湖北省黄冈市2013-2014学年高二数学上学期期末考试试题 理
- 格式:doc
- 大小:485.50 KB
- 文档页数:7
2015年秋季高二期末考试数学参考答案(理科)一、选择题 DADBB DCBAC AD二、 13.16 14.13a -≤≤. 15.3 16.① ④ 17.(1)检测数据的频率分布直方图如图:...........................................5分(2)检测数据中醉酒驾驶的频率是210.1520+=...............................6分 估计检测数据中酒精含量的众数是35与55................................8分 估计检测数据中酒精含量的平均数是0.01510250.020⨯⨯+⨯⨯+⨯⨯+⨯⨯0.01010650.01510750.01010850.005109555+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.....................10分18.(1)由22430x ax a -+<,得(3)()0x a x a --<,又0a >,所以3a x <<. ...............................2分当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<................................3分由2260280x x x x ⎧--≤⎨+->⎩得2324x x x -≤≤⎧⎨><-⎩或得23x <≤,即q为真时实数x 的取值范围是23x <≤. ...............................4分 若p q ∧为真,则p 真且q 真,.. .............................5分 所以实数x 的取值范围是23x <<. ...............................6分 (2)p ⌝是q ⌝的充分不必要条件,即p q ⌝⇒⌝,且q ⌝推不出p ⌝. 即q是p的充分不必要条件,2,3]⊂即((a,3a) ...............................8分则332a a >⎧⎨≤⎩,解得12a <≤,所以实数a 的取值范围是12a <≤..............................12分19.(Ⅰ)前三次射击成绩依次记为123x x x 、、,后三次成绩依次记为123y y y 、、,从这6次射击成绩中随机抽取两个,基本事件是:121323{,},{,},{,},x x x x x x 121323{,},{,},{,},y y y y y y 111213{,},{,},{,},x y x y x y 212223{,},{,},{,},x y x y x y 313233{,},{,},{,}x y x y x y ,共1个,...............................3分其中可使||1a b ->发生的是后9个基本事件.故93(||1)155P a b ->==.……………6分 (Ⅱ)因为着弹点若与A B C 、、的距离都超过1cm ,则着弹点就不能落在分别以A B C、、为中心,半径为1cm 的三个扇形区域内,只能落在扇形外的部分................................7分 因为43cos sin 55C C =∴=则1=2ABC S C ∆⨯⨯⨯=...............................9分满足题意部分的面积为211922ABC S S ππ∆'=-⨯⨯=-,...............................11分故所求概率为118ABCS p S π∆'==-. ……………12分20(1)∵()0,2F ,4p =, ∴ 抛物线方程为y x 82=,...............................1分与直线22y x =+联立消去y 得: 016162=--x x ,设),(),,(2211y x B y x A (2)分 则16,162121-==+x x x x ,...............................3分 ∴=++=++=)42)(42()2)(2(||||2121x x y y BF AF 80;...............................5分(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x 设),(),,(2211y x B y x A ,0,∆>则p x x p x x 4,42121-==+,...............................7分)24,2(+p p P),2,2(p p Q (8)分方法一,22+=∴p PQ ...................................................9分p p p p AB +⋅=+⋅=225416)4(5 又...............................10分∴=AB PQ 21且01342=-+p p )(141舍或-==p p ...............................11分 故存在14p =0.∆>且满足 ......................12分 方法二:由=⋅QB QA 得:0)2)(2()2)(2(2121=--+--p y p y p x p x ................9分即1212(2)(2)(222)(222)0x p x p x p x p --++-+-=,...............................10分 ∴0488))(64(522121=+-++-+p p x x p x x , ...............................11分代入得01342=-+p p ,)(141舍或-==p p .故存在0.∆>且满足 14p =.........12分 21.试题分析:(1)证明:在图中,由题意可知,,BA PD ABCD ⊥为正方形,所以在图中,,2SA AB SA ⊥=,四边形ABCD 是边长为2的正方形, ........................................2分 因为S B⊥,AB⊥BC ,所以BC⊥平面SAB , . .............................4分又SA ⊂平面SAB ,所以BC ⊥SA ,又SA ⊥AB ,所以SA ⊥平面ABCD , ........6分 (2)方法一:建立空间直角坐标系,以AB x AD y AS 为轴,为轴,为Z 轴,.....7分(000),(220),(020),(002)A C D S ,,,,,,,, 124,(0)333SE SD E =∴ ,, (8)分24(220),(0),(002)(,,)33AC AE AS AEC n x y z ==== 则,,,,,,设平面的法向量为0,0(2,2,1)n AC n AE n ⋅=⋅==-得.....................10分,ACD AS θ又平面的法向量为设二面角为,则1cos ,tan 2 2.3n AS n ASθθ⋅==∴=⋅ 即二面角E —AC —D 的正切值为22..............12分方法二:在AD 上取一点O ,使13AO AD =,连接EO因为13SE SD =,所以EO//SA 所以EO ⊥平面ABCD ,过O 作OH ⊥AC 交AC 于H ,连接EH , ...7分则AC ⊥平面EOH ,所以AC ⊥EH 。
一、单选题1.已知直线与轴垂直,则为( ) ():1340l a x ay a +-++=y a A . B .0C .D .或01-4-1-【答案】A【分析】由直线与轴垂直得到方程和不等式,求出的值. y a 【详解】因为与轴垂直, ():1340l a x ay a +-++=y 所以直线的斜率为0,l 所以,且,解得. 10a +=30a -≠1a =-故选:A.2.已知等比数列的前项和为,,且,则( ) {}n a n n S 24S =3214S a a =+5S =A .40 B .120C .121D .363【答案】C【分析】由题目条件求出公比和首项,利用等比数列求和公式求出答案. 【详解】设公比为,由,可得, q 3214S a a =+321124a a a a a +=++所以,所以, 323a a =323a q a ==由,可得,即,所以,24S =114a a q +=144a =11a =所以. ()5515113121113a q S q--===--故选:C.3.年华人数学家张益唐证明了孪生素数(注:素数也叫做质数)猜想的一个弱化形式,孪生2013素数猜想是希尔伯特在年提出的个问题之一,可以这样描述:存在无穷多个素数使得190023p 是素数,素数对称为孪生素数.从以内的素数中任取两个,其中能构成孪生素数的2p +(),2p p +10概率为( )A .B .C .D .16131223【答案】B【分析】列举出以内的素数,以及任取两个不同的素数构成的数对,确定孪生素数的个数,利用10古典概型的概率公式可求得所求事件的概率. 【详解】以内的素数有、、、,102357任取两个不同的素数有、、、、、,共个, ()2,3()2,5()2,7()3,5()3,7()5,76其中孪生素数有、,共个,故所求概率为. ()3,5()5,722163P ==故选:B.4.如图,已知空间四边形,M ,N 分别是边OA ,BC 的中点,点满足,设OABC G 2MG GN =,,,则( ) OA a= OB b = OC c = OG =A .B .C .D .111333a b c ++ 111633a b c ++ 111366a b c ++ 111666a b c ++【答案】B【分析】根据向量的线性运算一步步将向量化为关于,,,即可整理得出答案. OGOA OB OC 【详解】, ()12122323OG OM MG OA MN OA MA AB BN =+=+=+++ , 12112322OA OA OB OA BC ⎛⎫=++-+ ⎪⎝⎭, ()12112322OA OA OB OA OC OB ⎡⎤=++-+-⎢⎥⎣⎦, 111633OA OB OC =++. 111633a b c =++ 故选:B.5.已知,,若直线上存在点,使得,则实数的取值范()1,0A -()10B ,()2y k x =-P 90APB ∠=︒k 围为( )A .B . ⎡⎢⎣⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝C .D . ⎛ ⎝,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭【答案】B【分析】根据题意分析可得直线与圆:有公共点(公共点不能是、),()2y k x =-O 221x y +=A B 结合直线与圆的位置关系分析运算.【详解】若,则点在以,为直径的圆上(点不能是、), 90APB ∠=︒P ()1,0A -()10B ,P A B ∵以,为直径的圆的圆心为,半径,则圆的方程为, ()1,0A -()10B ,()0,0O 1r =O 221x y +=即直线与圆:有公共点(公共点不能是、), ()2y k x =-O 221x y +=A B当直线与圆:,解得;()2y k x =-O 221x y +=1≤k ⎡∈⎢⎣当直线与圆:的公共点为A 或B 时,则直线即为x 轴,即()2y k x =-O 221x y +=()2y k x =-;0k =综上所述:实数的取值范围为. k ⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝ 故选:B.6.已知是双曲线右支上一点,记到双曲线左焦点的距离为,到P ()222210,0x y a b a b -=>>P 1F 1d P 双曲线一条渐近线的距离为,若的最小值等于双曲线的焦距长,则双曲线的渐近线方程为2d 12d d +( ) A .B .C .D .43y x =±34y x =±53y x =±45y x =±【答案】A【分析】由双曲线定义得到,故,数形结合得到当点为线段122d PF a =+21222PF d a d d +=++P 与双曲线的交点时,此时取得最小值,从而列出方程,求出,得到渐近线方2F M 22PF d +43a b =程.【详解】由双曲线定义可知:, 122PF PF a -=故,故, 122d PF a =+21222PF d a d d +=++过点作渐近线的垂线,垂足为,2F 1:b l y x a=M当点为线段与双曲线的交点时,此时取得最小值, P 2F M 22PF d +最小值即为,2F M,解得:,22a c =22b a c +=两边平方得:, 222444b ab a c ++=又, 222+=a b c 所以, 43a b =渐近线方程为. 43b y x x a =±=±故选:A 7.已知在大小为的二面角中,,,于点,于点,且3πl αβ--A α∈B β∈AC l ⊥C BD l ⊥D ,则直线与所成角的余弦为( )22CD DB AC ===AB CD ABCD .12【答案】B【分析】以、为邻边作平行四边形,连接,计算出、的长,证明出CD BD CDBE AE AE BE ,利用勾股定理可求得的长,即可求解BE AE ⊥AB 【详解】如下图所示,以、为邻边作平行四边形,连接,CD BD CDBE AE因为,,则,BD CD ⊥//CE BD CE CD ⊥又因为,,,故二面角的平面角为, AC CD ⊥AC α⊂CE β⊂l αβ--π3ACE ∠=因为四边形为平行四边形,则,,CDBE 2CE BD ==2BE CD ==所以在中,,则 ACE △222π2cos3AE AC CE AC CE =+-⋅AE =,则,,,平面,//BE CD BE CE ⊥BE AC ⊥AC CE C = ,AC CE ⊂ACE 故平面,BE ⊥ACE因为平面,则,故.AE ⊂ACE BE AE ⊥AB =,所以直线与所成角相当于直线与所成角,即,//BE CD AB CD AB BE ABE ∠所以, cos ABE ∠==故选:B8.已知椭圆的左、右焦点分别为,,过的直线交椭圆于A ,B 两()2222:10x y C a b a b+=>>1F 2F 2F点,,且,椭圆,则实数( )22AF F B λ= 120AF AF ⋅= C λ=A . B .2 C . D .32313【答案】D【分析】设,根据椭圆的定义求出,,利用22(0)AF B t t F λ==> 1=2AF a t -1=2aBF a λ-即可求解.12AF AF ⊥【详解】因为,设,由椭圆的定义可得:,则22AF F B λ=22(0)AF B t t F λ==> 12=2AF AF a +,因为,所以,1=2AF a t -120AF AF ⋅=12AF AF ⊥所以,即,又因为椭圆, 2221212=AF AF F F +222(2)4a t t c -+=C所以,则有,a =2222(2)42a t t c a -+==所以,则,则,t a =2a F B λ= 2F B aλ= 由,所以,因为,所以,12=2BF BF a +1=2aBF a λ-120AF AF ⋅=12AF AF ⊥所以,即,解得:,22211=AF AB BF +22221(1(2a a a a λλ++=-3λ=故选:.D二、多选题9.