传送带问题解题技巧
- 格式:docx
- 大小:215.99 KB
- 文档页数:7
牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。
传送带问题的处理方法1.抓好一个力的分析——摩擦力对于传送带问题,分析物体受到的是滑动摩擦力还是静摩擦力,以及摩擦力的方向,是问题的要害。
分析摩擦力时,先要明确“相对运动”,而不是“绝对运动”。
二者达到“共速”的瞬间,是摩擦力发生“突变”的“临界状态”。
如果遇到水平匀变速的传送带,或者倾斜传送带,还要根据牛顿第二定律判断“共速”后的下一时刻物体受到的是滑动摩擦力还是静摩擦力。
2.注意三个状态的分析——初态、共速、末态典例1(2021·辽宁卷)机场地勤工作人员利用传送带从飞机上卸行李。
如图所示,以恒定速率v 1=0.6m/s 运行的传送带与水平面间的夹角37α=︒,转轴间距L =3.95m 。
工作人员沿传送方向以速度v 2=1.6m/s 从传送带顶端推下一件小包裹(可视为质点)。
小包裹与传送带间的动摩擦因数μ=0.8。
取重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)小包裹相对传送带滑动时加速度的大小a ;(2)小包裹通过传送带所需的时间t 。
思维点拨:分析包裹所受摩擦力时,先要明确包裹“相对运动”—— 包裹的速度2v 大于传动带的速度1v ,所以小包裹受到传送带的摩擦力沿传动带向上,然后根据牛顿第二定律列方程求解。
【解析】(1)小包裹的速度2v 大于传动带的速度1v ,所以小包裹受到传送带的摩擦力沿传动带向上,根据牛顿第二定律可知cos sin mg mg ma μθθ-=解得20.4m/s a =(2)根据(1)可知小包裹开始阶段在传动带上做匀减速直线运动,用时121 1.60.6s 2.5s 0.4v v t a --=== 在传动带上滑动的距离为1211 1.60.6 2.5 2.75m 22v v x t ++==⨯= 因为小包裹所受滑动摩擦力大于重力沿传动带方向上的分力,即cos sin mg mg μθθ>,所以小包裹与传动带共速后做匀速直线运动至传送带底端,匀速运动的时间为121 3.95 2.75s 2s 0.6L x t v --=== 所以小包裹通过传送带的时间为12 4.5s =+=t t t【答案】(1)20.4m/s ;(2)4.5s【变式训练】1.(2022·北京丰台·高三期末)传送带在实际生活中有广泛应用。
传送带问题解题技巧总结
当解决传送带问题时,有几个关键的技巧可以帮助你更好地理
解和解决问题:
1. 确定问题类型,首先要明确问题是关于单向传送带还是双向
传送带,以及传送带上物体的运动方向和速度等。
这有助于建立问
题的数学模型。
2. 建立数学模型,根据问题描述,建立传送带上物体的运动模型,通常可以使用速度、时间、距离等物理量来描述问题。
3. 使用图示辅助理解,画出传送带和物体的图示,有助于直观
理解问题,特别是对于双向传送带或多个物体同时运动的情况。
4. 利用相对速度概念,在双向传送带问题中,通常需要使用相
对速度的概念来分析物体之间的相对运动情况,这有助于简化问题
的处理。
5. 考虑边界条件,在解决传送带问题时,要考虑传送带的长度、物体的起始位置和终止位置等边界条件,这有助于避免遗漏特殊情
况。
6. 小心处理时间因素,在问题中通常涉及到时间因素,要仔细
考虑物体在传送带上的运动时间,以及不同物体之间的相对时间关系。
综上所述,解决传送带问题需要综合运用数学建模、图示辅助、相对速度概念等技巧,同时要注意边界条件和时间因素,以全面而
严谨的方式解决问题。
传送带问题解题方法及探讨在现代化工厂及日常生活中,传送带的应用随处可见,有关传送带问题的题目也能考查学生对力学知识的综合运用能力。
因此这类问题常能出现在高考题中,其中涉及的主要知识点有:1、对物体进行受力分析,特别是摩擦力方向的判断2、运动学和动力学的相关知识,如:相对静止,相对运动,运动的位移、速度的相对性、匀变速直线运动的特点,牛顿的三个定律等等,甚至于涉及功能关系。
因此,解决传送带问题要特别注重物理过程的理解和分析,关键是对传送带上的随行物进行分析。
抓住接触面的摩擦因数,两个相对运动,及随行物速度与传递带速度的比较,这三者往往作为讨论摩擦力存在与否,摩擦力大小及方向的关键因数。
一、日常生活中的传送带类型常有两大类1、水平方向匀速运转的传送带,包括顺时方向转动和逆时方向转动2、倾斜的传送带中有顺时针方向转动和逆时针方向转动两类传送带的转动速度大小一般恒定,不受外界干扰,传送带上的物块一般与传送带之间有较大的摩擦因数。
放在传送带上的物体一般为无初速释放,当然在工厂生产流水线上,有些物体是以一定初速度释放的,也不得不引起重视。
