2021年新高考数学全真模拟卷3附答案解析(新高考专用)
- 格式:pdf
- 大小:2.52 MB
- 文档页数:34
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:命题的真假,★)下列命题中为假命题的是( ). A .∀x ∈R,2x-1>1 B .∀x ∈N *,(x-1)2≥0 C .∃x 0∈R,lg x 0<1 D .∃x 0∈R,tan x 0=22.(考点:等比数列,★)在等比数列{a n }中,已知a 3a 4=a 2,且a 4与a 6的等差中项为54,则公比q=( ). A .12 B .12或2C .2D .14或23.已知集合{}2230M x x x =--<,{}0N x x x =-=,则M N =( )A .{}0,1B .[)0,1C .()0,3D .[)0,34.(考点:样本分布与数字特征,★★)在军训射击比赛中,小明、小强两名同学在相同的条件下各射击6次,两名同学射击命中的环数如折线图所示(虚线表示小明同学,实线表示小强同学),以下说法错误的是( ).A .小明和小强两人射击命中环数的平均数相等B .小明的命中环数的中位数比小强的大C .小明的命中环数的众数比小强的大D .小明的命中环数的成绩比小强的更稳定5.(考点:传统文化,★★)已知有两个惰性气体原子,原子核正电荷的电荷量为q ,这两个相距为R 的惰性气体原子组成体系的能量中有静电相互作用能U.其计算式为U=kcq 2(1R +1R+x1-x 2-1R+x 1-1R -x 2),其中kc 为静电常量,x 1,x 2分别表示两个原子的负电中心相对各自原子核的位移.已知R+x 1-x 2=R (1+x 1-x 2R),R+x 1=R (1+x 1R),R-x 2=R (1-x2R ),且(1+x )-1≈1-x+x 2,则U 的近似值为( ). A .kcq 2x 1x 2R 3B .-kcq 2x 1x 2R 3C .2kcq 2x 1x 2R 3D .-2kcq 2x 1x 2R 36.(考点:双曲线,★★)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,且点P(b,0)满足|PF1|=9|PF2|,则双曲线的离心率为().A.5 4B.53C.√2D.27.(考点:函数图象的判断,★★)函数f(x)=3e-x·sin 2x的图象大致是().8.(考点:函数的奇偶性与周期性,★★)定义在R上的偶函数f(x)满足f(x+1)=-1f(x)(f(x)≠0),且在区间(119,120)上单调递减,已知α,β是锐角三角形的两个内角,则f(sin β),f(cos α)的大小关系是().A.f(sin β)<f(cos α)B.f(sin β)>f(cos α)C.f(sin β)=f(cos α)D.以上情况均有可能二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知某圆锥的母线长为2,其轴截面为直角三角形,则下列关于该圆锥的说法中正确的有A22B.圆锥的表面积为22πC2π的扇形D.圆锥的内切球表面积为(24162π-10.已知a ,b ,c 为实数,且0a b >>,则下列不等式不一定...成立的是 A .22ac bc >B .b aa b< C .()222log log ab b ->D .1122a b< 11.设正实数x ,y 满足21x y +=,则 A .10,2x ⎛⎫∈ ⎪⎝⎭B .xy 的最大值为14C .22x y +的最小值为15D .42x y +的最小值为412.设函数()πsin 5f x x ω⎛⎫=+ ⎪⎝⎭(0>ω),若()f x 在[]0,π有且仅有5个极值点,则A .()f x 在()0,π有且仅有3个极大值点B .()f x 在()0,π有且仅有4个零点C .ω的取值范围是4353,1010⎡⎫⎪⎢⎣⎭D .()f x 在π0,20⎛⎫⎪⎝⎭上单调递增三、填空题:本大题共4小题,每小题5分,共20分。
2023届高考数学·备战热身卷3一、单选题(本题共8小题,每小题5分,共40分。
在每小题给出的选项中,有一项符合题目要求。
)1.(2022·河北·模拟预测)已知集合A ={}{}|4|342y y B x x x A B ≥-=≤-⋂=,,则( )A .4|45x x ⎧⎫-≤≤⎨⎬⎩⎭B .4|45x x ⎧⎫-<<⎨⎬⎩⎭C .{|4x x ≤-或45x ⎫≥⎬⎭D .R2.(2022·河北·模拟预测)已知复数i z a b =+(a ,b ∈R ),若20212i i ab +=+,则z =( )A .12i -+B .12i +C .12i --D .12i -3.(2022·河北·模拟预测)一质点在单位圆上作匀速圆周运动,其位移满足的方程为sin2h t =,其中h 表示位移(单位:m ),t 表示时间(单位:s ),则质点在1t =时的瞬时速度为( )A .sin2 m/sB .cos2 m/sC .2sin2 m/sD .2cos2 m/s4.(2022·全国·高三专题练习)在等差数列{}n a 中,m a n =,n a m =,则m na+=( )A .0B .mC .nD .m n +5.(2022·河北·模拟预测)函数cos 1()(3lg5lg 64)2x f x x =⋅+([],x ππ∈-)的图象大致是A .B .C .D .6.(2022·河北·模拟预测)已知向量a 与b 的夹角为120°,且2a b ⋅=-,向量c 满足()()101c a b λλλ=+-<<,且a c b c ⋅=⋅,记向量c 在向量a 与b 方向上的投影分别为x 、y .22x y xy ++的最大值为( )A .14B .2C .34D .547.(重庆市西南大学附属中学校2021-2022学年高二下学期第三次月考数学试题)已知数列{}n a 满足112a =-,21220n n n a a a ++-=,则下列结论错误的是( )A .{}n a 是单调递增数列B .存在*n N ∈,使得0n a >C .12111112222n n a a a a +++⋅⋅⋅+=--+++D .339128a =-8.(2022·河北·模拟预测)已知0x 是方程()e 2xf x x =+-的零点(其中e 2.71828=为自然对数的底数),下列说法错误的是( )A .()00,1x ∈B .()00ln 2x x -=C .020e xx -> D .00e 0xx --<二、多选题(本题共4小题,每小题5分,共20分。
2021届高三新高考模拟英语试题第一部分阅读(共两节, 满分50分)第一节(共15小题;每小题2. 5分, 满分37. 5分)阅读下列短文, 从每题所给的A、B、C、D四个选项中选出最佳选项。
ABest Cookbooks for KidsBest Overall: Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!)◎Buy on Amazon◎Buy on WalmartWith the help of this best-selling cookbook, your kids will become masters in the kitchen! Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat ! )is ideal for children aged 6 to 12, as it includes detailed explanations of basic cooking techniques, plus more than 50 kid-friendly recipes. This award-winning cookbook is a comprehensive guide for cooking novices, explaining skills and recipes in kid-friendly language.Best for Basic Learner: Better Homes and Gardens New Junior Cookbook◎Buy on Amazon◎Buy on WalmartIf you want to teach your kids cooking terms, tools and techniques, you need the Better Homes and Gardens New Junior Cookbook.This 128-page cookbook has more than 65 kid-friendlyrecipes, and it’s perfect for introducing kids aged 5 to 12 to the wonderful world of cooking. It includes a detailed section on cooking terms, kitchen safety, tools (including pictures), and healthy cooking. It also addresses how to measure ingredients and how to read recipes.Best Classic: Betty Crocker’s Cookbook for Boys and