法应用规律解决问题.方法4:钟表问题【例5】钟表现在是1点15分,分针再转多少度,时针与分针首次重合.【分析】分针1分钟走(36060)°=6°,时针1分钟走(3060)°=0.5°(分针1小时走一圈,即60分钟走360°,时针1小时走一格,即60分钟走30°).因此,分针速度是时针速度的12倍,故设分针走12x°,时针走x°时时针与分针首次重合,因为从1点整到1点15°,•分针走一圈的14,此时时针走一格的14,因此1点15分时时针与分针夹角(1+34)×30°=52.5°.•列方程可求解.【解】设时针走x°时,时针与分针首次重合.依题意,得:12x-x=360-(74×30)解得:x=61522,∴12x=369011=335511答:分针再转335511度,时针与分针首次重合.方法5:最优策略问题直线上有两点(如图)A1和A2,要在直线上找一点P,使A1、A2到P的距离之和最小,则P点可放在A1、A2之间任意位置(包括A1和A2).此时P A1+P A2=A1A2.直线上有三点A1、A2、A3(如图).要找到一点P,使P A1+P A2+P A3的和最小.不妨设P在A1、A2之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A2、A3之间,此时P A1+P A2+P A3=A1A3+P A2;若P在A1上,则P A1+P A2+P A3=A1A3+A1A2;若P在A2上,则P A1+P A2+P A3=A1A3.若P在A3上,则P A1+P A2+P A3=A1A3+A2+A3结论:当P选在A2点时P A2+P A2+P A3的和最小,其最小值为A1A3.不难发现,当直线上有四个点时,如图所示.P点选在A2A3上(包括端点).•可使P 到A1、A2、A3、A4的距离之和最小.其最小值为A1A4+A2A3.当直线上有五个点时,如图所示P点选在A3上,可使P到A1、A2、A3、A4、A5的距离之和最小,其最小值为A1A5+A2A4.【规律总结】当直线上有偶数个点时,P应选在最中间两点之间(可与这两点重合);当直线上有奇数个点时,P点与最中间的点重合,可使P到各点距离之和最小.。
第四章平面图形及其位置关系
【知识点及典型例题】
知识点一、直线、射线、线段、角等基本概念
例1、判断下列说法是否正确,并简要说明理由。
(1)延长直线AB到C;
(2)延长射线OA到C;
(3)延长线段AB到C;
(4)延长线段AB到C与延长线段BA到C是一样的;
(5)角的两边越长,角越大;
(6)任何情况下一个角都可以用一个大写字母表示;
(7)若线段AB=BC,则点B是线段AC的中点;
(8)若射线OC在∠AOB的内部且∠AOC=∠BOC,则OC为∠AOB的角平分线。
知识点二、几何重要性质
1、经过两点有且只有一条直线;
2、两点之间的所有连线中,线段最短;(两点之间,线段最短)
例2、指出下列情况分别运用了上述哪条性质:
(1)木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是运用了性质
(2)高速公路路况弯道比较少,这是因为
知识点3、数直线、线段的条数与角的个数
1、过平面内n个点中的任意两点的直线的条数要依据是否有三点共线,需要分类讨论;平面内
n个点中,无三点共线,过其中任意两点的直线条数有
(1)
2
n n-
;过平面内n个点中的任两点的
直线条数最多为
(1)
2
n n-
;
2、一条线段上有n个点,则共有线段条数为
(1)
2
n n-
;
3、从同一个点发出n条射线,若无两条在同一条直线上,则小于平角的角共有
(1)
2
n n-
个;
例3、请数出图中三角形的个数。
知识点4、线段、角的有关计算,特别注意有些时候需要分类讨论
例4、1、.如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm,求线段MN的长.
例5、已知线段AB和BC在同一条直线上,如果AC=5.6cm,BC=2.4cm,求线段AC和BC的中点间的距离。
O
B
A C
知识点5、时针与分针的夹角问题
注意:时针每分钟转0.5︒
,分针每分钟转30︒
,时针与分针重合或成一定角度可类似于行程问题中的追击问题,可利用角度差或时间相等为等量关系建立方程。
例6、时钟上在1点与2点之间,时针与分针在什么时刻成直角?
8. 48.26°= ° ′ ″ 56°25′12″= °
知识点6、其它类型问题
例7、如图,设A ,B ,C ,D 为4个居民小区,现要在四边形ABCD 内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?说明理由。
A
B
D
C
一、选择题:
1.已知A 、B 两点之间的距离是10 cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间距离是( ) A.3 cm;
B.4 cm;
C.5 cm;
D.不能计算
2.如图,∠AOB 为平角,且∠AOC=2
1
∠BOC ,则∠BOC 的度数是( ) A.1000;
B.1350;
C.1200;
D.60°
3一个人骑自行车前行时,两次拐弯后,仍按原方向前进,这两次拐弯的角度( ) A.向右拐30°,再向右拐30°; B.向右拐30°,再向左拐30° C.向右拐30°,再向左拐60°; D.向右拐30°,再向右拐60°
4.同一平面内有四点,每过两点画一条直线,则直线的条数是( )
A、1条 B、4条 C、6条 D、1条或4条或6条 5. 如图直线l 上顺次排列着5个点A 、B 、C 、D 、E ,则5个点中到其余各点距离之和最小的点是
A. B 点
B. C 点
C. D 点
D. E 点
6. 如图,点M 、N 、C 都在直线AB 上,且M 是AC 的中点,N 是BC 中点,若AC=a ,BC=b ,则MN 长等于
A.