二、解决传送带问题的基本方法对物体受力情况进行正确分析,分清摩擦力的方向,摩擦力的突变。
解题要对传送带上的物体在各运动阶段受力情况分析清楚①传送带与物体相对静止,两者间的摩擦力为恒定的静摩擦力或为零;②找到摩擦力突变的临界点,当V 物=V 带时刻,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零或滑动摩擦力的方向发生改变等。
例1:水平传送带A 、B 以V=4m/s 的速度匀速运动,如图所示,A 、B 相距16m ;一木块(可视为质点)以A 点由静止释放,木块与传送带间的动摩擦因数u=0.2则木块从A 沿传送带运动到B 所需的时间为多少?(g=10m/s 2)物块在传送带上若能留下滑痕,其滑痕在物块那一侧?滑痕长度为多少?解析,物体无初速释放即相对地的速度为零,而传送带相对地面向右运动,因此物块相对传送带向左运动,所受滑动摩擦力方向向右,释放后物块做匀加速运动,当物块速度与传送带速度相等时,物块不再受滑动摩擦力作用,以后做匀速直线运动,以物块为研究对象进行受力分析。
16传送带问题及处理方法一、传送带问题1.传送带:物体在传送带上运动2.传送带题型(1)传送带水平放置(2)传送带倾斜放置二、处理方法1.摩擦力的分析是此类型题目的突破点,一定要分清静摩擦还是滑动摩擦,弄清楚摩擦力的方向;当物体速度与皮带速度一样(大小方向均相同)时,往往是摩擦力的突变位置,此位置的分析是解题的关键点。
2.传送带水平放置例1.水平方向的传送带以v=2m/s的速度匀速运转,A、B两端间距10m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
3.传送带水平放置例2.如图所示,传送带与水平面的夹角θ=37°,传送带以10m/s的速度逆时针转动。
在传送带上端的A点放一质量为0.5kg的小物体,它与传送带之间的摩擦系数为0.5。
若传送带的长度为16m,则物体由A运动到B所用的时间。
练习题1.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距10m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
2.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距9m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
3.水平方向的传送带以v=6m/s的速度匀速运转,A、B两端间距4m,将质量为m的零件轻轻放在传送带的A端,物体与传送带之间动摩擦因数为0.2,求物体从A端运动到B端所用的时间。
4.如图所示,在竖直平面有一个光滑的圆弧轨道MN ,其下端(即N 端)与表面粗糙的水平传送带左端相切,轨道N 端与传送带左端的距离可忽略不计。
当传送带不动时,将一质量为m 的小物块(可视为质点)从光滑轨道上的P 位置由静止释放,小物块以速度v 1滑上传送带,从它到达传送带左端开始计时,经过时间t 1,小物块落到水平地面的Q 点;若传送带以恒定速率v 2沿逆时针方向运行,仍将小物块从光滑轨道上的P 位置由静止释放,同样从小物块到达传送带左端开始计时,经过时间t 2,小物块落至水平地面。
传送带问题传送带问题是高中物理习题中较为常见的一类问题,因其涉及的知识点较多(力的分析、运动的分析、牛顿运动定律、功能关系等),包含的物理过程比较复杂,所以这类问题往往是习题教学的难点,也是高考考查的一个热点。
下面以一道传送带习题及其变式题为例,谈谈这类题目的解题思路和突破策略。
题目? 如图1所示,水平传送带以5m/s的恒定速度运动,传送带长l=7.5m,今在其左端A将一工件轻轻放在上面,工件被带动,传送到右端B,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A运动到右端B?(取g=10m/s2)解析? 工件被轻轻放在传送带左端,意味着工件对地初速度v0=0,但由于传送带对地面以v=5m/s向右匀速运动,所以工件相对传送带向左运动,故工件受水平向右的滑动摩擦力作用,即:F f=μF N=μmg。
依牛顿第二定律,工件加速度m/s2,a为一恒量,工件做初速度为零的匀加速直线运动,当工件速度等于传送带速度时,摩擦力消失,与传送带保持相对静止,一起向右做匀速运动,速度为v=5m/s。
工件做匀加速运动的时间s,工件做匀加速运动的位移m。
由于x1<l=7.5m,所以工件1s后做匀速运动,匀速运动的时间s。
因此,工件从左端运动到右端的时间:t=t1+t2=2s。