Girls◎Buy on Amazon◎Buy on Target◎Buy on WalmartThe first edition of this classic kids’ cookbook was published more than 60 years ago, and the Betty Crocker’s Cookbook for Boys and Girls is still a favorite for kids and adults alike. The recipes are ideal for children aged 8 to 12. This cookbook is an authentic reproduction of the original 1957 edition, which many baby boomers learned from themselves! Many older buyers write that they had the same cookbook growing up and love sharing the classic recipes with the next generation.Best Vegetarian: The Help Yourself Cookbook for Kids◎Buy on Amazon◎Buy on WalmartThis vegan cookbook is best for children aged 6 to 12, and its aim is to teach kids about healthy eating by involving them in the cooking process. The book features 60 plant-based recipes for you to make with your family, including meals, snacks, drinks and desserts.1. Which cookbook can be purchased on Target?A. Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!).B. Better Homes and Gardens New Junior Cookbook.C. Betty Crocker’s Cookbook for Boys and Girls.D. The Help Yourself Cookbook for Kids.2. What can we know about Better Homes and Gardens New Junior Cookbook?A. It is an award-winning cookbook.B. It teaches the kids about kitchen safety.C. It includes 60 plant-based recipes.D. It was published more than 60 years ago.3. What is the similarity between Cooking Class: 57 Fun Recipes Kids Will Love to Make (and Eat!) and The Help Yourself Cookbook for Kids?A. They are both designed for kids aged 6-12.B. They have recipes based on plants.C. They have recipes for whatever you want.D. They explain how to measure ingredients.『语篇解读』本文主要介绍了四本适合孩子们的食谱。
第 1 页 共 20 页2021年新高考八省联考数学模拟试卷一.选择题(共8小题,满分40分)1.(5分)集合A ={x |x−4x−2≤0},B ={x |x 2﹣4x +3≤0},则A ∩B =( ) A .[2,3] B .[3,4]C .[1,2]D .(2,3] 2.(5分)已知z =1﹣i 2020,则|z +2i |=( )A .√10B .2√2C .2D .√23.(5分)2022年北京冬季奥运会将在北京和张家口举行,现预备安排甲、乙、丙、丁四人参加3个志愿服务项目,每人只参加一个志愿服项目,每个项目都有人参加,则不同的安排方案有( )A .24B .36C .48D .724.(5分)对数的应用很广泛,有些速算的原理来自对数,例如:如果正整数a 的31次方是个35位数,那么根据1034<a 31<1035,取常用对数得3431<lga <3531可得到1.09<lga<1.15,由对数表可知这个数是13,已知某个正整数的57次方是个45位数,则该正整数是( )a2 3 5 6 7 9 11 12 13 14 lga0.30 0.48 0.70 0.78 0.85 0.95 1.04 1.08 1.11 1.18 A .5B .6C .7D .8 5.(5分)已知向量a →,b →满足a →=(sin π3,sin π6),|b →|=√2,且a →⊥(a →−b →),则a →与b →的夹角为( )A .π4B .π3C .3π4D .5π46.(5分)将3个球(形状相同,编号不同)随机地投入编号为1,2,3,4的4个盒子,以ξ表示其中至少有一个球的盒子的最小号码(ξ=3表示第1号,第2号盒子是空的,第3个盒子至少1个球),则E (ξ),E (2ξ+1)分别等于( )A .2516,258B .2516,338C .32,3D .32,4 7.(5分)已知未成年男性的体重G (单位:kg )与身高x (单位:cm )的关系可用指数模型G =ae bx 来描述,根据大数据统计计算得到a =2.004,b =0.0197.现有一名未成年男性身高为110cm ,体重为17.5kg ,预测当他体重为35kg 时,身高约为( )(ln 2≈0.69)。
2018届高三三校联考 数学(文科)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.答卷前,考生务必先将自己的班级、姓名、准考证号、座号用5.0mm 黑色签字笔和2B 铅笔分别涂写在答题卡与答题纸上.3.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑;非选择题直接答在答题纸相应区域,不能答在试卷上;试题不交,请妥善保存,只交答题卡与答题纸. 参考公式:用最小二乘法求线性回归直线方程系数公式xb y a xn xy x n yx x xy y x xb ni ini ii ni ini i i∧∧====∧-=--=---=∑∑∑∑,)())((1221121.球的表面积公式24R S π=,其中R 是球的半径.如果事件B A ,互斥,那么)()()(B P A P B A P +=+;如果事件B A ,对立,那么)(1)(A P B P -=.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是正确的. 1.已知集合},{},,3{b a B a A ==,若}2{=B A I ,则=B A Y( ) A}3,2{B}4,3{C}3,2,2{D}4,3,2{2.已知复数i 21-=a z ,i 22+=z (i 为虚数单位),若21z z 为纯虚数,则实数a 的值为( )A 4-B 1-C 1D 43.执行如图所示的程序框图,若输入的M 的值为55,则输出的i 的值为( ) A 3B 4C 5D 64.设∈b a ,R ,则“b a <”是“0)(2<-a b a ” 的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件5.已知具有线性相关关系的两个变量y x ,之间的一组数据如下:且回归直线方程为6.2+=x b y ,根据模型预报当6=x 时,y 的预测值为( )A 76.5B 8.6C 3.8D 46.86.函数2cos )(x xx f π=的图象大致是()A BCD7.已知函数⎪⎩⎪⎨⎧≥<+=2,)31(,2),2()(x x x f x f x,则)5log 1(3+-f 的值为( )A151B 35C 15D328.某几何体的三视图如图所示,则该几何体外接球的表面积为( )侧视图俯视图•Aπ34 Bπ332C π4D π169.已知函数)(x f 是定义在R 上的可导函数,)('x f 为其导函数,若对于任意实数x ,都有)()('x f x f >,其中e 为自然对数的底数,则()A )2016()2015(e f f >B )2016()2015(e f f <C)2016()2015(e f f =D)2015(e f 与)2016(f 大小关系不确定10.对于两个平面向量b a ,,定义它们的一种运算:θsin ||||b a b a ⋅=⊗(其中θ为向量,的夹角),则关于这种运算的以下结论中,不恒成立的是( ) A⊗=⊗B 若0=⊗b a ,则b a //C ⊗+⊗=⊗+)(D 若),(),,(2211y x y x ==,则||1221y x y x -=⊗第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数21)1ln(1)(x x x f -++=的定义域为________.12.