2
a B.
2
b C.
2
b
a + D.
2
b
a - 7. 在直线l 上取两点A 、B ,使AB=10cm ,再在直线l 上取一点C ,使AC=2cm ,若点M 是线段BC 的中点,则BM 等于 A. 4cm B. 4cm 或6cm C. 6cm D. 6cm 或5cm 8 . 下列说法正确的是( ).
A . 两条射线组成的图形叫角
B . 小于平角的角分别为锐角和钝角
C . 延长直线AB
D . 延长线段AB 9 钟表上2时15分时,时针与分针的夹角为( ).
A . 30°
B . 45°
C . 22.5°
D . 15°
10. 同一平面内有四个点,过每两个点画一条直线,则直线的条数是( ).
A . 1条
B . 4条
C . 6条
D . 1条或4条或6条
11 . 在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于灯塔的( ).
A . 南偏西50°方向
B . 南偏西40°方向
C . 北偏东50°方向
D . 北偏东40°方向
12. 已知线段AB =6,延长AB 到C ,使BC =3
2
AB ,则AC 的长是( ).
A . 6
B . 8
C . 10
D . 12 13. 三条互不重合的直线的交点个数可能是( )
A.0、1、3
B.0、2、3
C.0、1、2、3
D.0、1、2 甲 乙
14. 已知线段AB =6cm ,BC =4cm ,则AC 的取值范围是( ).
A . AC ≥2cm
B . A
C ≤10cm C . 2cm ≤AC ≤10cm
D . 无法判定 15用一副三角板画角,则不能画出的角度是( ).
A . 15°
B . 75° C. 145° D . 165° 16 从公共端点O 引出10条射线所组成的角的个数有( ).
A . 35个
B . 40个
C . 45个
D . 50个
17 如图5所示,回字形道路的宽为1m ,整个回字
形长8m ,宽7m ,一个人从入口点A 沿着道路中央
走到终点B ,他一共走了( ). A . 55m B . 55.5m C . 56m D . 56.5m
二、填空
1 在直线AB 上,线段AB =5cm ,线段BC =3cm ,则线段AC 的长为 cm. 2把一根木条钉牢在墙壁上最少需要____个钉子,其理论依据是___ _____.
3、15°=____平角,8
3
周角=____度,25°12′18″=______度.
B
C
D
A
4、如图,已知线段AB ,点C 分线段AB 为5∶7,点D 分线段AB 为5∶11,若CD=5㎝,则线段AB=____________
5、已知线段AC 和BC 在一条直线上,如果AC=8㎝,BC=3㎝,则线段AC 和BC 的中点间的距离为
6、由2∶30到2∶55,时钟的分针转过的角度是 度,12∶12时针与分针的夹角是 度。
7画线段AB=1 cm ,延长线段AB 到C ,使BC=2 cm ,已知D 是BC 的中点,则线段AD=________ cm.
18 利用一副三角板,共能画出________个大小不同的小于︒180的角。
三、 1、计算
1、13º29´+78º37´´
2、61º39´-22º5´32´´
3、23º53´×3+107º43´÷5
2、已知线段AB 上有C 、D 两点,AC=13BC ,AD=4
5
BD ,CD=7㎝,求线段AB 的
长。
3如图,直线l 上有四点A 、B 、C 、D ,并且CD 3
1
AB 51BC ==,如果AB 、CD 的中点分别为M 、N ,且MN=12cm ,求线段AB 的长。
4. 如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、…。
(1)“17”在射线____________上; (2)请任意写出三条射线上数字的排列规律; (3)“2007”在哪条射线上?
D
B
14O 3
A
C
2
5.如图已知∠1∶∠3∶∠4=1∶2∶4,∠2=80°,求∠1、∠3、∠4的度数.
6如图,OM 、ON 分别是∠BOC 和∠AOC 的平分线,且 ∠AOB=84°
①、求∠MON 的度数;
②、当OC 在∠AOB 内转动时,∠MON 的值是否会变,简单说明理由。
7 .在一条直线型的流水线上,依次有A 1、A 2、A 3、A 4、A 5 5个机器人在工作,如图10所示,现需要设计一个零件供应点,问设在何处与5个机器人距离的和最小 ?
8
、观察下图,并阅读图形下面的相关文字;
(1)在上面画出五条直线相交时交点最多的情况。
(2)猜想6条直线相交时,最多有几个交点? (3)n 条直线相交时最多有几个交点?
两条直线相交最多有1个交点
三条直线相交最
多有3个交点 四条直线相交最多有6个交点 五条直线相交最
多有几个交点。