连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件“第一次出现3点”,“第A =B =的有( )A .A 与B 不互斥且相互独立 B .A 与D 互斥且不相互独立C .B 与C 不互斥且相互独立D .B 与D 互斥且不相互独立【答案】ABC【分析】根据给定条件,求出事件A ,B ,C ,D 的概率,再利用互斥事件、相互独立事件的定义判断作答.【详解】连续抛掷一枚质地均匀的骰子两次的试验结果有:,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),共36个不同结果,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)事件A 所含的结果有:,共6个,()()()()()()3,1,3,2,3,3,3,4,3,5,3,6事件B 所含的结果有24个,事件C 所含的结果有18个,事件D 所含的结果有:()()()4,6,5,5,6,4,共3个, 因此, 6124218131(),(),(),()3663633623612P A P B P C P D ========对于A ,事件A 与B 都含有,共4个结果,即事件A 与B 可以同时发生, (3,1),(3,2),(3,3),(3,4)而,A 与B 不互斥且相互独立,A 正确; 41()()()369P AB P A P B ===对于B ,事件A 与D 不能同时发生,,A 与D 互斥且不相互独立,B 正确; ()0()()P AD P A P D =≠对于C ,事件B 与C 都含有,共12(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),(5,2),(5,4),(6,1),(6,3)个结果,即事件B 与C 可以同时发生,,B 与C 不互斥且相互独立,C 正确; 121()()()363P BC P B P C ===对于D ,事件B 与D 都含有,即B 与D 可以同时发生,, (6,4)121()()()36312P BD P B P D =≠⨯=因此B 与D 不互斥且不相互独立,D 错误. 故选:ABC10.已知等差数列的前项和为,且,,数列的前项和为{}n a n n S 6135S S S <<121n n n n b a a a ++={}n b n nT .则下列说法正确的有( ) A .,B .当且仅当时,取得最小值 90a <80b >9n =n SC .当时,的最大值为17D .当且仅当时,取得最大值0n S <n 8n =n T【分析】由结合等差数列的角标性质判断ABC ;由裂项相消求和法判断D. 6135S S S <<【详解】对于A :设等差数列的公差为,因为,所以, {}n a d 6135S S S <<6560S S a -=<因为,所以.136789101112131070S S a a a a a a a a +-==+++++>100a >因为,所以. 1312111098711603594()0a a a a a S a a a a a S -=+++++++=+<1090a a +<由,可得,因为,所以,故A 正确;100a >1090a a +<90,0a d <>890a a d =-<8891010b a a a =>对于B :因为,,所以当且仅当时,取得最小值,故B 正确; 90,0a d <>100a >9n =n S 对于C :,即当时,的最大值不是17,故C 错误; ()()118910181818022a a a a S ++==<0n S <n 对于D :1211211112n n n n n n n n b a a a d a a a a +++++⎛⎫==- ⎪⎝⎭122323341121212111111111122n n n n n n n T d a a a a a a a a a a a a d a a a a +++++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎝⎭⎝⎭因为,所以当最小时,最大.0d >121n n a a ++n T 当时,,,此时最小,即当时,取得最大值,故D 正确;8n =90a <100a >121n n a a ++8n =n T 故选:ABD11.如图,直四棱柱的底面是边长为2的正方形,,点是棱的中1111ABCD A B CD -1CC t =Q 1CC 点,点在底面内运动(包括边界),则下列说法正确的有( )P ABCDA .存在点使得平面P 1//A P 11BCC B B .当时,存在点使得直线与平面所成的角为 2t =P 1A P ABCD π6C .当时,满足的点有且仅有两个 2t=1A P PQ ⊥P D .当的点t =1A P PQ ⊥P【分析】根据直棱柱的性质及面面平行的性质判断A ,建立空间直角坐标系,利用空间向量判断B 、C 、D.【详解】解:如图建立空间直角坐标系D -xyz ,则,,,,()12,0,A t 0,2,2t Q ⎛⎫ ⎪⎝⎭()0,0,0D ()2,2,0B 对于A :由直棱柱的性质可知平面平面,当时平面,故A 正11//A D DA 11B C CB P AD ∈1//A P 11BCC B 确;对于B :当时,设,,则, 2t =(),,0P x y [],0,2x y ∈()12,,2P x A y =--显然平面的法向量可以为,ABCD ()0,0,1n =设直线与平面所成的角为,则1A P ABCD θ11sin P nP n A A θ⋅==⋅若直线与平面所成的角为,则,1A P ABCD π61sin 2θ==4=所以,因为,所以,,()22212x y -+=[],0,2x y ∈()[]220,4x -∈[]20,4y ∈所以,故不存在使得,()[]2220,8x y -+∈[],0,2x y ∈()22212x y -+=即不存在点使得直线与平面所成的角为,故B 错误; P 1A P ABCD π6对于C :由,, ()12,,2P x A y =-- (),2,1PQ x y =--因为,所以,1A P PQ ⊥()()12220A P PQ x x y y ⋅=--+--=所以,所以,即,所以满足的点有且仅有个,故C()()22110x y -+-=11x y=⎧⎨=⎩()1,1,0P 1A P PQ ⊥P 1错误;对于D :当时,,,, t =1A⎛ ⎝12,,A P x y ⎛=- ⎝,2PQ x y ⎛=-- ⎝ 因为,所以,即,1A P PQ ⊥()()1220P PQ x x A y y ⋅=--+-= ()()224113x y -+-==又,则圆心轴、轴分别交于点、[],0,2x y ∈()1,1E x y 1M ⎛⎫ ⎪ ⎪⎝⎭⎛过点作交于点,则,所以,则,又E EF AD ⊥AD F MF =1sin 2MF MEF ME ∠==π6MEF ∠=, π4DEF ∠=所以,所以,π12MED DEF MEF ∠=∠-∠=π26MEN MED ∠=∠=圆弧的长度,所以点D 正确;MN π6l ==P故选:AD12.已知抛物线的焦点为,过的直线与抛物线交于两点,点,直线24y x =F F l ,A B ()2,0T 与抛物线的另一个交点分别为,则下列说法正确的有( ),AT BT ,C D A .直线过定点CD ()3,0B .与的面积之比为ATB A CTD△1:4C .若直线,斜率都存在,且分别为,,则 AB CD 1k 2k 2112k k =D .与的面积之和的最小值为ATF △CTD △【答案】BCD【分析】可通过特殊情况,直线斜率不存在时求得直线不过定点,排除A ,也可以通过l CD ()3,0设出的方程与抛物线方程联立,求得纵坐标关系,两点式写出方程,化简,,AC BD AB ,,,A B C D CD 整理可得方程过定点,用纵坐标表示两个三角形面积之比,直线,斜率化简()4,0,,,A B C D AB CD 可判断B ,C 正确,与的面积之和用纵坐标表示,化简后利用基本不等式CTD △,,,A B C D可求得最小值.【详解】当与垂直时,,又, l x (1,2),(1,2)A B -(2,0)T , :24=24AT y x BT y x ∴=-+-,:与抛物线方程联立,得, AT 2244y x y x =-+⎧⎨=⎩(4,4)C -与抛物线方程联立,得, BT 2244y x y x =-⎧⎨=⎩(4,4)D ,不过定点,所以A 错误.:4CD x ∴=()3,0如图:设,交轴于,11223344(,),(,)(,)(,)A x y B x y C x y D x y CD x E 设,得,222,4x ty AC x ty y x =+⎧=+∴⎨=⎩:2480y ty --=则, 131388,y y y y -=-=设,得, 222,4x my BD x my y x =+⎧=+∴⎨=⎩:2480y my --=则, 242488,y y y y -=-=设,得,211,4x ny AB x ny y x =+⎧=+∴⎨=⎩:2440y ny --=则, 121244,y y y y -=-= 123434348864()(4,16,y y y y y y y y --∴===-=-直线 CD()()()()()34444434223434344:14y y x x x x x x y y y y x x y y y y -----=-==-+-()()()()2444x x x x y y y x x y y y --++-++,443434344()1644164(4)x x x x x y y y y y y --+--===+++所以直线过定点CD ()4,0, 43123434434334438()881()11()44121()2()2164()2ATBDTCy y y y FTy y y y S S y y y y y y y y TE -----⋅⋅-⋅--======-⋅-⋅--⋅A A 所以B 正确.()()4322214343432212221143212143211414y y y y x x y y y y k x x y y k x x y y y y y y x x ------==⋅=⋅------, 214343434388281y y y y y y y y y y ++-==++⋅-==-所以C 正确.1431112()22ATF CTD S S y y y +=⨯⨯+⨯⨯-A A , 1433333318162022y y y y y y y y ---=+-=⨯+-=-333200,ATF CTD y S S y y -<∴+=-≥=A A 所以D 正确. 故选:BCD三、填空题13.是空间向量的一组基底,,,,已知点在{},,a b c 2OA a mb c =++ 2OB a b =+OC a b c =++ O 平面内,则______. ABC m =【答案】3【分析】根据空间向量共面定理可得存在与 使得,从而可求解.λμOC OA OB λμ=+【详解】因为点在平面内,所以,,共面, O ABC OA OB OC所以存在与 使得,λμOC OA OB λμ=+即,()()()()2222a b c a mb c a b a m b c λμλμλμλ++=++++=++++所以,解得.21211m λμλμλ+=⎧⎪+=⎨⎪=⎩113m λμ=⎧⎪=-⎨⎪=⎩故. 3m =故答案为:3.14.已知圆被直线所截得的两段圆弧的弧长之比为,且圆上恰有三个不同的点到直线的C l 1:2C l 距离为,则直线被圆所截得的弦长为______. 1l C 【答案】【分析】设圆的半径为,作出图形,计算出圆心到直线的距离为为,根据题意可得出关C r C l 2r于的等式,解出的值,利用勾股定理可求得直线被圆所截得的弦长.r r l C 【详解】设圆的半径为,因为圆被直线所截得的两段圆弧的弧长之比为,C r C l 1:2则劣弧所对的圆心角为,所以,圆心到直线的距离为,120C l 120cos 22rd r ==将直线平移,使得平移后的直线与直线之间的距离为,如下图所示:l l 1假设平移后的直线为、,则这两条直线一条与圆相切,一条与圆相交, 1l 2l C C 不妨设直线与圆相切,则直线与之间的距离为,可得, 1l C l 1l 12rr -=2r =所以,直线截圆所得弦长为l C=故答案为:15.已知,分别为椭圆的左、右焦点,焦距为8,过的直线与该椭圆1F 2F ()222210x y a b a b+=>>1F 交于M ,N 两点,若的最小值为,则周长为______.MN 1852F MN A 【答案】20【分析】根据焦距为8,的最小值为可得:,,结合椭圆的定义进而求解. MN 1854c =5a =【详解】由题意可知:,解得:,, 2222282185c b a a b c =⎧⎪⎪=⎨⎪=+⎪⎩4c =5a =由椭圆的定义可得:周长为, 2F MN A 420a =故答案为:.2016.已知的前项和为,,,则______.{}n a n n S ()()1221n n n n a a n +++-=50600S =12a a +=【答案】12-【分析】根据题意令和,代入整理可得43,n k k =+∈N 44,n k k =+∈N ,利用并项求和结合等差数列求和运算求解. 4645444378k k k k a a a a k ++++++=++【详解】当时,则为偶数,43,n k k =+∈N ()()()143222n n k k +=++为偶数,()()()()1222452n n k k ++=++可得,,()()4543122143k k n n n n a a a a k +++++-==++()()()122314644144n n n n k k a a a a k +++++++-+==+两式相加可得:,4645444378k k k k a a a a k ++++++=++故 ()()()()5012501234567891047484950......S a a a a a a a a a a a a a a a a a =+++=++++++++++++++,()()()()12121212795715 (956126002)a a a a a a +=+++++=++=++=解得. 1212a a +=-故答案为:.12-【点睛】方法点睛:本题中出现,故应讨论的奇偶性,根据题意把相邻的四项合()()121n n +-()12n n +并为一项,组成一个新的数列,再进行求和运算,同时注意对的处理.12a a +四、解答题17.某公司招聘考试分笔试与面试两部分进行,每部分成绩只记“合格”与“不合格”,两部分成绩都合格者则被公司录取.甲、乙、丙三人在笔试部分合格的概率分别为,,,在面试部分合格的452334概率分别为,,,所有考试是否合格相互之间没有影响.122335(1)假设甲、乙、丙三人都同时参加了笔试和面试,谁被录取的可能性最大?(2)当甲、乙、丙三人都参加了笔试和面试之后,不考虑其它因素,求三人中至少有一人被录取的概率.【答案】(1)丙 (2) 4960【分析】(1)记甲、乙、丙三人被录取分别为事件A ,B ,C ,且A ,B ,C 相互独立,甲、乙、丙三人被录取即三人即通过笔试部分又通过面试部分,由独立事件概率的乘法公式计算得出,()P A ,,比较概率的大小即可得出答案;()P B ()P C (2)记三人中至少有一人被录取为事件,则与互为对立事件,从而根据对立事件的D D A B C 计算公式与独立事件概率的乘法公式计算得出答案.