若直线)0,0(2>>=-b a by ax 过圆012422=++-+y x y x 的圆心,则ab 的最大值为________. 13.设△ABC 的内角CB A ,,的对边分别为cb a ,,,若BA C a sin 2sin 3,41cos ,4=-==,则=c ________.14.某企业生产甲、乙两种产品均需用B A ,两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.15.抛物线)0(2:21>=p x p y C 的焦点与双曲线13:22=-y x C 的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则=p ________.三、解答题:本大题共6个小题,共75分.16.(本小题满分12分)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组)30,20[,第2组)40,30[,第3组)50,40[,第4组)60,50[,第5组]70,60[,得到的频率分布直方图如图所示. (Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,估计被采访人恰好在第1组或第4组的概率;(Ⅱ)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.17.(本小题满分12分)已知函数)0(21cos cos sin 3)(2>-+⋅=ωωωωx x x x f 的两条相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)将函数)(x f 的图象向左平移6π个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,若函数k x g y -=)(在区间]32,6[ππ-上存在零点,求实数k 的取值范围..0.0.0.018.(本小题满分12分)如图,在三棱柱111C B A ABC -中,1111C A B A =,点E D ,分别是1111,B A C B 的中点,11===BD AB AA ,ο601=∠AB A .(Ⅰ)求证://1AC 平面BD A 1; (Ⅱ)求证:平面BDE ⊥平面111C B A .19.(本小题满分12分)已知等比数列}{n a 的前n 项和为n S ,32,01=>a a n ,且4321,1,3a a a -成等差数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足1)1(log 13=-⋅+n n S b ,求满足方程100950413221=++++n n b b b b b b Λ的正整数n 的值.20.(本小题满分13分)已知函数)0(21ln )2()(≤++-=a ax x x a x f .(Ⅰ)当0=a 时,求)(x f 的极值; (Ⅱ)当0<a 时,讨论)(x f 的单调性; (Ⅲ)若对于任意的)2,(],3,1[,21--∞∈∈a x x 都有3ln 2)3ln (|)()(|21-+<-a m x f x f ,求实数m 的取值范围.21.(本小题满分14分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,它的四个顶点构成的四边形的面积为34.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 的右焦点为F ,过F 作两条互相垂直的直线21,l l ,直1C1B1ACBA DE线1l 与椭圆C 交于Q P ,两点,直线2l 与直线4 x 交于N 点. (i )求证:线段PQ 的中点在直线ON 上;(ii )求||||FN PQ 的取值范围.数学(文科)参考答案及评分标准说明:1.本解答仅给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准标准酌情赋分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题共10小题,每小题5分,共50分. 1.【答案】D . 【解析】由}2{=B A I得B A ∈∈2,2,所以2,2==b a ,所以}2,4{},2,3{==B A ,所以}4,3,2{=B A Y .故选D .【考点】元素与集合关系、集合运算. 2.【答案】C . 【解析】由题意可得,i 54522i 2i 221+--=+-=a a a z z ,因为21z z 为纯虚数,所以054,0522≠+-=-a a ,所以1=a .故选C .【考点】复数的概念、复数的代数运算.3.【答案】D .【解析】执行程序框图,第一次2,551102=<=+⨯=i N ,第二次3,554212=<=+⨯=i N ,第三次4,5511342=<=+⨯=i N ,第四次5,55264112=<=+⨯=i N ,第五次6,55575262=>=+⨯=i N ,所以输出的i 的值为6.故选D .【考点】程序框图输出结果. 4.【答案】B .【解析】由题意可得,“0)(2<-a b a ”等价于“0,02><-a b a 或0,02<>-a b a ”,即“0,0≠<-a b a ” ,所以“b a <”是“0)(2<-a b a ” 的必要不充分条件.故选B .【考点】充要条件、不等式性质. 5.【答案】C . 【解析】由题意可得,2)43210(51=++++⨯=x ,5.4)7.68.45.43.42.2(51=++++⨯=y ,因为回归直线一定过样本点的中心),(y x ,所以6.225.4+⨯=∧b ,解得95.0=∧b .当6=x 时,y 的预测值为3.86.2695.0=+⨯.故选D .【考点】线性回归直线方程、预测值. 6.【答案】B .【解析】由题意可得,)(cos )()(cos )(22x f x xx x x f ==--=-ππ,所以)(x f 为偶函数,)(x f 的图象关于y 轴对称,可排除答案A 、C ;当1=x 时,01cos )1(<-==πf ,可排除D .故选B .【考点】函数的图象与性质. 7.【答案】A . 【解析】由题意可得,135log 5log 1033<=+-<,所以315log 25log 1233<=++-<,所以151)3()31()15(log )25log 1()5log 1(115log 15log 33333====++-=+--f f f .故选A .【考点】函数值、指对运算. 8.【答案】D .【解析】由三视图可知,该几何体是底面半径为3,高为1的圆锥.设其外接球的半径为R ,则222)3()1(=--R R ,解得2=R ,所以该几何体外接球的表面积为πππ1624422=⨯==R S .故选D .【考点】三视图、组合体体积. 9.【答案】A . 【解析】构造函数∈=x x f x F x ,e )()(R ,)(x F 的导函数x x x x x f x f x f x f x F e )()()e ()e )((e )()('2'''-=-=.因为)()('x f x f >,0e >x ,所以0)('<x F ,)(x F 在R 上是减函数,所以20162015e )2016()2016(e )2015()2015(f F f F =>=,所以)2016()2015(e f f >.故选A .【考点】抽象函数单调性、比较大小. 10.【答案】C .【解析】因为θsin ||||b a b a ⋅=⊗,所以3R1-R1⊗=⋅=⋅=⊗θθsin ||||sin ||||,选项A 恒成立.当,≠,0sin ||||=⋅=⊗θ时,0sin =θ,所以0=θ或πθ=,所以//;当=或0=b 时,b a //恒成立,选项B 恒成立.θsin ||||⋅=⊗θ2cos 1||||-⋅=2||||⋅===212212212122222121)()())((y x y x y y x x y x y x -=+-++=||1221y x y x -=,选项D 恒成立.当⊥⊥=+===,,,1||||||时,20)(=⊗+⊗≠=⊗+c b c a c b a ,选项C 不恒成立.故选C .【考点】新定义、数量积.编者注:本题中,,在印刷体中用黑体..来表示。