【详解】(1)记甲、乙、丙三人被录取分别为事件A ,B ,C ,则A ,B ,C 相互独立,则,,,()412525P A =⨯=()224339P B =⨯=()3394520P C =⨯=,()()()P A P B P C << 丙被录取的可能性最大.∴(2)记三人中至少有一人被录取为事件, D 则与互为对立事件,D A B C .()()()()()24949111111592060P D P C P P P C A B A B ⎛⎫⎛⎫⎛⎫∴=-=-=----= ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 18.已知直线,,且. ()1:2220l a x y a ---=2:410l x ay a -+-=12l l ∥(1)求与之间的距离;1l 2l (2)一束光线从出发经反射后平行于轴射出,求入射光线所在的直线方程. ()2,3P 1l x【答案】(2) 43170x y +-=【分析】(1)由平行条件得出的值,再由距离公式求解;a (2)由关于的对称点得出反射光线的方程,并与直线联立得出入射点,进而由()2,3P 1l ()00,P x y '1l 两点式写出方程.【详解】(1)由可得:,解得:或 12l l ∥()()()22140a a -⋅---⋅=2a =1-当时,,,此时与重合,舍去1a =-1:420l x y --+=2:420l x y +-=1l 2l当时,,,此时,符合题意 2a =1:240l x y --=2:4210l x y -+=12l l ∥故与之间的距离为.1l 2ld ==(2)设关于的对称点为,则()2,3P 1l ()00,P x y ' 解得:,∴ 000032122324022y x x y -⎧⋅=-⎪-⎪⎨++⎪--=⎪⎩0022595x y ⎧=⎪⎪⎨⎪=⎪⎩229,55P '⎛⎫ ⎪⎝⎭联立,解得:,∴入射点为. 24095x y y --=⎧⎪⎨=⎪⎩291095x y ⎧=⎪⎪⎨⎪=⎪⎩299,105⎛⎫ ⎪⎝⎭故入射光线所在的直线方程为,即. 9335292210y x --=--43170x y +-=19.已知数列的前项和为,且,,数列是等差数列. {}n a n n S 11a =223a =(){}423n n nS n a ++(1)求证数列为等比数列;n a n ⎧⎫⎨⎬⎩⎭(2)求.n S 【答案】(1)证明见解析 (2) 9691443nn +⎛⎫- ⎪⎝⎭【分析】(1)根据题意结合等差数列的通项公式整理可得,由与的关系整23944n n n S a n +=-+n a n S 理得,根据等比数列的定义分析理解; ()11231n n a a n n n -=⋅≥-(2)根据等比数列通项公式可得,法一:根据题意直接代入运算;法二:利用错位相减13n n na -=法求和;法三:整理可得,利用裂项相消法求和.()19919911243243nn n a n n +⎛⎫⎛⎫⎡⎤⎛⎫=+-++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭【详解】(1)对于等差数列可得:(){}423n n nS n a ++当时,则;当时,则; 1n =11459S a +=2n =22128781518S a a a +=+=∴是以9为首项,9为公差的等差数列,(){}423n n nS n a ++则,即①, ()()4239919n n nS n a n n ++=+-=23944n n n S a n +=-+当时,②, 2n ≥1219444n n n S a n -+=-+-得:, -①②12321444n n n n n a a a n n -++=-+-整理得:,且, ()11231n n a a n n n -=⋅≥-1101a =≠∴是以为首项,为公比的等比数列.n a n ⎧⎫⎨⎬⎩⎭111a =13(2)方法一:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=∴;11239239923144434443n n n n n n n n S a n n --+++⎛⎫=-+=-⋅+=-⋅ ⎪⎝⎭方法二:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=①,()0122111111123133333n n n S n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭②, ()12311111111231333333n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭得:-①②0121211111333333n nn S n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 1113131133111323322313n n n n nn n n ⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=-=--=-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-∴; 1333192312223443n n n n S n -⎡⎤+⎛⎫⎛⎫⎛⎫=-+=-⋅⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦方法三:由(1)可知,,则, 1113n n a n -⎛⎫=⋅ ⎪⎝⎭13n n na -=设,()()111133nn n a An B A n B +⎛⎫⎛⎫⎡⎤=+-++ ⎪ ⎪⎣⎦⎝⎭⎝⎭22111333333nnAn B A n ⎛⎫⎛⎫⎛⎫=+-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭比较系数得:,解得:,23321033A B A ⎧=⎪⎪⎨⎪-=⎪⎩9294A B ⎧=⎪⎪⎨⎪=⎪⎩∴()19919911243243n n n a n n +⎛⎫⎛⎫⎡⎤⎛⎫=+-++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭∴(121223991991991991991912232432432432432432...nn n S a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎡=++⋅⋅⋅+=⨯+⨯+⨯+⨯++-+⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝-+⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣-++. 9691443nn +⎛⎫=- ⎪⎝⎭20.在如图所示的多面体中,四边形为菱形,在梯形中,,ABCDEF ABCD ABEF //AF BE ,,平面平面.AF AB ⊥22AB BE AF ===ABEF ⊥ABCD(1)证明:⊥平面;BD ACF (2)若直线与平面所成的角为60°,求平面与平面所成角的余弦值. DA ACF ACF CEF 【答案】(1)证明见解析【分析】(1)由面面垂直得到线面垂直,从而得到,结合,得到线面垂直; AF BD ⊥BD AC ⊥(2)在第一问的基础上,得到直线与平面所成的角为,故,建立空DA ACF DAO ∠60DAO ∠=︒间直角坐标系,利用空间向量求解两平面夹角的余弦值.【详解】(1)证明:∵平面平面,,平面,平面平面ABEF ⊥ABCD AF AB ⊥AF ⊂ABEF ABEF ⋂,ABCD AB =∴平面,又平面, AF ⊥ABCD BD ⊂ABCD ∴,AF BD ⊥∵四边形为菱形, ABCD ∴,BD AC ⊥又,平面, AF AC A = ,AF AC ⊂ACF ∴⊥平面;BD ACF (2)设,由(1)可知,平面,则直线在面内的射影为,AC BD O = DO ⊥ACF DA ACF OA故直线与平面所成的角为, DA ACF DAO ∠∴,60DAO ∠=︒和均为边长为2的等边三角形,ACD A ACB △以为原点,,为,轴建立空间直角坐标系,如下图:O OC OB xy由⊥平面,可得平面的法向量为,而,,BD ACF ACF ()10,1,0n =()1,0,0C ()1,0,1F-()2E ,∴,,()2,0,1CF =-()CE =- 设平面的法向量,则, CEF ()2,,n x y z =u ur 222020n CF x z n CE x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 取,可得,1x =2,z y ==()21,n = ∴平面与平面夹角的余弦值为ACF CEF 121212cos ,n n n n n n ⋅===⋅21.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上.设外围第一个正方形1111D C B A的面积为,往里第二个正方形的面积为,…,往里第个正方形的面积11a =2222A B C D 2a n n n n n A B C D 为.n a(1)求的通项公式;{}n a(2)已知满足,问是否存在最大项?若存在,求出最大项;{}n b ()2*12122N n nb b b n n n a a a ++⋅⋅⋅+=-∈{}n b 若不存在,请说明理由.【答案】(1)()1*5N 9n n a n -⎛⎫=∈ ⎪⎝⎭(2)存在, 23259b b ==【分析】(1)由图形可得即,则为等比数列,结合等222=+159n n a a +={}n a 比数列的通项公式求解即可; (2)当时,,结合题设条件可得,从而得出2n ≥()()2121121211nn b b b n n a aa --++⋅⋅⋅+=---43n nb n a =-,然后利用数列的单调性求出结果.n b 【详解】(1)由图形可得:,即222=+159n n a a +=∴是以1为首项,为公比的等比数列{}n a 59∴.()1*5N 9n n a n -⎛⎫=∈ ⎪⎝⎭(2)① 212122n nb b bn n a a a ++⋅⋅⋅+=-当时,,∴1n =111b a =11b =当时,② 2n ≥()()2121121211n n b b b n n a a a --++⋅⋅⋅+=---得,,∴ -①②43n nb n a =-()()154329n n b n n -⎛⎫=-≥ ⎪⎝⎭经检验,当时,也满足上式,1n =11b =∴()()1*543N 9n n b n n -⎛⎫=-∈ ⎪⎝⎭令,解得: ()()()()11541541919435439nn n n n n b b n n +-⎛⎫+ ⎪+⎝⎭==>-⎛⎫- ⎪⎝⎭2n <∴当时,;当时,;当时,1n =21b b >2n =32b b =3n ≥1n n b b +<∴当或3时,的最大项为. 2n =n b 23259b b ==22.已知椭圆的左、右顶点分别为,,且,椭圆的一条以()2222:10x y C a b a b+=>>1A 2A 124A A =C 为中点的弦所在直线的方程为. 11,2⎛⎫⎪⎝⎭3240x y +-=(1)求椭圆的方程;C (2)点为直线上一点,且不在轴上,直线,与椭圆的另外一个交点分别为M ,P 4x =P x 1PA 2PA C N ,设,的面积分别为,,求的最大值,并求出此时点的坐标. 12PA A △PMN A 1S 2S 12S S P 【答案】(1)22143x y +=(2), 43()4,3P ±【分析】(1)由点差法得出,进而由得出椭圆的方程; 2234b a =1224A A a ==C (2)设,,,联立直线()与椭圆方程,求出,,()()4,0P t t ≠()11,M x y ()22,N x y 1PA 2PA 1y 2y 再由面积公式结合相似三角形的性质得出,令,由二次函数的性质得()()()2212222739t t S S t ++=+29m t =+出的最大值以及点的坐标. 12S S P 【详解】(1)设,,则, ()11,A x y ()22,B x y 22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得,,()()()()12121212220x x x x y y y y a b +-+--=所以,即 2121221212y y y y b x x x x a-+⋅=--+2222AB y b k x a ⋅=-中中即,∴223122b a-⋅=-2234b a =又,所以,1224A A a ==2a =b =所以椭圆的方程为.C 22143x y +=(2)设,, ()()4,0P t t ≠()11,M x y ()22,N x y 则:,: 1PA ()26ty x =+2PA ()22t y x =-联立,消去得 22623412x y t x y ⎧=-⎪⎨⎪+=⎩x ()2212182718027t t y ty y t +-=⇒=+同理,联立,消去得 22223412x y t x y ⎧=+⎪⎨⎪+=⎩x ()222263603t t y ty y t -++=⇒=+所以 121212121sin 0021sin 2PA PA P PA PA S t t S PM PN t y t y PM PN P ∠--==⋅=⋅--∠. ()()()22222222731869273t t t t t t t t t t ++==-⎛⎫⎛⎫+-- ⎪⎪++⎝⎭⎝⎭令,则299m t =+> ()()2212221861210811110812109m m S m m S m m m m m +-+-⎛⎫⎛⎫===-++<< ⎪ ⎪⎝⎭⎝⎭当且仅当,即,即时,取得最大值. ()112110,2108189m ⎛⎫=-=∈ ⎪⨯-⎝⎭18m =3t =±12S S 43综上所述,当时,取得最大值. ()4,3P ±12S S 43。