最新高考数学三模试卷(文科)一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .13.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤04.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A .26B .48C .57D .646.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于( )A .39πB .48πC .57πD .63π7.已知x ,y 满足约束条件,则的最大值是( )A .﹣2B .﹣1C .D .28.已知函数f (x )=Asin (ωx+φ)(A >0,ω>0)的图象与直线y=b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则函数f (x )( )A .在[0,3]上是减函数B .在[﹣3,0]上是减函数C .在[0,π]上是减函数D .在[﹣π,0]上是减函数9.设函数f (x )=e x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[﹣1,+∞)B .(﹣1,+∞)C .[0,+∞)D .(0,+∞)10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为( )A .4πB .8πC .12πD .16π11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(﹣∞,0)上是减函数,f (2)=0,g (x )=f (x+2),则不等式xg (x )≤0的解集是( )A .(﹣∞,﹣2]∪[2,+∞)B .[﹣4,﹣2]∪[0,+∞)C .(﹣∞,﹣4]∪[﹣2,+∞)D .(﹣∞,﹣4]∪[0,+∞)12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点A ,B 在C 上,且点F 是△AOB 的重心,则cos ∠AFB 为( )A .﹣B .﹣C .﹣D .﹣二、填空题13.若和是两个互相垂直的单位向量,则|+2|=_______.14.已知α为锐角,cos α=,则sin (﹣α)=_______.15.在△ABC 中,∠A ,∠B ,∠C 所对的边长分别是x+1,x ,x ﹣1,且∠A=2∠C ,则△ABC 的周长为_______.16.已知圆C :(x ﹣a )2+y 2=1(a >0),过直线l :2x+2y+3=0上任意一点P 作圆C 的两条切线PA ,PB ,切点分别为A ,B ,若∠APB 为锐角,则a 的取值范围为_______.三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y 表示每年3月份的PM2.5指数的平均值(单位:μg/m 3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C 相交于A,B两点,求△GAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.参考答案与试题解析一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)【考点】交集及其运算.【分析】求出A 与B 中不等式的解集分别确定出A 与B ,找出两集合的交集即可.【解答】解:由A 中不等式解得:0<x <3,即A=(0,3),由B 中不等式解得:x ≤2,即B=(﹣∞,2],则A ∩B=(0,2],故选:A .2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .1【考点】复数求模.【分析】根据复数的四则运算求出z ,然后利用复数的模长公式进行求解即可.【解答】解:由i (1+z )=2+i ,得1+z==1﹣2i ,则z=﹣2i ,则|z|=2,故选:C3.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定是特称命题,则¬p :∃x 0>0,x 0e x0≤0,故选:D4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】本题是一个等可能事件的概率,试验发生所包含的事件数是C 52种结果,满足条件的事件是抽到的2名学生恰好是1男1女,有C 31C 21,进而得到概率.【解答】解:从3名男生和2名女生中任意推选2名选手参加辩论赛,共有C 52=10种选法, 选出的2名选手恰好是1男1女有C 31C 21=6种,故推选出的2名选手恰好是1男1女的概率是=,故选:C .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A.26 B.48 C.57 D.64【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得x=2,n=5,v=1,k=2执行循环体,v=4,k=3满足条件k<5,执行循环体,v=11,k=4满足条件k<5,执行循环体,v=26,k=5不满足条件k<5,退出循环,输出v的值为26.故选:A.6.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于()A.39π B.48π C.57π D.63π【考点】由三视图求面积、体积.【分析】根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,由三视图求出几何元素的长度,由圆柱、圆锥的侧面积公式求出剩余部分的表面积.【解答】解:根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,且圆柱底面圆的半径为3,母线长是4,则圆锥的母线长是=5,∴剩余部分的表面积S=π×32+2π×3×4+π×3×5=48π,故选:B.7.已知x,y满足约束条件,则的最大值是()A.﹣2 B.﹣1 C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用直线的斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率,由图象知OA的斜率最大,由得,即A(2,4),此时的最大值是,故选:D8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)()A.在[0,3]上是减函数B.在[﹣3,0]上是减函数C.在[0,π]上是减函数D.在[﹣π,0]上是减函数【考点】正弦函数的图象.【分析】先根据正弦函数的图象的对称性可得函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,从而得出结论.【解答】解:∵函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,故选:B.9.设函数f(x)=e x+ax在(0,+∞)上单调递增,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣1,+∞)C.[0,+∞)D.(0,+∞)【考点】利用导数研究函数的单调性.【分析】函数f(x)=e x+ax在区间(0,+∞)上单调递增⇔函数f′(x)=e x+a≥0在区间在区间(0,+∞)上成立.(0,+∞)上恒成立⇔a≥[﹣e x]min【解答】解:f′(x)=e x+a,∵函数f(x)=e x+ax在区间(0,+∞)上单调递增,∴函数f′(x)=e x+a≥0在区间(0,+∞)上恒成立,∴a≥[﹣e x]在区间(0,+∞)上成立,min∵在区间(0,+∞)上﹣e x<﹣1,∴a≥﹣1,故选:A.10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4πB.8πC.12π D.16π【考点】球的体积和表面积.【分析】根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,,根据图形的对称性,可得外接球的球心在线段OO′中点O1∵OA=AB=1,OO=AA′=11A=∴O1因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.11.已知定义在R上的函数f(x)是奇函数,且f(x)在(﹣∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)【考点】奇偶性与单调性的综合.【分析】由题意可得g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,画出g(x)的单调性示意图,数形结合求得不等式xg(x)≤0的解集.【解答】解:由题意可得g(x)的图象是把f(x)的图象向左平移2个单位得到的,故g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,它的单调性示意图,如图所示:根据不等式xg(x)≤0可得,x的符号和g(x)的符号相反,∴xg(x)≤0的解集为(﹣∞,﹣4]∪[﹣2,+∞),故选:C.12.已知抛物线C:y2=2px(p>0)的焦点为F,点A,B在C上,且点F是△AOB的重心,则cos∠AFB为()A.﹣ B.﹣ C.﹣D.﹣【考点】抛物线的简单性质.【分析】设A(m,)、B(m,﹣),则=,p=,可得A的坐标,求出AF,利用二倍角公式可求.【解答】解:由抛物线的对称性知,A、B关于x轴对称.设A(m,)、B(m,﹣),则=,∴p=.∴A(m, m),∴AF=m,∴cos∠AFB==,∴cos∠AFB=2cos2∠AFB﹣1=﹣.故选:D.二、填空题13.若和是两个互相垂直的单位向量,则|+2|= .【考点】平面向量数量积的运算.【分析】计算()2,然后开方即可.【解答】解:∵和是两个互相垂直的单位向量,∴,.∴()2==5,∴||=.故答案为:.14.已知α为锐角,cosα=,则sin(﹣α)= .【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,利用特殊角的三角函数值及两角差的正弦函数公式化简所求即可计算得解.【解答】解:∵α为锐角,cosα=,∴sin==,∴sin(﹣α)=sin cosα﹣cos sinα=﹣×=.故答案为:.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC 的周长为15 .【考点】余弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式可得:cosC=,又由余弦定理可得:cosC=,从而可得=,解得x,即可得解三角形的周长.【解答】解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,∴由正弦定理可得:,∴,可得:cosC=,又∵由余弦定理可得:cosC=,∴=,整理即可解得x=5,∴△ABC的周长为:(x+1)+x+(x﹣1)=3x=15.故答案为:15.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为(,+∞).【考点】圆的切线方程.【分析】作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由∠APB为锐角,可得0<∠APC<,运用解直角三角形可得可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,求得PC的最小值,可得PA的最小值,解不等式即可得到所求a的范围.【解答】解:作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由圆心C(a,0)到直线l的距离为d=>>1,可得直线和圆相离.由∠APB为锐角,可得0<∠APC<,即0<tan∠APC<1,在Rt△APC中,tan∠APC==,可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,当PC⊥l时,PC取得最小值,且为,即有1<,解得a>.故答案为:(,+∞).三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .【考点】数列的求和;等比数列的通项公式.【分析】(1)由S n =2a n ﹣1.可得当n=1时,a 1=2a 1﹣1,解得a 1.当n ≥2时,a n =S n ﹣S n ﹣1,化为:a n =2a n ﹣1.利用等比数列的通项公式即可得出.(2)由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.利用“错位相减法”与等比数列的前n 项和公式即可得出.【解答】(1)证明:∵S n =2a n ﹣1.∴当n=1时,a 1=2a 1﹣1,解得a 1=1.当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣1﹣(2a n ﹣1﹣1),化为:a n =2a n ﹣1.∴数列{a n }是等比数列,首项为1,公比为2.(2)解:由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.∴数列{na n }的前n 项和T n =1+2×2+3×22+…+n •2n ﹣1,2T n =2+2×22+…+(n ﹣1)•2n ﹣1+n •2n ,∴﹣T n =1+2+22+…+2n ﹣1﹣n •2n =﹣n •2n =(1﹣n )•2n ﹣1,∴T n =(n ﹣1)•2n +1.18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.【考点】点、线、面间的距离计算.【分析】(1)如图所示,连接AC 交BD 于点O ,连接OP .利用菱形的性质可得AC ⊥BD ,利用线面垂直的判定与性质定理可证明BD ⊥PO .又O 是BD 的中点,可得PB=PD .(2)底面ABCD 是菱形,AB=2,∠BAD=60°,可得△PBD 与△BCD 都是等边三角形.由平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,PO ⊥BD .可得PO ⊥平面ABCD ,因此PO ⊥AC ,又AC⊥BD,可建立如图所示的空间直角坐标系.设平面PCD的法向量=(x,y,z),则,利用点B到平面PDC的距离d=即可得出.【解答】(1)证明:如图所示,连接AC交BD于点O,连接OP.∵四边形ABCD是菱形,∴AC⊥BD,又PC⊥BD,且PC∩AC=C,∴BD⊥平面PAC.则BD⊥PO.又O是BD的中点,∴PB=PD.(2)解:底面ABCD是菱形,AB=2,∠BAD=60°,∴△PBD与△BCD都是等边三角形.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.∴PO⊥平面ABCD,∴PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.∵∠DPB=90°,PB=PD,BD=2,∴PO=1,∴P(0,0,1),B(1,0,0),D(﹣1,0,0),C(0,,0),=(﹣1,0,﹣1),=(0,,﹣1),=(1,﹣,0),设平面PCD的法向量=(x,y,z),则,∴,取=,则点B到平面PDC的距离d===.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.【考点】线性回归方程.【分析】(1)根据折线图中的数据,完成表格即可;(2)计算线性回归方程中的系数,可得线性回归方程;(3)x=5代入线性回归方程,可得结论.【解答】解:(1)年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)90 88 70 64(2)=2.5, =78,(xi ﹣)(yi﹣)=﹣48,=5,==﹣9.6, =﹣=102,∴y关于x的线性回归方程是: =﹣9.6x+102;(3)2017年的年份代号是5,当x=5时, =﹣9.6×5+102=54,∴该市2017年3月份的PM2.5指数的平均值的预测值是54μg/m3.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由=,2a+2c=6,a2=b2+c2,联立解出即可得出椭圆C的方程.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,可得λ==﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),代入椭圆方程整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△>0,利用根与系数的关系可得=,•=(x1+1)(x2+1)+y1y2,计算即可得出.【解答】解:(1)∵=,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.∴椭圆C的方程为=1.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,||=3, =, =.•=,则λ===﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),则,整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△=64k4﹣4(4k2+3)(4k2﹣12)=122(1+k2)>0,x 1+x2=,x1x2=.==,=(x1+1,y1),=(x2+1,y2)..• =(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=,则==﹣.综上所述:可得存在常数λ=﹣,使||=λ•恒成立.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,根据f(1)=2,f′(1)=﹣1,求出a,b的值即可;(2)问题转化为(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),求出g(x)的单调区间,从而证出结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f(x)=+b,切点是(1,2),∴f(1)=b=2,f′(x)=,∴f′(1)=a=﹣1,故a=﹣1,b=2;(2)证明:由(1)得:f(x)=+2,f(x)>,∴(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),则g′(x)=(x﹣1)2>0,∴g(x)在(0,1)递增,在(1,+∞)递增,∵g(1)=0,∴g(x)>0⇔x>1,g(x)<0⇔0<x<1,∴x>1时, g(x)>0,0<x<1时, g(x)>0,x>0且x≠1时,(x﹣﹣2lnx)>0,∴当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.【考点】与圆有关的比例线段.【分析】(1)证明AC是⊙O的切线,根据切割线定理可得:AE2=AD•AB.(2)根据切割线定理求出AD,即可求⊙O的半径.【解答】(1)证明:∵过点B作⊙O的切线交AE的延长线于点C,∴∠CBO=∠CBE+∠OBE=90°.∵CE=CB,OE=OB,∴∠CEB=∠CBE,∠OEB=∠OBE,∴∠CEO=∠CEB+∠OEB=∠CBE+∠OBE=90°,∴CE⊥OE,∵OE是⊙O的半径,∴AC是⊙O的切线,根据切割线定理可得AE2=AD•AB.