湖北省黄冈中学2013年秋季高二数学(理)期末考试试题(含答案)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列结论不正确...的是 ( ) A .若ln3y =,则0y '= B.若y =,则y '= C.若y =y '= D .若3y x =,则3y '=2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:计算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 参照附表一(见Ⅰ卷后),得到的正确..结论是( ) A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C .有99%以上的把握认为“爱好该项运动与性别无关” D .有99%以上的把握认为“爱好该项运动与性别有关”3.若曲线()y f x =在点(5,(5))P f 处的切线方程是8y x =-+,则(5)(5)f f '+=( ) A . 5B . 4C . 3D . 24.设~(100.8)X B ,,则2+1D X ()等于( )A.1.6B .3.2C .6.4D .12.85.两变量y 与x 的回归直线方程为23y x ∧=-,若17101=∑=i ix,则∑=101i i y 的值为( )A .3B .4C .4.0D .406.右图实线是函数()(02)y f x x a =≤≤的图象,它关于点),(a a A 对称. 如果它是一条总体密度曲线,则正数a 的值为( ) AB .1C .2 D7.ABCD 为长方形,2=AB ,1=BC ,O 为AB 的中点,在长方形ABCD内随机取一点,取到的点到O 的距离大于1的概率为 ( ) A .4π B .14π- C .8π D .18π-8.如图为函数32()f x ax bx cx d =+++的图象,()f x '为函数()f x 的导函数,则不等式()0x f x '⋅<的解集为( )A.(,-∞B.C .)+∞D .(,-∞(0,3)9.已知函数2()3f x x ax =-+在(0,1)上为减函数,函数2()ln g x x a x =-在(1,2)上为增函数,则a 的值等于( ) A .1 B C .2 D .310.已知()f x 为R 上的可导函数,且对x R ∀∈,均有()()f x f x '>,则有( )A. 20142014(2014)(0),(2014)(0)e f f f e f -<<B. 20142014(2014)(0),(2014)(0)e f f f e f -<>C. 20142014(2014)(0),(2014)(0)e f f f e f -><D. 20142014(2014)(0),(2014)(0)e f f f e f ->>附表一:第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上. 11.已知随机变量X 服从正态分布2(1,),(2)0.72N P x σ≤=,则(0)P x ≤= . 12.从4名女生和2名男生中选出3名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的概率是 . 13.若曲线2()ln f x ax x =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 14.现有10元、20元、50元人民币各一张,100元人民币两张,从中至少取一张,共可组成不同的币值种数是 .15.设)(''x f 是函数)(x f y =的导函数)('x f 的导数,定义:若32()(0)f x ax bx cx d a =+++≠,且方程0)(''=x f 有实数解0x ,则称点())(,00x f x 为函数)(x f y =的对称中心.有同学发现“任何一个三次函数都有对称中心”,请你运用这一发现处理下列问题: 设32115()33212g x x x x =-+-,则 (1)函数()g x 的对称中心为 ; (2)1232014()()()()2015201520152015g g g g ++++= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)如图,已知直线1:10l x y +-=以及1l 上一点(23)P -,,直线2:40l x y +=,求圆心在2l 上且与直线1l 相切于点P 的圆的方程.17.(本小题满分12分)已知函数d ax bx x x f +++=23)(的图象过点(0,2)P ,且在点(1,(1))M f --处的切线方程为076=+-y x .(1)求函数)(x f y =的解析式; (2)求函数)(x f y =的单调区间. 18.(本小题满分12分)一组数据4、7、10、6、9,n 是这组数据的中位数,设()21()nf x x x=-.(1)求()x f 的展开式中1-x 的项的系数;(2)求()x f 的展开式中系数最大的项和系数最小的项.19.(本题满分12分)黄冈中学学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;(2)在第一次训练时至少取到一个新球的条件下,求第二次训练时恰好取到一个新球的概率.20.(本小题满分13分)在淘宝网上,某店铺专卖黄冈某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量y (单位:千克)与销售价格x (单位:元/千克,51≤<x )满足:当31≤<x 时,1)3(2-+-=x bx a y ,为常数)(b a ,;当53≤<x 时,70490y x =-+.已知当销售价格为2元/千克时,每日可售出该特产700千克;当销售价格为3元/千克时,每日可售出150千克.(1)求b a ,的值,并确定y 关于x 的函数解析式;(2)若该特产的销售成本为1元/千克,试确定销售价格x 的值,使店铺每日销售该特产所获利润)(x f 最大(x 精确到0.01元/千克).21.(本小题满分14分)已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >). (1)若12x =是函数()f x 的一个极值点,求a 的值; (2)当02a <≤时,判断()f x 在1[, )2+∞上的单调性;(3)若对任意..的(1, 2)a ∈,总存在..01[, 1]2x ∈,使不等式20()(1)f x m a >-成立,求实数m 的取值范围.期末考试数学参考答案(理科)1、答案:B解析:若y =,则'12y =-,选B 2、答案:D解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选D. 3、答案:D 解析(5)3,(5)1,(5)(5)2f f f f ''==-∴+=4、答案:C 解析:(2x 1)4D(x)4100.8(10.8) 6.4D +==⨯⨯⨯-=,选C ;5、答案:B 解析:1011 1.7,2 1.730.410i i x x y ===∴=⨯-=∑,101104i i y y ===∑6、答案:A 解析:曲线与x 轴围成的面积为1,=∴=⋅⋅∴a a a ,122217、答案:B 解析::长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π,因此取到的点到O 的距离小于1的概率为2π, 取到的点到O 的距离大于1的概率为14π-8、答案:D 解析:当x∈(,-∞时,()0f x '>,则0x <,故(,-∞是解集的一部分;同理也是解集的一部分.故选D. 9、答案:C 解析:()f x 在(0,1)上单减,则1,2,2aa ≥∴≥()g x 在(1,2)上单增,则()20ag x x x'=-≥在(1,2)上恒成立,即22a x ≤恒成立,故 2.a ≤,故2a =. 10、答案:C解析:构造函数()()x f x F x e =,求导得2()()()()()0()x x x xf x e f x e f x f x F x e e ''--'==<,故函数()F x 是定义在R 上的减函数,故(2014)(0)(2014)F F F ->>,即201402014(2014)(0)(2014)f f f e e e-->>,即20142014(2014)(0),(2014)(0)e f f f e f ->< 11、答案:0.28 解析:(0)=P x ≤(2)=1(2)0.28P x P x ≥-≤=12、答案:35解析:抽样比为3162=,故应抽取女生2人,男生1人,所以组成此课外学习小组的概率是214236C C C ⋅35= 13、答案:-∞(,0) 解析:120ax x+=有正实数解,即2210ax +=有正实数解,0a ∴< 14、答案:23 解析:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有323123⨯-=种. 15、答案:1(,1)2;2014解析:32115()33212f x x x x =-+-,则又2()3f x x x '=-+,()21f x x ''=-.令()0f x '=得12x =.故函数()f x 的对称中心为1(,1)2.设00(,)P x y 在()f x 上可知P 关于对称点1(,1)2的对称点00(1,2)P x y --也在函数()f x 上,∴00(1)2f x y -=-.∴0000()(1)(2)2f x f x y y +-=+-=.∵122014()()()201520152015f f f +++=1201420072008()()()()2015201520152015f f f f ⎡⎤⎡⎤++++⎢⎥⎢⎥⎣⎦⎣⎦210072014=⨯=.16、解: 设圆心为(,)C a b ,半径为r ,依题意,4b a =-.设直线2l 的斜率21k =-,过,P C 两点的直线斜率PC k ,因2PC l ⊥,故21PC k k ⨯=-,∴3(4)12PC a k a--==--,解得1,4a b =-=.||r PC =所求圆的方程为22(1)(4)2x y ++-=.17、解:(1)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f.23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x ,知 .6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (2).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故32()332f x x x x =--+的单调增区间为(,1-∞和),21(+∞+, 单调减区间为)21,21(+-.18、(1)解:依题意有:这组数据的中位数是7,即7n =,故()f x 的展开式中17237177()()(1)r r r r r r r T C x x C x ---+=-=-,由371r -=-可知2r =,故展开式中1-x 的项的系数为()211227=-C .......6分 (2)()x f 的展开式中共8项,其中第4项和第5项的二项式系数最大,而第5项的系数等于第5项二项式系数,故第5项的系数最大,即最大项为()()5423147535x x xC T =-=-,第4项的系数等于第4项二项式系数的相反数,故第4项的系数最小,即最小项为()()2324137435x x xC T -=-=- .......12分19、解:(1)ξ的所有可能取值为0,1,2. ....... 1分设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ, .......3分 53)1()(2613131====C C C P A P ξ, ....... 4分51)2()(26232====C C P A P ξ. ....... 5分 所以ξ的分布列为(注:不列表,不扣分)ξ的数学期望为1525150=⨯+⨯+⨯=ξE . .......6分(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B .则“第二次训练时恰好取到一个新球”就是事件12A B A B +.而事件B A 1、B A 2互斥, 所以,1212()()()P A B A B P A B P A B +=+.由条件概率公式,得2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ) 151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ).所以,第二次训练时恰好取到一个新球的概率为 128129()+=251575P A B A B +=那么在第一次训练时至少取到一个新球的条件下,第二次训练时恰好取到一个新球的概率29429=75560P =÷20、解:(1)因为x =2时,y =700;x =3时,y =150,所以1502700ba b ⎧=⎪⎨⎪+=⎩解得400,300a b == 每日的销售量2300400(3)(13)170490(35)x x y x x x ⎧-+<≤⎪=-⎨⎪-+<≤⎩ ; .......5分 (2)由(I )知, 当13x <≤时:每日销售利润2300()[400(3)](1)1f x x x x =-+--2400(3)(1)300x x =--+32400(7159)300x x x =-+-+(13x <≤) '()f x =2400(31415)x x -+,当53x =或3x =时'()0f x = 当5(1,)3x ∈时'()0f x >,()f x 单增;当5(,3)3x ∈时'()0f x <,()f x 单减.∴53x =是函数()f x 在(1,3]上的唯一极大值点,532()400300327f =⨯+700>;...9分 当35x <≤时:每日销售利润()(70490)(1)f x x x =-+-=270(87)x x --+()f x 在4x =有最大值,且(4)630f =5()3f <. .........12分综上,销售价格51.673x =≈元/千克时,每日利润最大. ..........13分'21、解:2212()22()211122a ax x a a f x x a ax ax --'=+-=++.(1)由已知,得 1()02f '=且 2202a a-≠,220a a ∴--=,0a >,2a ∴=. (2)当02a <≤时,22212(2)(1)02222a a a a a a a a ----+-==≤,21222a a-∴≥, ∴当12x ≥时,2202a x a--≥.又201ax ax >+,()0f x '∴≥,故()f x 在1[, )2+∞上是增函数.(3)(1, 2)a ∈时,由(Ⅱ)知,()f x 在1[,1]2上的最大值为11(1)ln()122f a a =++-, 于是问题等价于:对任意的(1, 2)a ∈,不等式211ln()1(1)022a a m a ++-+->恒成立.记211()ln()1(1)22g a a a m a =++-+-,(12a <<) 则1()12[2(12)]11a g a ma ma m a a'=-+=--++, 当0m =时,()01ag a a-'=<+,()g a ∴在区间(1, 2)上递减,此时,()(1)0g a g <=, 由于210a ->,0m ∴≤时不可能使()0g a >恒成立, 故必有0m >,21()[(1)]12ma g a a a m'∴=--+. 若1112m ->,可知()g a 在区间1(1, min{2, 1})2m-上递减, 在此区间上,有()(1)0g a g <=与()0g a >恒成立矛盾, 故1112m-≤,这时()0g a '>,()g a 在(1, 2)上递增,恒有()(1)0g a g >=,满足题设要求,01112m m>⎧⎪∴⎨-≤⎪⎩,即14m ≥,所以,实数m 的取值范围为1[, )4+∞.。
湖北省黄冈市重点中学2013-2014学年上学期期末考试高三年级数学试题(理科)考试时间 120分钟 满分150分 第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N ⋂为( )A . [0,1)B .(0,1)C .[0,1]D .(-1,0]2.如果复数21z i =-+,则( ).A |z|=2 .B z 的实部为1 .C z 的虚部为﹣1 .D z 的共轭复数为1+i3.已知等比数列{}n a 的公比2q =,且42a ,6a ,48成等差数列,则{}n a 的前8项和( )A .127B .255C .511D .10234.设,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .,//,a b αβαβ⊥⊥ B .,,//a b αβαβ⊥⊥ C .,,//a b αβαβ⊂⊥ D .,//,a b αβαβ⊂⊥5.已知菱形ABCD 的边长为4,150ABC ∠=o,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率( )A. 4πB.14π- C. 8π D. 18π-6.在平面直角坐标平面上,(1,4),(3,1)OA OB ==-u u u r u u u r ,且O A u u u r 与OB u u u r在直线l 上的射影长度相等,直线l 的倾斜角为锐角,则l 的斜率为 ( )A .43B .52 C .25 D .347.已知点(,)a b 在圆221x y +=上,则函数2()cos sin cos 12af x a x b x x =+--的最小正周期和最小值分别为( )A.2π,3-2B. π,3-2C. π,5-2D. 2π,5-28.设函数()sin()f x A x ωϕ=+(0,0,)22A ππωϕ≠>-<<的图像关于直线23x π=对称,它的周期是π,则( )A .()f x 的图象过点1(0,)2 B . ()f x 在2123ππ⎡⎤⎢⎥⎣⎦,上是减函数[C .()f x 的一个对称中心是5(,0)12πD .()f x 的最大值是A9.已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2.45ASC BSC ∠=∠=︒则棱锥S —ABC 的体积为 ( )A. B. C. D.10.函数()cos f x xπ=与()2log 1g x x =-的图像所有交点的横坐标之和为A.2B.4C.6D.811.如图,A ,F 分别是双曲线2222C 1 (0)x y a b a b -=:,>的左顶点、右焦点,过F 的直线l 与C 的一条渐近线垂直且与另一条渐近线和y 轴分别交于P ,Q 两点.若AP ⊥AQ ,则C 的离心率是( )AB. D.14+12.在三棱锥P ABC -中,PA 垂直于底面ABC ,090ACB ∠=AE PB ⊥于E ,AF PC ⊥于F ,若2PA AB ==,BPC θ∠=,则当AEF ∆的面积最大时,tan θ的值为( )A .2B .12 CD.2第Ⅱ卷(共90分)本卷包括必考题和选考题两部分。
2015-2016学年湖北省黄冈市高二(上)期末数学试卷(理科)一、选择题1.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.012.甲乙两名学生,六次数学测验成绩(百分制)如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩方差小于乙同学成绩的方差.上面说法正确的是()A.③④ B.①②④C.②④ D.①③④3.当输入x=﹣4时,如图的程序运行的结果是()A.7 B.8 C.9 D.154.下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题5.一名小学生的年龄和身高(单位:cm)的数据如下表:年龄x 6 7 8 9身高y 118 126 136 144由散点图可知,身高y与年龄x之间的线性回归方程为=8.8x+,预测该学生10岁时的身高为()A.154 B.153 C.152 D.1516.“a≠5且b≠﹣5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既非充分条件也非必要条件7.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()一年级二年级三年级女生373 x y男生377 370 zA.24 B.18 C.16 D.128.已知双曲线﹣=1的一个焦点与抛物线y2=﹣4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.5x2﹣=1 B.5x2﹣=1 C.﹣=1 D.﹣=19.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.10.如图,在平行六面体ABCD﹣A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,则A1C的长为()A.B.C. D.11.已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C.D.12.过原点的直线与双曲线(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为()A.B.C.D.213.椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为4,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值为()A.B.C.D.二、填空题14.三进制数121(3)化为十进制数为.15.若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为.16.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m= .17.以下五个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.⑤过定圆C上一定点A作圆的动弦AB,O为原点,若,则动点P的轨迹为椭圆其中真命题的序号为(写出所有真命题的序号)三、解答题18.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml (不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如表:[20,30)[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] 酒精含量(mg/100ml)人数 3 4 1 4 2 3 2 1(1)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.19.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.20.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a﹣b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)21.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)若直线AB过焦点F,求|AF|•|BF|的值;(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.22.在直角梯形PBCD中,,A为PD的中点,如图.将△PAB 沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,如图.(Ⅰ)求证:SA⊥平面ABCD;(Ⅱ)求二面角E﹣AC﹣D的正切值.23.已知点P是圆C:(x+)2+y2=16上任意一点,A(,0)是圆C内一点,线段AP的垂直平分线l和半径CP交于点Q,O为坐标原点.(1)当点P在圆上运动时,求点Q的轨迹E的方程.(2)设过点B(0,﹣2)的动直线与E交于M,N两点,当△OMN的面积最大时,求此时直线的方程.2015-2016学年湖北省黄冈市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题1.总体编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.A.08 B.07 C.02 D.01【分析】根据随机数表,依次进行选择即可得到结论.【解答】解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复.可知对应的数值为08,02,14,07,01,则第5个个体的编号为01.故选:D.2.甲乙两名学生,六次数学测验成绩(百分制)如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学高;③甲同学的平均分比乙同学低;④甲同学成绩方差小于乙同学成绩的方差.上面说法正确的是()A.③④ B.①②④C.②④ D.①③④【分析】由茎叶图数据,求出甲、乙同学成绩的中位数,平均数,估计方差,从而解决问题.【解答】解:根据茎叶图数据知,①甲同学成绩的中位数是81,乙同学成绩的中位数是87.5,∴甲的中位数小于乙的中位数;②甲同学的平均分是==81,乙同学的平均分是==85,∴乙的平均分高;③甲同学的平均分是=81乙同学的平均分是=85,∴甲比乙同学低;④甲同学成绩数据比较集中,方差小,乙同学成绩数据比较分散,方差大.∴正确的说法是③④.故选:A.3.当输入x=﹣4时,如图的程序运行的结果是()A.7 B.8 C.9 D.15【分析】由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,将x=﹣4,代入可得答案.【解答】解:由已知中的程序语句可得:该程序的功能是计算并输出分段函数y=的值,∵x=﹣4<3,故y=(﹣4)2﹣1=15,故选:D4.下列说法错误的是()A.若命题“p∧q”为真命题,则“p∨q”为真命题B.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题C.命题“若a>b,则ac2>bc2”的否命题为真命题D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题【分析】通过对选项判断命题的真假,找出错误命题即可.【解答】解:若命题“p∧q”为真命题,则“p∨q”为真命题,满足命题的真假的判断,是正确的.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为:“若方程x2+x﹣m=0有实数根,则m>0”,方程x2+x﹣m=0有实数根只要△=1+4m≥0,所以不一定得到m>0,所以B错.命题“若a>b,则ac2>bc2”的否命题为:若a≤b,则ac2≤bc2,显然是真命题.若命题“¬p∨q”为假命题,则p是真命题,¬q是真命题,则“p∧¬q”为真命题,正确.故选:B.5.一名小学生的年龄和身高(单位:cm)的数据如下表:年龄x 6 7 8 9身高y 118 126 136 144由散点图可知,身高y与年龄x之间的线性回归方程为=8.8x+,预测该学生10岁时的身高为()A.154 B.153 C.152 D.151【分析】先计算样本中心点,进而可求线性回归方程,由此可预测该学生10岁时的身高.【解答】解:由题意, =7.5, =131代入线性回归直线方程为,131=8.8×7.5+,可得=65,∴∴x=10时, =153故选B.6.“a≠5且b≠﹣5”是“a+b≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既非充分条件也非必要条件【分析】根据充分必要条件的定义,分别证明其充分性和必要性,从而得到答案.【解答】解:a≠5且b≠﹣5推不出a+b≠0,例如:a=2,b=﹣2时a+b=0,a+b≠0推不出a≠5且b≠﹣5,例如:a=5,b=﹣6,故“a≠5且b≠﹣5”是“a+b≠0”的既非充分条件也非必要条件,故选:D.7.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()一年级二年级三年级女生373 x y男生377 370 zA.24 B.18 C.16 D.12【分析】根据题意先计算二年级女生的人数,则可算出三年级的学生人数,根据抽取比例再计算在三年级抽取的学生人数.【解答】解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为3:3:2,故在分层抽样中应在三年级抽取的学生人数为.故选C.8.已知双曲线﹣=1的一个焦点与抛物线y2=﹣4x的焦点重合,且双曲线的离心率为,则此双曲线的方程为()A.5x2﹣=1 B.5x2﹣=1 C.﹣=1 D.﹣=1【分析】根据抛物线的方程算出其焦点为(﹣1,0),从而得出左焦点为F(﹣1,0),再设出双曲线的方程,利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值即可得到该双曲线的方程.【解答】解:∵抛物线方程为y2=﹣4x,∴2p=4,得抛物线的焦点为(﹣1,0).∵双曲线的一个焦点与抛物y2=﹣4x的焦点重合,∴双曲线的左焦点为F(﹣1,0),设双曲线的方程为(a>0,b>0),可得a2+b2=1…①∵双曲线的离心率等,∴ =,即…②由①②联解,得a2=,b2=,∴该双曲线的方程为5x2﹣=1.故选B.9.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为()A.B.C.D.【分析】建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.【解答】解:∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,∴建立以A为坐标原点,AC,AB,AA1分别为x,y,z轴的空间直角坐标系如图:则A1(0,0,),A(0,0,0),B1(0,2,),C1(2,0,),则=(0,2,),=(2,0,),设平面AB1C1的法向量为=(x,y,z),=(0,0,),则•=2y+z=0,•=2x+z=0,令z=1,则x=﹣,y=﹣,即=(﹣,﹣,1),则AA1与平面AB1C1所成的角θ满足sinθ=|cos<,>|==,则θ=,故选:A.10.如图,在平行六面体ABCD﹣A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60°,且A1A=3,则A1C的长为()A.B.C. D.【分析】用空间向量解答.【解答】解:∵ =+﹣;∴2=(+﹣)2;即2=•+•﹣•+•+•﹣•﹣(•+•﹣•)=1+0﹣3×1×cos60°+0+1﹣3×1×cos60°﹣(3×1×cos60°+3×1×cos60°﹣9);=1﹣+1﹣﹣+9=5,∴A1C=.故选A.11.已知:a,b,c为集合A={1,2,3,4,5}中三个不同的数,通过如框图给出的一个算法输出一个整数a,则输出的数a=4的概率是()A.B.C.D.【分析】由程序框图知,输入a、b、c三数,输出其中的最大数,由于输出的数为4,故问题为从集合A中任取三个数,求最大数为4的概率,计算出从5个数中取三个的取法总数和所取的数最大为4的取法个数,代入古典概型概率计算公式,可得答案.【解答】解:由程序框图知,输入a、b、c三数,输出其中的最大数,由于输出的数为4,故问题为从集合A中任取三个数,求最大数为4的概率,从集合A中任取三个数有=10种取法,其中最大数为4时,表示从1,2,3中任取2两个数,有=3种取法,故概率P=.故选:C.12.