(2)解:∵CE=CB=6,AE=4,∴AC=10,∴AB=8∵AE2=AD•AB,AE=4,∴42=AD•8,∴AD=2,∴BD=8﹣2=6,∴⊙O的半径为3.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,令,即可得出直角坐标方程.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0).kl=1,倾斜角为,可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,设t1与t2为此方程的两个实数根,可得|AB|=|t1﹣t2|=.点G到直线l的距离d.即可得出S△GAB=|BA|•d.【解答】解:(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,∴直角坐标方程为:y2=8x.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0),kl==1,倾斜角为,直角坐标方程为:y=x﹣2.可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,△=128+4×32>0,设t1与t2为此方程的两个实数根,可得:t1+t2=,t1t2=﹣32.∴|AB|=|t1﹣t2|===16.点G到直线l的距离d==2.∴S △GAB=|BA|•d==16.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.【考点】函数的最值及其几何意义.【分析】(1)记g(x)=|x+3|﹣|x﹣1|+5,分类讨论求得g(x)=,从而求值域;(2)由柯西不等式知(a2+b2)(c2+d2)≥(ac+bd)2,从而求取值范围.【解答】解:(1)记g(x)=|x+3|﹣|x﹣1|+5,则g(x)=,故g(x)∈[1,9],故f(x)∈[1,3].(2)由(1)知,a2+b2=1,c2+d2=3,由柯西不等式知,(a2+b2)(c2+d2)≥(ac+bd)2,(当且仅当ad=bc时,取等号;)即(ac+bd)2≤3,故﹣≤ac+bd≤,故ac+bd的取值范围为[﹣,].2016年9月12日。
第 1 页 共 20 页2021年湖南省新高考数学模拟试卷一.选择题(共8小题,满分40分)1.(5分)已知集合A ={x |x 2+2x ﹣8≥0},B ={x |﹣2<x <3},则A ∩B =( ) A .(2,3)B .[2,3)C .[﹣4,2]D .(﹣4,3)2.(5分)设0≤θ<2π,(1+i)22=cosθ+isinθ,则θ的值为( )A .0B .π4C .π2D .π3.(5分)已知角α的终边经过点(3,﹣4),则cos(π2+α)=( ) A .−45B .−35C .35D .454.(5分)已知a =30.9,b =90.44,c =log 28.1,则a ,b ,c 的大小关系为( ) A .b <a <cB .b <c <aC .c <a <bD .c <b <a5.(5分)大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取n =13,则要想算出结果1,共需要经过的运算步数是( ) A .9B .10C .11D .126.(5分)已知实数x ,y 满足x >y >0,且x +y =1,则2x+3y+1x−y的最小值为( ) A .103B .32+√2C .3+2√2D .2√27.(5分)已知数列{a n }满足a 1=12,a n +1=a n +ba n 2(n ∈N *),则下列说法错误的是( ) A .当b =﹣1时,a n >a n +1 B .当b =﹣1时,a n ≤2a n +1 C .当b =2时,a n >3n−14D .当b =2时,a n +1≤2a n8.(5分)已知函数F (x )=(lnx ﹣ax )(e x +b ﹣ax ),若存在实数a 使得函数F (x )<0恒成立,则b 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,2)C .[0,2)D .(﹣2,+∞)二.多选题(共4小题,满分20分,每小题5分)9.(5分)CPI 是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服。
2024年新高考改革适应性练习(3)(九省联考题型)数学试题卷(2024.2.6)考生须知1. 本卷共4页,四大题19小题,满分150分,答题时间120分钟;2. 答题时须在答题卡上填涂所选答案(选择题),或用黑色字迹的签字笔规范书写答案与步骤(非选择题),答在本试题卷上或草稿纸上的答案均属无效;3. 考试结束时,考生须一并上交本试题卷,答题卡与草稿纸.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设样本空间ΩΩ={1,2,…,6}包含等可能的样本点,且AA={1,2,3,4},BB={3,4,5,6},则PP(AABB)= A.13B.14C.15D.162. 若复数zz满足zz2是纯虚数,则|zz−2|的最小值是A.1 B.√2C.2 D.2√23. 算术基本定理告诉我们,任何一个大于1的自然数NN,如果NN不为质数,那么NN可以唯一分解成有限个素因数的乘积的形式.如,60可被分解为 22×31×51,45可被分解为 32×51.任何整除NN的正整数dd都叫作NN的正因数.如,20的正因数有1,2,4,5,10,20.则4200的正因数个数是A.4 B.7 C.42 D.484. 已知点(aa,bb)在直线 2xx+yy−1=0 第一象限的图像上,则1aa+1bb的最小值是A.3+2√2B.2+2√2C.1+2√2D.2√25. 已知函数ff(xx)=sin xx,gg(xx)=cos xx,则ff�gg(xx)�和gg�ff(xx)�都单调递增的一个区间是A.�2ππ5,4ππ5�B.�4ππ5,6ππ5�C.�6ππ5,8ππ5�D.�8ππ5,2ππ�6. 已知直线ll过点(2,1),且与两坐标轴围成的三角形的面积是6,则满足条件的直线ll共有A.1条B.2条C.3条D.4条7. 我们记ff(nn)(xx)为函数ff(xx)的nn次迭代,即ff(1)(xx)=ff(xx),ff(2)(xx)=ff�ff(xx)�,…,ff(nn)= ff�ff(nn−1)(xx)�.已知函数gg(xx)=xx|xx|,则gg(2024)(xx)=A.xx3|xx|2021B.xx4|xx|2020C.xx2|xx|2022D.xx20248. 若一四面体恰有一条长度大于1的棱,则这个四面体体积的最大值是A.√33B.12C.13D.√22二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.)9. 已知函数ff(xx)=xx3−2xx,下列说法正确的是A.函数gg(xx)=ff(xx)+ff′(xx)无零点B.直线 2xx+yy=0 与yy=ff(xx)相切C.存在无数个aa>0 ,ff(xx)在区间(−aa,aa)上不单调D.存在mm>0 ,使得对于任意nn,ff(nn)≤ff(nn+mm)10. 若一个人一次仅能爬1级或2级台阶,记aa nn为爬nn级台阶时不同的爬法数(nn∈NN∗).关于数列{aa nn},下列说法正确的是A.函数ff(nn)=aa nn单调递增B.aa1+aa3+aa5的值为12C.aa1+aa2+⋯+aa10=232D.2aa12+aa22+⋯+aa102=89×14411. 如右图,已知抛物线CC的焦点为FF,准线方程为ll:xx=−1 ,点PP是CC上的一动点.过点PP作ll的垂线,垂足为QQ.过点PP作CC的切线,该切线与xx,yy轴分别交于AA,BB两个不同的点.下列说法正确的是A.抛物线CC的标准方程为yy2=2xxB.QQ,BB,FF三点共线当且仅当|PPFF|=4C.当|PPFF|≠1 时,都有PPAA⊥QQFFD.当|PPFF|≠1 时,△PPAAFF恒为等腰三角形三、填空题(本题共3小题,每小题5分,共15分.)12. 在棱长为1的正方体AABBCCAA−AA1BB1CC1AA1中,三棱锥CC−AABB1AA1的体积是_________.13. 从集合{xx|−4≤xx≤2024}中任选2个不同的非零整数作为二次函数ff(xx)=aaxx2+bbxx的系数,则所有满足ff(xx)的顶点在第一象限或第三象限的有序数对(aa,bb)共有_________组.14. 已知向量aa,bb,cc满足aa+bb+cc=00,(aa−bb)⊥(aa−cc),|bb−cc|=3 ,则|aa|+|bb|+|cc|的最大值是_________.四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)已知正方体AABBCCAA−AA1BB1CC1AA1.(1)证明:AAAA1⊥AA1CC;(2)求二面角BB−AA1CC−AA.16.(15分)已知定义在RR上的函数ff(xx)=aaxx4+bbxx3+ccxx2+ddxx(aa≠0).(1)若原点是ff(xx)的一个极值点,证明:ff(xx)的所有零点也是其所有极值点;(2)若ff(xx)的4个零点成公差为2的等差数列,求ff′(xx)的最大零点与最小零点之差.17.