过原点的直线与双曲线(a>0,b>0)交于M,N两点,P是双曲线上异于M,N的一点,若直线MP与直线NP的斜率都存在且乘积为,则双曲线的离心率为()A.B.C.D.2【分析】设P(x0,y0),M(x1,y1),则N(x2,y2).利用k PM k PN=,化简,结合平方差法求解双曲线C的离心率.【解答】解:由双曲线的对称性知,可设P(x0,y0),M(x1,y1),则N(x2,y2).由k PM k PN=,可得:,即,即,又因为P(x0,y0),M(x1,y1)均在双曲线上,所以,,所以,所以c2=a2+b2=,所以双曲线C的离心率为e===.故选:A.13.椭圆的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为4,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值为()A.B.C.D.【分析】求出椭圆的焦点坐标,结合椭圆的定义,通过三角形的面积转化求解即可.【解答】解:椭圆:,a=5,b=4,∴c=3,左、右焦点F1(﹣3,0)、F2( 3,0),△ABF2的内切圆面积为π,则内切圆的半径为r=,而△ABF2的面积=△A F1F2的面积+△BF1F2的面积=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的上下两侧)又△ABF2的面积=×r(|AB|+|BF2|+|F2A|)=(2a+2a)=a=5.所以 3|y2﹣y1|=5,|y2﹣y1|=.故选:D.二、填空题14.三进制数121(3)化为十进制数为16 .【分析】利用累加权重法,即可将三进制数转化为十进制,从而得解.【解答】解:由题意,121(3)=1×32+2×31+1×30=16故答案为:1615.若命题“∃x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值范围为﹣1≤a≤3.【分析】先求出命题的否定,再用恒成立来求解【解答】解:命题“∃x∈R,使x2+(a﹣1)x+1<0”的否定是:““∀x∈R,使x2+(a﹣1)x+1≥0”即:△=(a﹣1)2﹣4≤0,∴﹣1≤a≤3故答案是﹣1≤a≤316.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m= 3 .【分析】画出数轴,利用x满足|x|≤m的概率为,直接求出m的值即可.【解答】解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.17.以下五个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.⑤过定圆C上一定点A作圆的动弦AB,O为原点,若,则动点P的轨迹为椭圆其中真命题的序号为①②④(写出所有真命题的序号)【分析】①根据椭圆和双曲线的c是否相同即可判断.②根据抛物线的性质和定义进行判断.③根据双曲线的定义进行判断.④根据抛物线的定义和性质进行判断.⑤根据圆锥曲线的根据方程进行判断.【解答】解:①由得a2=16,b2=9,则c2=16+9=25,即c=5,由椭圆得a2=49,b2=24,则c2=49﹣24=25,即c=5,则双曲线和椭圆有相同的焦点,故①正确,②不妨设抛物线方程为y2=2px(p>0),取AB的中点M,分别过A、B、M作准线的垂线AP、BQ、MN,垂足分别为P、Q、N,如图所示:由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,在直角梯形APQB中,|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|,故圆心M到准线的距离等于半径,∴以AB为直径的圆与抛物线的准线相切,故②正确,③平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,∴故③不正确;④过抛物线y2=4x的焦点F(1,0)作直线l与抛物线相交于A、B两点,当直线l的斜率不存在时,横坐标之和等于2,不合题意;当直线l的斜率为0时,只有一个交点,不合题意;∴设直线l的斜率为k(k≠0),则直线l为y=k(x﹣1),代入抛物线y2=4x得,k2x2﹣2(k2+2)x+k2=0;∵A、B两点的横坐标之和等于5,∴=5,解得k2=,∴这样的直线有且仅有两条.故④正确,⑤设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+rcosθ,b+rsinθ),P(x,y),由=(+)得,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,故⑤错误;故答案为:①②④三、解答题18.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml (不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如表:酒精含量[20,30)[30,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] (mg/100ml)人数 3 4 1 4 2 3 2 1(1)绘制出检测数据的频率分布直方图(在图中用实线画出矩形框即可);(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的众数、平均数.【分析】(1)计算酒精含量(mg/100ml)在各小组中的,绘制出频率分布直方图即可;(2)计算检测数据中酒精含量在80mg/100ml(含80)以上的频率,根据频率分布直方图中小矩形图最高的底边的中点是众数,再计算数据的平均数值.【解答】解:(1)酒精含量(mg/100ml)在[20,30)的为=0.015,在[30,40)的为=0.020,在[40,50)的为=0.005,在[50,60)的为=0.20,在[60,70)的为=0.010,在[70,80)的为=0.015,在[80,90)的为=0.010,在[90,100]的为=0.005;绘制出酒精含量检测数据的频率分布直方图如图所示:…(2)检测数据中醉酒驾驶(酒精含量在80mg/100ml(含80)以上时)的频率是;…根据频率分布直方图,小矩形图最高的是[30,40)和[50,60),估计检测数据中酒精含量的众数是35与55;…估计检测数据中酒精含量的平均数是0.015×10×25+0.020×10×35+0.005×10×45+0.020×10×55+0.010×10×65+0.015×10×75+0.010×10×85+0.005×10×95=55.…19.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)¬p是¬q的充分不必要条件,求实数a的取值范围.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由得得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值范围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值范围是1<a≤2.20.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长分别为的三角形的三个顶点.(Ⅰ)该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a﹣b|>1”的概率.(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)【分析】(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,利用列举法求出基本事件个数,并找出可使|a﹣b|>1发生的基本事件个数.由此能求出事件“|a﹣b|>1”的概率.(Ⅱ)因为着弹点若与x1、x2、x3的距离都超过y1、y2、y3cm,利用几何概型能求出此次射击的着弹点距A、B、C的距离都超过1cm的概率.【解答】解:(Ⅰ)前三次射击成绩依次记为x1,x2,x3,后三次成绩依次记为y1,y2,y3,从这6次射击成绩中随机抽取两个,基本事件是:{x1,x2},{x1,x3},{x2,x3},{y1,y2},{y1,y3},{y2,y3},{x1,y1},{x1,y2},{x1,y3},{x2,y1},{x2,y2},{x2,y3},{x3,y1},{x3,y2},{x3,y3},共15个,…其中可使|a﹣b|>1发生的是后9个基本事件.故.…(Ⅱ)因为着弹点若与x1、x2、x3的距离都超过y1、y2、y3cm,则着弹点就不能落在分别以6为中心,半径为{x1,x2},{x1,x3},{x2,x3}cm的三个扇形区域内,只能落在扇形外的部分…因为,…满足题意部分的面积为,…故所求概率为.…21.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)若直线AB过焦点F,求|AF|•|BF|的值;(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.【分析】(1)求出p=4,可得抛物线方程,与直线y=2x+2联立消去y,设A(x1,y1),B(x2,y2),利用韦达定理,通过|AF||BF|=(y1+2)(y2+2)求解即可.(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y,设A(x1,y1),B(x2,y2),通过△>0,以及韦达定理推出P(2p,4p+2),Q(2p,2p),方法一利用弦长公式,求出p.方法二:通过化简,结合韦达定理,求解p即可.【解答】解:(1)∵F(0,2),p=4,∴抛物线方程为x2=8y,…与直线y=2x+2联立消去y得:x2﹣16x﹣16=0,设A(x1,y1),B(x2,y2)…则x1+x2=16,x1x2=﹣16,…∴|AF||BF|=(y1+2)(y2+2)=(2x1+4)(2x2+4)=80;…(2)假设存在,由抛物线x2=2py与直线y=2x+2联立消去y得:x2﹣4px﹣4p=0.设A(x1,y1),B(x2,y2),△>0,则x1+x2=4p,x1x2=﹣4p,…P(2p,4p+2),Q(2p,2p),…方法一∴|PQ|=2p+2,……,∴4p2+3p﹣1=0,…故存在p=且满足△>0…方法二:由得:(x1﹣2p)(x2﹣2p)+(y1﹣2p)(y2﹣2p)=0…即(x1﹣2p)(x2﹣2p)+(2x1+2﹣2p)(x2+2﹣2p)=0,…∴,…代入得4p2+3p﹣1=0,.故存在p=且满足△>0,∴p=…22.在直角梯形PBCD中,,A为PD的中点,如图.将△PAB 沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且,如图.(Ⅰ)求证:SA⊥平面ABCD;(Ⅱ)求二面角E﹣AC﹣D的正切值.【分析】(法一)(1)由题意可知,翻折后的图中SA⊥AB①,易证BC⊥SA②,由①②根据直线与平面垂直的判定定理可得SA⊥平面ABCD;(2)(三垂线法)由考虑在AD上取一点O,使得,从而可得EO∥SA,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,∠EHO为二面角E﹣AC﹣D的平面角,在Rt△AHO中求解即可(法二:空间向量法)(1)同法一(2)以A为原点建立直角坐标系,易知平面ACD的法向为,求平面EAC的法向量,代入公式求解即可【解答】解法一:(1)证明:在题平面图形中,由题意可知,BA⊥PD,ABCD为正方形,所以在翻折后的图中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,因为SB⊥BC,AB⊥BC,SB∩AB=B所以BC⊥平面SAB,又SA⊂平面SAB,所以BC⊥SA,又SA⊥AB,BC∩AB=B所以SA⊥平面ABCD,(2)在AD上取一点O,使,连接EO因为,所以EO∥SA因为SA⊥平面ABCD,所以EO⊥平面ABCD,过O作OH⊥AC交AC于H,连接EH,则AC⊥平面EOH,所以AC⊥EH.所以∠EHO为二面角E﹣AC﹣D的平面角,.在Rt△AHO中,∴,即二面角E﹣AC﹣D的正切值为解法二:(1)同方法一(2)解:如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,)∴平面ACD的法向为设平面EAC的法向量为=(x,y,z),由,所以,可取所以=(2,﹣2,1).所以所以即二面角E﹣AC﹣D的正切值为23.已知点P是圆C:(x+)2+y2=16上任意一点,A(,0)是圆C内一点,线段AP的垂直平分线l和半径CP交于点Q,O为坐标原点.(1)当点P在圆上运动时,求点Q的轨迹E的方程.(2)设过点B(0,﹣2)的动直线与E交于M,N两点,当△OMN的面积最大时,求此时直线的方程.【分析】(1)直接由题意可得|CQ|+|AQ|=4>|AC|=2,符合椭圆定义,且得到长半轴和半焦距,再由b2=a2﹣c2求得b2,则点Q的轨迹方程可求;(2)设M(x1,y1),N(x2,y2),由题意可设直l的方程为:y=kx﹣2,与椭圆的方程联立可得根与系数的关系,再利用三角形的面积计算公式即可得出S△OMN.通过换元再利用基本不等式的性质即可得出.【解答】解:(1)由题意知|PQ|=|AQ|,又∵|CP|=|CQ|+|PQ|=4…∴|CQ|+|AQ|=4>|AC|=2由椭圆定义知Q点的轨迹是椭圆,a=2,c=…∴b=1,∴点Q的轨迹E的方程=1.…(2)由题意知所求的直线不可能垂直于x轴,所以可设直线为:y=kx﹣2,M(x1,y1),N (x2,y2),联立方程组,将y=kx﹣2代入=1得(1+4k2)x2﹣16kx+12=0…当△>0时,即k2>时,x1+x2=,x1x2=,…则△OMN的面积S=|OB||x1﹣x2|=…设=t>0,∴,最大值为1…∴=2,k=±,满足△>0…∴直线的方程为y=±x﹣2…21。
湖北省黄冈市高二上册期末数学试题与答案第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.对两位同学的10次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,由图可知,成绩更稳定的同学是()A. 甲B. 乙C. 甲乙同学D. 无法确定【答案】B由茎叶图的特征可直接判断出结果。
数据越集中,说明越稳定,因此可直接判断,乙同学成绩更稳定,故选B.本题主要考查茎叶图的特征,属于基础题型.2.任意抛两枚一元硬币,记事件:恰好一枚正面朝上;:恰好两枚正面朝上;:恰好两枚正面朝上;:至少一枚正面朝上;:至多一枚正面朝上,则下列事件为对立事件的是()A. 与 B. 与 C. 与 D. 与【答案】D根据对立事件的定义,逐项判断即可.因为与的并事件不是必然事件,因此A错;至少一枚正面朝上包含恰好两枚正面朝上,所以与m不是对立事件,故B错;因与是均表示两枚正面向上,所以与是相等事件,故C错;所以选D.本题主要考查对立事件的概念,属于基础题型.3.已知双曲线方程为,则其焦点到渐近线的距离为()A. 2B. 3C. 4D. 6【答案】A先由双曲线的方程求出焦点坐标,以及渐近线方程,再由点到直线的距离公式求解即可.因为双曲线方程为,所以可得其一个焦点为,一条渐近线为,所以焦点到渐近线的距离为,故选A.本题主要考查双曲线的简单性质,属于基础题型.4.点的坐标分别是,,直线与相交于点,且直线与的斜率的商是,则点的轨迹是()A. 直线B. 圆C. 椭圆D. 抛物线【答案】A设点M坐标,由题意列等量关系,化简整理即可得出结果.设,由题意可得,,因为直线与的斜率的商是,所以,化简得,为一条直线,故选A.本题主要考查曲线的方程,通常情况下,都是设曲线上任一点坐标,由题中条件找等量关系,化简整理,即可求解,属于基础题型.5.下列命题中的假命题是()A. 对于命题,,则B. “”是“”的充分不必要条件C. 若命题为真命题,则都是真命题D. 命题“若,则”的逆否命题为:“若,则”【答案】C利用命题的否定,判断A;根据充要条件判断B;由复合命题的真假判断C;由四种命题的逆否关系判断D。