(15分)设点SS(1,1)在椭圆CC:xx2aa2+yy2bb2=1(aa>bb>0)内,直线ll:bb2xx2+aa2yy2−aa2bb2=0 .(1)求ll与CC的交点个数;(2)设PP为ll PPSS与CC相交于MM,NN两点.给出下列命题:①存在点PP,使得1|PPPP|,1|PPPP|,1|PPPP|成等差数列;②存在点PP,使得|PPMM|,|PPSS|,|PPNN|成等差数列;③存在点PP,使得|PPMM|,|PPSS|,|PPNN|成等比数列;请从以上三个命题中选择一个,证明该命题为假命题.(若选择多个命题分别作答,则按所做的第一个计分.)18.(17分)2024部分省市的高考数学推行8道单选,3道多选的新题型政策.单选题每题5分,选错不得分,多选题每题完全选对6分,部分选对部分分(此处直接视作3分),不选得0分.现有小李和小周参与一场新高考数学题,小李的试卷正常,而小周的试卷选择题是被打乱的,所以他11题均认为是单选题来做.假设两人选对一个单选题的概率都是14,且已知这四个多选题都只有两个正确答案.(1)记小周选择题最终得分为XX,求EE(XX).(2)假设小李遇到三个多选题时,每个题他只能判断有一个选项是正确的,且小李也只会再选1个选项,假设他选对剩下1个选项的概率是 pp 0�pp 0≥13� ,请你帮小李制定回答4个多选题的策略,使得分最高.19.(17分)信息论之父香农(Shannon )在1948年发表的论文“通信的数学理论”中指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关.香农借鉴了热力学的概念,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式.设随机变量 XX 所有取值为 1,2,…,nn ,且 PP (xx =ii )=PP ii >0(ii =1,2,…,nn ),PP 1+PP 2+⋯+PP nn =1 ,定义 XX 的信息熵HH (XX )=−�PP ii log 2PP ii nn ii=1(1)当 nn =1 时,求 HH (XX ) 的值;(2)当 nn =2 时,若 PP 1∈�0,12� ,探究 HH (XX ) 与 PP 1 的关系,并说明理由; (3)若 PP 1=PP 2=12nn−1 ,PP kk+1=2PP kk (kk =2,3,⋯,nn ) ,求此时的信息熵 HH (XX ) .2024年新高考改革适应性练习(3)(九省联考题型)数学参考答案一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)题号 1 2 3 4 5 6 7 8 答案 A B D A D D B C二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对一个得3分;若只有3个正确选项,每选对一个得2分.具体得分如【附】评分表.)题号91011答案BC ABD BCD【附】评分表三、填空题(本题共3小题,每小题5分,共15分.)题号121314答案132023×2024+4×2024(或 2027×2024)3+3√10四、解答题(本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.)15.(13分)以点AA1为坐标原点,AA1BB1���������⃗为xx轴正方向,AA1DD1����������⃗为yy轴正方向,AA1AA�������⃗为zz轴正方向,建立空间直角坐标系OOxxyyzz,并令正方体AABBAADD−AA1BB1AA1DD1的棱长为1.(1)则AA1(0,0,0),AA(1,−1,1),AA1AA�������⃗=(1,−1,1);AA(0,0,1),DD1(0,−1,0),AADD1�������⃗=(0,−1,−1).所以AADD1�������⃗·AA1AA�������⃗=0+1+(−1)=0 ,即AADD1�������⃗⊥AA1AA�������⃗.故AADD1⊥AA1AA得证.(2)BB(1,0,1),AA1BB�������⃗=(1,0,1),由(1)得AA1AA�������⃗=(1,−1,1),设平面AA1BBAA的一个法向量nn11=(xx1,yy1,zz1),则nn11·AA1BB�������⃗=nn11·AA1AA�������⃗=0 ,即�xx1+zz1=0xx1−yy1+zz1=0令xx1=1 ,则�yy1=0zz1=−1,所以nn11=(1,0,−1)是平面AA1BBAA的一个法向量.同理可求得平面AA1AADD的一个法向量nn22=(0,1,1),cos<nn11,nn22>=nn11·nn22|nn11|·|nn22|=−12又 <nn11,nn22>∈(0,ππ),所以 <nn11,nn22>=2ππ3,即平面AA1BBAA与平面AA1AADD的所成角为2ππ3.故二面角BB−AA1AA−DD的大小为2ππ3.16.(15分)(1)ff(xx)=aaxx4+bbxx3+ccxx2+ddxx,ff′(xx)=aaxx3+bbxx2+ccxx+dd,由题意,原点是ff(xx)的一个极值点,即ff′(0)=0 ,代入得dd=0 ,所以ff(xx)=aaxx4+bbxx3+ccxx2=xx2(aaxx2+bbxx+cc),ff′(xx)=aaxx3+bbxx2+ccxx=xx(aaxx2+bbxx+cc),所以ff(xx)和ff′(xx)的零点(0除外)都是方程aaxx2+bbxx+cc=0 的根,即ff(xx)和ff′(xx)有共同零点,故ff(xx)的所有零点也是其所有极值点.(2)设ff(xx)的四个零点分别为mm−3 ,mm−1 ,mm+1 ,mm+3 ,则可以设ff(xx)=kk(xx−mm+3)(xx−mm+1)(xx−mm−1)(xx−mm−3)其中kk≠0 ,令tt=xx−mm,则ff(xx)=kk(tt+3)(tt+1)(tt−1)(tt−3)=kk(tt4−10tt+9)=gg(tt)gg′(tt)=kk(4tt3−20tt)=4kk(tt3−5tt)令gg′(tt)=0 得tt1=−√5 ,tt=0 ,tt=√5 ,所以 ff ′(xx )=0 的所有根为 xx 1=mm −√5 ,xx 2=mm ,xx 3=mm +√5 ,所以 ff ′(xx ) 的最大零点与最小零点之差为 |xx 3−xx 1|=2√5 .17.(15分)(1)因为点 SS (1,1) 在 AA 内,所以 1aa 2+1bb 2<1 ,即 aa 2+bb 2−aa 2bb 2<0 . 联立 ll 与 AA 的方程,得 bb 2(aa 2+bb 2)xx 2−2aa 2bb 4xx +aa 4bb 2(bb 2−1)=0 . 判别式 Δ=4aa 4bb 8−4aa 4bb 4(aa 2+bb 2)(bb 2−1)=4aa 4bb 4(aa 2+bb 2−aa 2bb 2)<0 ,故该二次方程无解,即 ll 与 AA 交点个数为0.(2)可选择命题②或命题③(命题①无法证伪),证明其为假命题. 记点 PP ,MM ,NN 的横坐标分别为 xx PP ,xx MM ,xx NN ,不妨设 PP ,MM ,SS ,NN 顺次排列.选择命题②的证明:当直线 MMNN 的斜率不存在时,MMNN :xx =1 ,分别与 ll ,AA 的方程联立可得 PP �1,bb 2−bb 2aa 2� ,MM �1,bb�1−1aa 2�,NN �1,−bb�1−1aa 2� . 若 |PPMM |,|PPSS |,|PPNN | 依次成等差数列,则 bb�1−1aa 2+�−bb�1−1aa 2�=2 ,显然矛盾,不满足题意.当直线 MMNN 的斜率存在时,设其斜率为 kk ,则 MMNN :yy =kk (xx −1)+1 ,与 ll 的方程联立可得 xx PP =aa 2�bb 2+kk−1�aa 2kk+bb 2;与 AA 的方程联立,得 (aa 2kk 2+bb 2)xx 2−2aa 2kk (kk −1)xx +aa 2[(kk −1)2−bb 2]=0 ,由韦达定理⎩⎨⎧xx MM +xx NN =2aa 2kk (kk −1)aa 2kk 2+bb 2xx MM xx NN =aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2则 2|PPSS |−(|PPMM |+|PPNN |)=√1+kk 2(2|xx PP −1|−|xx MM −xx PP |−|xx NN −xx PP |) . 不妨设 xx PP >1 ,则 xx PP >xx MM >1>xx NN , 所以原式=�1+kk 2[2(xx PP −1)−(xx PP −xx MM )−(xx PP −xx NN )]=�1+kk 2(xx MM +xx NN −2)=�1+kk 2⋅−2aa 2kk −2bb 2aa 2kk 2+bb 2<0因此 |PPMM |,|PPSS |,|PPNN | 不能成等差数列,从而②是假命题.选择命题③的证明:当直线 MMNN 的斜率不存在时,MMNN :xx =1 ,分别与 ll ,AA 的方程联立可得 PP �1,bb 2−bb 2aa 2� ,MM �1,bb�1−1aa 2�,NN �1,−bb�1−1aa 2�. 