湖北省黄冈中学2008-2009学年度高二数学上学期期末考试试题(理科)一、选择题:本大题共10个小题,每小题5分,共50分,在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.给出下列命题:①平行于同一平面的两条直线互相平行; ②垂直于同一平面的两条直线互相平行; ③垂直于同一直线的两条直线互相平行. 其中真命题的个数是( )A .0B .1C .2D .32.过点P (-1,1)的直线l 与圆2240x y x ++=相交于A 、B 两点,当|AB |取最小值时,直线l 的斜率k 的值是( )A .1-B .1C .2D .123.若a, b ∈R ,则|a |+|b |>1是|a+b |>1成立的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件4.在平行六面体ABCD —A 1B 1C 1D 1中,B 1C ∩BC 1=O ,若1AO xAB yAD zAA =++,则x y z ++等于( ) A .1 B .56C .52D .25.对两条不相交的空间直线a 和b ,必定存在平面α,使得 ( )A .,a b αα⊂⊂B .,a b αα⊥⊥C .,//a b αα⊂D .,a b αα⊂⊥ 6.设抛物线24x y =的焦点为F ,经过点(1,2)P 的直线与抛物线交于A 、B 两点,又知点PABDO C A 1 D 1 C 1B 1恰好为AB 的中点,则AF BF +的值是 ( )A .3B .4C .6D .1787.曲线221259x y +=和曲线221(925)259x y k k k+=<<--的( ) A .焦距相等 B .离心率相等 C .准线相同 D .焦点到准线距离相等8.下列四个正方体图形中,A B 、为正方体的两个顶点,M N P 、、分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )错误!未找到引用源。
湖北省黄冈市2017-2018学年高二数学上学期期末考试试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知命题p :0x ∀>,总有(1)1xx e +>,则p ⌝为( ) A .00x ∃≤,使得00(1)1x x e +≤ B .0x ∀>,总有(1)1x x e +≤ C .00x ∃>,使得00(1)1x x e+≤ D .0x ∀≤,总有(1)1x x e +≤2.袋中装有红球3个、白球 2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;至少有一个红球B .至少有一个白球;红、黑球各一个C .恰有一个白球;一个白球一个黑球D .至少有一个白球;都是白球3.中国诗词大会的播出引发了全民的读书热,某中学语文老师在班里开展了一次诗歌默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为( )A .2B .4C .5D .64.“37m <<”是“方程22173x y m m +=--的曲线是椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件5.某同学同时抛掷两颗骰子,得到的点数分别记为a 、b ,则双曲线22221x y a b -=的离心率e > )A .16 B .14 C .13 D .1366.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为4,2,则输出的n 等于( )A .2B .3C .4D .5 7.已知(1,21,0)a t t =--,(2,,)b t t =,则b a -的最小值( )A C D8.如图,已知棱长为1的正方体1111ABCD A B C D -中,E 是11A B 的中点,则直线AE 与平面11ABC D 所成角的正弦值是( )A C D 9.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.A .1个B .2个C .3个D .4个10.直线440kx y k --=与抛物线2y x =交于A ,B 两点,若4AB =,则弦AB 的中点到直线102x +=的距离等于( ) A .74 B .94C .4D .2 11.给出以下命题,其中真命题的个数是( )①若“()p ⌝或q ”是假命题,则“p 且()q ⌝”是真命题; ②命题“若5a b +≠,则2a ≠或3b ≠”为真命题; ③已知空间任意一点O 和不共线的三点A ,B ,C ,若111632OP OA OB OC =++,则P ,A ,B ,C 四点共面;④直线(3)y k x =-与双曲线22145x y -=交于A ,B 两点,若5AB =,则这样的直线有3条;A .1B .2C .3D .412.F 是双曲线C :22221(0,0)x y a b a b-=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于B ,若2AF FB =,则双曲线C 的离心率为( )A B .2 C D 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上)13.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为 .14.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为 .15.已知a R ∈,直线1l :22x y a +=+和直线2l :221x y a -=-分别与圆E :22()(1)4x a y -+-=相交于A 、C 和B 、D ,则四边形ABCD 的面积为 .16.过原点作一条倾斜角为θ的直线与椭圆22221(0)x y a b a b+=>>交于A 、B 两点,F 为椭圆的左焦点,若AF BF ⊥,且该椭圆的离心率2e ∈⎣⎦,则θ的取值范围为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15)……,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数; (3)请根据频率分布直方图,求样本数据的众数、平均数.18.已知命题p :方程2222220x y mx m m +-+-=表示圆;命题q :双曲线2215y x m-=的离心率(1,2)e ∈,若命题“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围. 19.已知M :22(2)1x y +-=,Q 是x 轴上的动点,QA 、QB 分别切M 于A 、B 两点.(1)如果AB =,求MQ 及直线MQ 的方程; (2)求证:直线AB 恒过定点.20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120分、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n 的值;(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率;(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PA ⊥平面ABCD ,点M ,N 分别为BC ,PA 的中点,且1AB AC ==,AD =(1)证明://MN 平面PCD ;(2)设直线AC 与平面PBC 所成角为α,当α在(0,)6π内变化时,求二面角P BC A --的取值范围.22.在圆224x y +=上任取一点M ,过点M 作x 轴的垂线段MD ,D 为垂足.3DN DM =,当点M 在圆上运动时, (1)求N 点的轨迹T 的方程;(2) 若(2,0)A ,直线l 交曲线T 于E 、F 两点(点E 、F 与点A 不重合),且满足AE AF ⊥.O 为坐标原点,点P 满足2OP OE OF =+,证明直线l 过定点,并求直线AP 的斜率的取值范围.参考答案(理科)一、选择题1-5: CBBBA 6-10: BCDDB 11、12:CC 二、填空题 13.13 14. 5.5 15. 8 16. 5[,]66ππ三、解答题17.解:学校1800名学生中,成绩属于第四组的人数人;(2)样本在这次百米测试中成绩良好的人数是:人;由图可知众数落在第三组,是,70.1585.17325.16385.15165.1465.131001=⨯+⨯+⨯+⨯+⨯=∴)(x .18.解:若命题p :方程表示圆为真命题,则,解得.若命题q :双曲线的离心率,为真命题,则,解得.命题“”为假命题,“”为真命题,与q 必然一真一假.,或,解得或综上可得:实数m 的取值范围是.19. 解:设直线MQ 交AB 于点P ,则,又,得,.设,而点,由,得,则Q 点的坐标为或. 从而直线MQ 的方程为或.证明:设点,由几何性质,可知A 、B 两点在以QM 为直径的圆上,此圆的方程为,而线段AB 是此圆与已知圆的公共弦,即为,直线AB 恒过定点(0,32 ).20.由题意可得可解得;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c, e),(c,f),(d,e),(d,f),(e,f)共15种,其中a 和b 至少有一人上台抽奖的基本事件有9种,和b 至少有一人上台抽奖的概率为;(3)由已知,点在如图所示的正方形OABC 内,由条件,得到的区域为图中的阴影部分, 由,令可得,令可得,在时满足的区域的面积为,该代表中奖的概率为.21. (1)取PD 得中点Q,连接NQ,CQ,因为点M,N 分别为BC,PA 的中点,,21,////CM AD NQ CM AD NQ ==∴ CQ MN CQNM //∴∴为平行四边形,四边形, PCD MN PCD CQ PCD MN 面面面又//,,∴⊂⊄,(2) 连接PM,因为2,1===AD AC AB ,点M 为BC 的中点,则,,,,BC PM ABCD PA BC AM ⊥⊥⊥则面又θ的平面角,设为为二面角A BC P PMA --∠∴,以AB,AC,AP 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(0,1,0),M(02121,,),P(θtan 2200,,), 设平面PBC 的一个法向量为=(x,y,z),则由0,0=⋅=⋅,⎪⎩⎪⎨⎧=-+=+-0tan 2221210θz y x y x 可取60,sin 22tan 221sin 2παθθα<<=+==∴ 22sin 0,21sin 0<∠<<<∴AMH α, 0044P BC A ππθ∴<<--,即二面角取值范围为(,).22. (1) 设M(x 0,y 0),N (x,y ),则x=x 0,y=32 y 0,代入圆方程有22143x y +=. 即为N 点的轨迹方程.(2)当直线l 垂直于x 轴时,由2223412y x x y =-+⎧⎨+=⎩消去y 整理得271640x x -+=, 解得27x =或2,此时2,07P ⎛⎫⎪⎝⎭,直线AP 的斜率为0; 当直线l 不垂直于x 轴时,设()()1122,,,E x y F x y ,直线l :y kx t =+(2t k ≠-),由223412y kx t x y =+⎧⎨+=⎩,消去y 整理得()2223484120k x ktx t +++-=, 依题意()()2222644344120k t k t∆=-+->,即22430k t -+>(*),且122834ktx x k+=-+,212241234t x x k -=+, 又AE AF ⊥,所以()()()()()()121212122222AE AF x x y y x x kx t kx t ⋅=--+=--+++2227416034t k ktk ++==+,所以2274160t k kt ++=,即()()7220t k t k ++=,解得27kt =-满足(*), 所以2O P OE OF =+()1212,x x y y =++=2286,3434kt t k k ⎛⎫- ⎪++⎝⎭,故2243,3434kt t P k k ⎛⎫- ⎪++⎝⎭, 故直线AP 的斜率22233344846234APtt k k kt k kt k+==-=++--+217878k k k k =++, 当0k <时,78k k+≤-此时0AP k ≤<; 当0k >时,78k k+≥此时056AP k <≤; 综上,直线AP的斜率的取值范围为⎡⎢⎣⎦.。
考试时间:2014年1月19日下午14:30-16:30 试卷满分:150分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.把(2)1010化为十进制数为 ( )A .20B .12C .10D .112.某大学数学专业一共有160位学生,现将学生随机编号后用系统抽样的方法抽取一个容量为5的样本,已知40号、72号、136号同学在样本中,那么样本中还有2位同学的编号应该为 ( )A .104,10B .104,8C .106,10D .106,83.若直线22(23)()41m m x m m y m +-+-=-与直线2350x y --=平行,则实数m 的值为 ( )A .98-B .1C .1或98-D . 1-4.圆2240x y x +-=在点(P 处的切线方程为 ( )A.20x +-= B.40x +-= C.40x += D.20x -+=5.2014年巴西世界杯某项目参赛领导小组要从甲、乙、丙、丁、戊五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲、乙只能从事前三项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( ) A .18种 B .36种 C .48种 D .72种 6.某调查机构调查了当地100个新生婴儿的体重,并根 据所得数据画出了样本的频率分布直方图(如图所示),则 新生婴儿的体重(单位:kg)在[3.2,4.0)的人数是 ( )A .30B .40C .50D .557.随机变量ξ服从正态分布2(,)N μσ,且函数()ξ++=x x x f 42没有零点的概率为21,则=μA .4B .2C .0D .88如回归方程y b x a =+的斜率是b ,则它的截距是( )A.a ^=11b ^-22; B. a ^=11-22b ^; C. a ^=22-11b ^; D.a ^=22b ^-11.(第6题图)ABC D EF (第14题图) 10.已知点P 是椭圆221(0)168x y xy +=≠上的动点,1F 、2F 为椭圆的左、右焦点,O 为坐标原点,若M 是12F PF ∠的角平分线上的一点,且10F M MP ⋅=,则OM 的取值范围是A .(0,3)B .()C .(0,4)D .(0,)二、填空题:本大题共5小题,每小题5分,共25分.11.若3)1(-ax 的展开式中各项的系数和为27,则实数a 的值是 ▲ 12.已知直线,32:1+=x y l 2l 与1l 关于x 轴对称,直线2l 的斜率是 ▲13.NBA 某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右图所示:则中位数与 众数分别为 ▲ 和 ▲ .14.给图中A 、B 、C 、D 、E 、F 六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有 ▲ 种不同的染色方案. 15.下图中椭圆内的圆的方程为122=+y x ,现借助计算机利用如下程序框图来估计该椭圆的面积,已知随机输入该椭圆区域内的1000个点()y x ,时,输出的800=i ,则由此可估计. 16.(本小题满分12分)y已知二项式2(n x +(n ∈N *)展开式中,前三项的二项式系数.....和是56,求: (Ⅰ)n 的值;(Ⅱ)展开式中的常数项.17.(本小题满分12分)号码为1、2、3、4、5、6的六个大小相同的球,放入编号为1、2、3、4、5、6的六个盒子中,每个盒子只能放一个球.(Ⅰ)若1号球只能放在1号盒子中,2号球只能放在2号的盒子中,则不同的放法有多少种?(Ⅱ)若3号球只能放在1号或2号盒子中,4号球不能放在4号盒子中,则不同的放法有多少种?(Ⅲ)若5、6号球只能放入号码是相邻数字的两个盒子中,则不同的放法有多少种?(Ⅰ)求出这个样本的合格率、优秀率;(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.①求这2名医生的能力参数K 为同一组的概率;②设这2名医生中能力参数K 为优秀的人数为X ,求随机变量X 的分布列和期望.19. (本小题满分12分)已知向量).,(),1,2(y x =-=b a(Ⅰ)若y x ,分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足1-=⋅b a 的概率.(Ⅱ)若y x ,在连续区间[1,6]上取值,求满足0<⋅b a 的概率. 20.(本小题满分13分)在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4)1C x y -+-=.(Ⅰ)若过点1(1,0)C -的直线l 被圆2C 截得的弦长为65(Ⅱ)圆D 是以1为半径,圆心在圆3C :22(+1)9x y +=上移动的动圆 ,若圆D 上任意一点P 分别作圆1C 的两条切 线,PE PF ,切点为,E F ,求11C E C F 的取值范围 ; (Ⅲ)若动圆C 同时平分圆1C 的周长、圆2C 的周长, 如图所示,则动圆C21.(本小题满分14分)如图,椭圆1C :22221x y a b+=(0a b >>)和圆2C :222x y b +=,已知圆2C 将椭圆1C 的长轴三等分,椭圆1C ,椭圆1C 的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆2C 相交于点A 、B .(Ⅰ )求椭圆1C 的方程;(Ⅱ)若直线EA 、EB 分别与椭圆1C 相交于另一个交点为点P 、M . ②求证:直线MP 经过一定点;②试问:是否存在以(,0)m 为半径的圆G ,使得直线PM 和直线AB 都与圆G 相交?若存在,请求出所有m 的值;若不存在,请说明理由。
湖北省黄冈中学2013-2014学年高二上学期期末考试数学文试题、选择题(本大题共 10小题,每小题5分,共50分•在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1 .命题:“对任意的 x. R,x 3 -xA.不存在 x 三 R, x 3 -X 2 1 < 02 2 2.椭圆丁 L 1的焦距为(长是( )8.已知函数f (x )的图象是下列四个图象之一,且其导函数f (X )的图象 如图所示,则该函数的图象是()1< 0”的否定是B.存在C.存在 x^ R, x 3 - X 2 1 0D.对任意的 x 三 R,x 3 -x 2 1 . 0A. 1B. 、7C. 2D. 2、73.对于常数m 、n ,“ mn • 0 ”是"方程mx22• ny -1的曲线是椭圆”的(A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4•已知函数f (x) =(x -3)e x ,则f (0)=(A.2B.C. 3D.45.斜率是1的直线经过抛物线=4x 的焦点, 与抛物线相交于 A 、B 两点,则线段AB 的A . 2B.C. 4,2D . 86.在区间 [0,4]内随机取两个实数a,b ,则使得方程x 2 ax b 2 = 0有实根的概率是()A.-47.过椭圆 是()A. C.D. §6B .-322— y 1内的一点P (2,-1)的弦恰好被P 点平分,则这条弦所在的直线方程 6 5C.- 65x ~3y 「13 = 0 B. 5x 3y-13=0 5x-3y 13=0D. 5x 3y 13 = 0A. (—R , -2) 一(2,::)B.(-匚:-,2] 一 [2,::)C. (-2,2)C. 32、填空题(本大题共7小题,每小题5分,共35分.把答案填在答题卡相应位置上. )11. 在区间[-1,2]上随机取一个数x ,则x € [0,1]的概率为.2 212. “若x y ,则x y ”的逆否命题是13. 右图是抛物线形拱桥,当水面在I 时,拱顶离水面2米,水面宽4米, 水位下降2米后,水面宽米.14 .函数f (x ) =¥「,x 可-2,2]的最大值是 __________ ,最小值是 ________x +12 2x V15 .已知O 为原点,在椭圆1上任取一点P ,点M 在线段0P 上,36 279.已知函数f (x ) =x 3 -3x a 有三个零点,则a 的取值范围为( ) 则C 2的离心率是(10.如图,F I ,F 2是椭圆C i : 分别是G , C 2在第二、 且0M= 3|0P ,当点P 在椭圆上运动时,点3M 的轨迹方程为D [-2,2]A. 22 216•若点O和点F分别为椭圆—11的中心和左焦点,点P为椭圆上的任意一点,贝U4 3OP FP的最大值为.17•若直线^kx 1与曲线x-.y21有两个不同的交点,则实数k的取值范围是.三、解答题(本大题共5小题,共65分•解答应写出文字说明,证明过程或演算步骤. )18. (本小题满分12分)设p :方程x2・mx,1=0有两个不等的负根,q :方程4x2 4(m -2)x ^0无实根,若p或q为真,p且q为假,求m的取值范围.2 219. (本小题满分13分)已知双曲线C1:笃一爲“(a • 0,b • 0 )的与双曲线a bC2 : 3x2 - y2=1有公共渐近线,且过点A(1,0).(1 )求双曲线C1的标准方程(2)设F1、F2分别是双曲线C1左、右焦点.若P是该双曲线左支上的一点,且Z F1PF2 = 60,求-F|PF2的面积S.20.(本小题满分13分)设f(x)=6lnx • ax2-10ax • 25a ,其中a,R,曲线y 二f x 在点1, f 1处的切线与y轴相交于点(0,6).(1)求a的值;(2)求函数f x的单调区间与极值•21. (本小题满分13分)已知抛物线C:y2=2px(p .0)的准线方程为x = _2 .(1)求此抛物线的方程;(2)已知点B(_1,0),设直线I :y二kx • b(k =0)与抛物线C交于不同的两点P(N,y i),Q(X2,y2),若x轴是.PBQ的角平分线,证明直线I过定点,并求出该定点坐标.22.(本小题满分14 分)如图,点P(0, -1)是椭圆G :务每=1(a b 0)的一个顶点,G a b的长轴是圆C2:x2 y-4的直径.hl是过点P且互相垂直的两条直线,其中斜率为k的直线h交圆C2于A,B两点,12交椭圆G于另(1)求椭圆G的方程;(2)试用k表示厶ABD的面积S;(3)求ABD面积S取最大值时直线l1的方程.参考答案2 2(第22题图)1-10 CCBBD,A ABCD- 2m -4 0— 小则 :m .2-m ■. 0若 q 为真,则.:=16(m —2)2 —16 =16(m —1)(m —3) :::0= 1 :::m :::3 由p 或q 为真,p 且q 为假知,p 和q —真一假 ①若p 真q 假,则m 2=• m > 3②若p 假q 真,则m = km < 2m w 1 或 m > 3 1cmc3综上知1 ::: m w 2或m > 3219.解:(1) x 2 1 ,3(2)设 PF 2 =m, PF 』=n ,则 m — n =21 1 , 3 — -mn =12. S msni n 6 0 1 2 3 32 2 220. ( 1)因为 f(x)=2a(x -5)—令 xh ,得f ⑴=16a, f ⑴=6-8a,所以曲线y = f(x) x 在点(1,f (1))处的切线方程为 y -16a =(6 _8a)(x-1)1由点(0,6)在切线上可得 6 _16a =8a -6,故a 二—.2(2)由(1)知,f(x)-5)2 6ln x(x 0), f (x)=x _5 • § =(x_2)(x-3)2xx令 f (x) =0,解得 X 1 =2,血=3当 0 :: x ::: 2 或 x 3 时,f (x) 0,故 f (x)在(0,2),(3,二)上为增函数;当 2::x ::3 时, f (x) <0,故f(x)在(2,3)上为减函数.由此可知,f (x)在X =2处取得极大值f (2) 6ln 2,在x =3处取得极小值f (3) =2 6ln 3221. 解:(1) y 2⑵ 将 y = kx b 代入 y 2 =8x 中,得 k 2x 2 (2bk —8)x b 2 = 0,11.扣若x 2< y 2,贝U x 乞 y 13. 4.214. 2;—215. 2 2x y116. 617 . 72 ::: k ::: -1 4318. p 为真,在.F 1PF 2中,由余弦定理有 16 二 m 2 n 2Q 2— 2mn cos60 = m — n +2m n — mn其中::=J32kb 64 0由根与系数的关系得,■ x2 =8 2bk,①x1x^ =^2.②k k••• x轴是/ PBQ的解平分线,•••」乞,即y1(x2 1) y2(x1 1^0,x+1 x2+1•- (kx b)(x21) (kx, 6(人1) = 0 ,• 2ax2 (b 冷)2b = 0,③将①②代入③并整理得2kb2 - (k - b)(8 -2bk) • 2k2b = 0 ,• k - J D,此时△>0「.直线I的方程为y=k(x_1),即直线l过定点(1,0).22. 解:(1)由已知得到b =1,且2a =4. a =2,所以椭圆的方程是一y4l x ky k = 0, 2 2 2由x22二k X 4x 8kx = 0,7y =1所以X D +X P J(1 + 4) ?4k2k +4 V k (k + 4)所以S」|AB||D P"2丄药8厂8冲2 2 k2 4 k2 4S』4k23 4 52 3k2 4 4k2 3 1332 3224k _3 _13 一32一-4k2 3 .4k2 313 2 13=16•.也13-4k2 3=1;(2)因为直线h _ 12,且都过点P(0, -1),所以设直线h : y二kx -1= kx- y_1 = 0, 直线12:x1 : x k y0所< 二以圆心(h : y 二kx -1 =1 2 2kx - y -1二0的距离为d ---------- ,所以直线h被圆x2y= 4所截的弦AB =2、4 -d2 2 3 4k"x1 k28\ k2 1k2 4当6為=k2k=时等号成立,此时直线,2h:y〜x-i2。
湖北省黄冈市2013-2014学年高二数学上学期期末考试试题理(扫
描版)新人教A版
2014年黄冈市高二期末数学测试题参考答案(理科) 一、选择题:CDCCD ACCDA 二、填空题:11.37 12.
92 13. 64
9
14. 1 15.)2)(1(2,
601--n n n 三、16.(1)先排教师有3
3A 种,再排学生有4
4A 种,故共有3
3A ×4
4A =144种. ………4分 (2)首尾两个位置排学生共有24A 种,其余5个位置可以排余下的5人,有5
5A 种方法,所
以共有24A 5
5A =1440种. ………8分 (3)采用“插空法”,N=44A 3
5A =1440种不同的排法. ………12分 17.(1) 5
7
A 56C n n =,,)!
7(!7!
56)!5(!-⨯=-∴
n n n n
)(4,15,060112舍-==∴=--∴n n n n ,所以15=n ……6分
(2)令,1,00==a x 得
令1=x ,得0a +a 1+a 2+a 3+……+n a =-1,∴ a 1+a 2+a 3+……+n a =-2 …12分 18解:(1)由题意知,5组频率总和为1,故第3组频率为0.3,所以0.3a =
总的频数为100,因此第4组的频数为20,即20b =…………3分
……6分
(2)第345、、
组共60名学生,现抽取12人,因此第3组抽取的人数为:30
12=660
⨯人,第4组抽取的人数为:
2012=460⨯人,第5组抽取的人数为:10
12=260
⨯人……………8分
(3)ξ的可能取值为0123.、、、 3831214(0)55C P C ξ===
21
8431228
(1)55C C P C ξ=== 128431212(2)55C C P C ξ=== 3
43121
(3)55C P C ξ===
ξ的分布列为:
1428121
0123155555555
E ξ∴=⨯
+⨯+⨯+⨯= ……………12分 19.解:设第i 次按对密码为事件)3,2,1(=i A i ,则 (1))()(321211A A A A A A A ⋃⋃=,10
3
891018991019101)(=⨯⨯⨯⨯+⨯⨯+=A P …6分 (2)设“最后一位为偶数”为事件B ,则
5
3345134451451)|()|()|()|(321211=⨯⨯⨯⨯+⨯⨯+=
++=B A A A P B A A P B A P B A P …12分 20.解:(1)3215
)21
()21
()21()21
(5
5
4
555
3
5=++⎥⎦⎤
⎢⎣⎡
-=C C P ;……6分
(2
855=
∴EY ,8
1653==EY EX ……13分 21.解:每个点落入M 中的概率均为14p =
.依题意知1~100004X B ⎛
⎫ ⎪⎝
⎭,.
(1)1
1000025004
EX =⨯
=.……4分 (2)依题意所求概率为0.03410.0310000X P ⎛⎫
-<
⨯-< ⎪⎝
⎭
,
0.03410.03(24252575)
10000X P P X ⎛⎫
-<⨯-<=<< ⎪⎝⎭
2574
1000010000
2426
0.250.75t
t t t C
-==
⨯⨯∑
=
t
t t t
C
-=⨯⨯∑100002574
10000
75
.025.0-
t t t t
C
-=⨯⨯∑100002425
10000
75.025.0
0.95700.04230.9147=-=.……14分。