若|PPMM |,|PPSS |,|PPNN |成等比数列,则��bb 2−bb 2aa 2�−bb �1−1aa 2�×��bb 2−bb 2aa 2�+bb �1−1aa 2�=��bb 2−bb 2aa2�−1�2即 aa 2+aa 2bb 2−bb 2=0 ,但 aa 2bb 2>aa 2+bb 2 ,因此 aa 2+aa 2bb 2−bb 2>2aa 2>0 ,矛盾,不满足题意.当直线 MMNN 的斜率存在时,设其斜率为 kk ,则 MMNN :yy =kk (xx −1)+1 ,与 ll 的方程联立可得 xx PP =aa 2�bb 2+kk−1�aa 2kk+bb 2;与 AA 的方程联立,得 (aa 2kk 2+bb 2)xx 2−2aa 2kk (kk −1)xx +aa 2[(kk −1)2−bb 2]=0 ,由韦达定理,⎩⎨⎧xx MM +xx NN =2aa 2kk (kk −1)aa 2kk 2+bb 2xx MM xx NN =aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2则|PPSS |2−|PPMM |⋅|PPNN |=�1+kk 2[(xx PP −1)2−(xx PP −xx MM )(xx PP −xx NN )] =�1+kk 2[(xx MM +xx NN −2)xx PP +1−xx MM xx NN ]=�1+kk 2��2aa 2kk (kk −1)aa 2kk 2+bb 2−1�⋅aa 2(bb 2+kk −1)aa 2kk +bb 2+1−aa 2[(kk −1)2−bb 2]aa 2kk 2+bb 2�=√1+kk 2aa 2kk 2+bb 2(aa 2+bb 2−aa 2bb 2)<0 因此 |PPMM |,|PPSS |,|PPNN | 不能成等比数列,故③是假命题.18.(17分)(1)由题意,对于单选题,小周每个单选题做对的概率为 14 , 对于多选题,小周每个多选题做对的概率为 12,设小周做对单选题的个数为 XX 1 ,做对多选题的个数为 XX 2 , 则XX 1∼BB �8,1�,XX 2∼BB �3,1� ,所以EE(XX1)=8×14=2 ,EE(XX1)=3×12=32,而小周选择题最终得分为XX=5XX1+3XX2,所以EE(XX)=5EE(XX1)+3EE(XX2)=5×2+3×32=292.(2)由题意他能判断一个选项正确,先把这个正确选项选上,如果他不继续选其他选项肯定能得三分,如果他继续选其它选项的话,设此时他的最终得分为XX3,则XX3的所有可能取值为0,6,则XX3的分布列为:XX30 6PP(XX3)1−pp0pp0那么这个题的得分期望是EE(XX3)=0×(1−pp0)+6pp0=6pp0,�pp0≥13�所以我们只需要比较3和 6pp0的大小关系即可,令 6pp0≥3,解得12≤pp0<1 ,此时四个多选题全部选两个选项得分要高,反之,若13≤pp0<12,此时四个多选只选他确定的那个选项得分最高.19.(17分)(1)若nn=1 ,则ii=1 ,PP1=1 ,因此HH(xx)=−(1×log21)=0 .(2)HH(XX)与PP1正相关,理由如下:当nn=2 时,PP1∈�0,12�,HH(xx)=−PP1log2PP1−(1−PP1)log2(1−PP1)令ff(tt)=−tt log2tt−(1−tt)log2(1−tt),其中tt∈�0,12�,则ff′(tt)=−log2tt+log2(1−tt)=log2�1tt−1�>0所以函数ff(tt)在�0,12�上单调递增,所以HH(xx)与PP1正相关.(3)因为PP1=PP2=12nn−1,PP kk+1=2PP kk(kk=2,3,⋯,nn),所以PP kk =PP 2⋅2kk−2=2kk−22nn−1=12nn−kk+1 (kk =2,3,⋯,nn ) 故PP kk log 2PP kk =12nn−kk+1log 212nn−kk+1=−nn −kk +12nn−kk+1而PP 1log 2PP 1=12nn−1log 212nn−1=−nn −12nn−1于是HH (XX )=nn −12nn−1+�PP kk log 2PP kk nnkk=2=nn −12nn−1+nn −12nn−1+nn −22nn−2+⋯+222+12整理得HH (XX )=nn −12nn−1−nn 2nn +nn 2nn +nn −12nn−1+nn −22nn−2+⋯+222+12 令SS nn =12+222+323+⋯+nn −12nn−1+nn2nn 则12SS nn =122+223+324+⋯+nn −12nn +nn 2nn+1 两式相减得12SS nn =12+122+123+⋯+12nn −nn 2nn+1=1−nn +22nn+1 因此 SS nn =2−nn+22nn, 所以 HH (XX )=nn−12nn−1−nn 2nn+SS nn =nn−12nn−1−nn 2nn+2−nn+22nn=2−12nn−2.。
2021高考数学全真模拟卷(山东高考专用)第三模拟(试卷满分150分,考试用时120分钟)姓名_____________ 班级_________ 考号_______________________ 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合(){}22,2,,A x y x y x Z y Z =+≤∈∈,(){},10B x y x =+>,则A B 的元素个数为( ) A .9B .8C .6D .5 2.复数35(1i z i+=+i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.世界华商大会的某分会场有,,A B C ,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数( )A .12种B .10种C .8种D .6种4.魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可得到sin3︒的近似值为( )(π取近似值3.14)A .30πB .60πC .90πD .120π 5.函数4x x x y e e-=+的图象大致是( ) A . B . C . D .6.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.”题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.如果墙足够厚,第n 天后大老鼠打洞的总进度是小老鼠的4倍,则n 的值为( )A .5B .4C .3D .27.已知双曲线C :22221x y a b-=(a >0,b >0)的右焦点为F ,点A ,B 分别为双曲线的左,右顶点,以AB 为直径的圆与双曲线C 的两条渐近线在第一,二象限分别交于P ,Q 两点,若OQ ∥PF (O 为坐标原点),则该双曲线的离心率为( )A 5B .2C 3D 28.如图所示,四棱锥P ABCD -中,四边形ABCD 为矩形,平面PAD ⊥平面ABCD .若90BPC ∠=,2PB =2PC =,则四棱锥P ABCD -的体积最大值为( )A.612B.610C.26D.65二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法错误的是()A .私人类电动汽车充电桩保有量增长率最高的年份是2018年B .公共类电动汽车充电桩保有量的中位数是25.7万台C .公共类电动汽车充电桩保有量的平均数为23.12万台D .从2017年开始,我国私人类电动汽车充电桩占比均超过50%10.下列命题为真命题的是( ).A .若a b >,则11b a >B .若0a b >>,0c d <<,则a b d c< C .若0a b >>,且0c <,则22c c a b > D .若a b >,且11a b>,则0ab < 11.将函数cos 2y x =的图象上所有点向左平移π6个单位长度,再向上平移4个单位长度,得到函数()y f x =的图象,则( )A .()f x 的图象的对称轴方程为()ππ62k x k Z =-+∈ B .()f x 的图象的对称中心坐标为()ππ,0212k k ⎛⎫+∈ ⎪⎝⎭ZC .()f x 的单调递增区间为()2πππ,π36k k k ⎡⎫-+-+∈⎪⎢⎣⎭Z D .()f x 的单调递减区间为()π2ππ,π63k k k Z ⎡⎤++∈⎢⎥⎣⎦ 12.在正三棱锥A BCD -中,侧棱长为3,底面边长为2,E ,F 分别为棱AB ,CD 的中点,则下列命题正确的是( )A .EF 与AD 所成角的正切值为32B .EF 与AD 所成角的正切值为23C .AB 与面ACD 所成角的余弦值为7212 D .AB 与面ACD 所成角的余弦值为79三、填空题:本题共4小题,每小题5分,共20分13.已知()1,3a =-,()1,b t =,若()2a b a -⊥,则a 与b 的夹角为________.14.已知等差数列{}n a 的前n 项和为n S .若19a =,公差2d =-,则n S 的最大值为_______. 15.如图,直三棱柱111ABC A B C -中,90CAB ∠=︒,2AC AB ==,12CC =,P 是1BC 的中点,则三棱锥11C A C P -的体积为________.16.过点1(1,)2P -作圆221x y +=的切线l ,已知A ,B 分别为切点,直线AB 恰好经过椭圆的右焦点和。