变式一? 若传送带长l=2.5m,则工件从左端A运动到右端B一直做匀加速运动,依有:s。
变式二? 若工件以对地速度v0=5m/s滑上传送带,则工件相对传送带无运动趋势,工件与传送带间无摩擦力,所以工件做匀速运动,工件运动时间s。
变式三? 若工件以速度v0=7m/s滑上传送带,由于工件相对传送带向右运动,工件受滑动摩擦力水平向左,如图2所示。
工件做匀减速运动,当工件速度等于传送带速度后,二者之间摩擦力消失,工件随传送带一起匀速运动。
工件做匀减速运动时间s工件做匀减速运动的位移m工件做匀速运动的时间s所以工件由左端A到右端B的时间t=t1+t2=1.42s。
传送带中的能量转化问题解题技巧A点到C点的时间为t,由匀加速直线运动公式可得:s = 1/2at^2 + vt其中v为物体在A点的初始速度,由于是无初速下滑,所以v = 0.代入题目数据可得:5 = 1/2at^2 + 0t = sqrt(10/a)由于BC段物体与传送带不打滑,所以物体在BC段的加速度为g - μg,代入上式可得:5 = 1/2(g - μg)t^2a = (g - μg)/2 = 2.45m/s^2物体在BC段的速度为v_BC = at = 7.78m/s,由此可得BC 段的长度为:s = v_BC * t = 19.4m2)物体以最短时间到达C点时,BC段的长度为最短,即BC段的长度为19.4m。
轮子转动的角速度大小为v_BC/r,代入题目数据可得:v_BC/r = 7.78rad/s3)物体与传送带系统增加的内能为动能转化为热能和摩擦产生的热能之和。
物体在BC段失去的重力势能全部转化为动能,即:E_k = mgh = 49J由于物体与传送带之间有摩擦,所以会产生热能,热能的大小为:Q = μmgd = 9.8J因此,物体与传送带系统增加的内能为:E = E_k + Q = 58.8J联解③、④得到:v' = 2gμL由①、⑤联解得到:v = at其中,S1为木块从A运动到B相对皮带的位移,公式为S1 = L + vt,其中v为初速度,L为A点到B点的距离。
木块开始向左做匀加速运动,到停止滑动所经历的时间为t2,这段时间内木块相对皮带发生相对位移S2,公式为S2 = v2/2gμ,其中v为匀加速运动的末速度。
全过程中产生最大热量Q为:Q = (M+m)gμ(S1+S2) = (v+2gμL)²/2gμ解答此题时应注意:第一问按常规的完全非弹性碰撞模型处理即可;v < 2gμL的含义是木块不会从皮带上滑出;第二问属于临界问题,要使系统产生的热量最多,意味着要使块和皮带之间的相对位移最大;求相对位移和相对速度时,同向相减,反向相加。
③人对传送带做功的功率为m2gV④人对传送带做功的功率为(m1+m2)gV⑤传送带对人做功的功率为m1gVA.①B②④C②③D①⑤3.物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图所示,再把物块放在P点自由滑下则﹝同例1的图﹞A.物块将仍落在Q点B.物块将会落在Q点的左边C.物块将会落在Q点的右边D.物块有可能落不到地面上4.如图所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向运动,传送带右端有一与传送带等高的光滑水平面,物体以恒定的速率v2沿直线向左滑上传送带后,经过一段时间又返回光滑水平面上,这时速率为v2',则下列说法正确的A若v1<v2,则v2/=v1B若v1>v2,则v2/=v2C不管v2多大,总有v2/=v2D只有v1=v2时,才有v2/=v15.如图所示,传送带与地面间的夹角为370,AB间传动带长度为16m,传送带以10m/s的速度逆时针匀速转动,在传送带顶端A无初速地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5,则物体由A运动到B所需时间为(g=10m/s2 sin370=0.6)﹝同第1题的图﹞A.1s B.2s C.4s D.4√5/56.如图所示,传送带向右上方匀速转动,石块从漏斗里竖直掉落到传送带上,下述说法中正确的是:A.石块落到传送带上可能先作加速运动后作匀速运动B.石块在传送带上一直受到向右上方的摩擦力作用C.石块在传送带上一直受到向右下方的摩擦力作用D.开始时石块受到向右上方的摩擦力后来不受摩擦力7.如图所示,皮带传动装置的两轮间距L=8m,轮半径r=0.2m,皮带呈水平方向,离地面高度H=0.8m,一物体以初速度v0=10m/s从平台上冲上皮带,物体与皮带间动摩擦因数μ=0.6,(g=10m/s2)求:(1)皮带静止时,物体平抛的水平位移多大?(2)若皮带逆时针转动,轮子角速度为72rad/s,物体平抛的水平位移多大?(3)若皮带顺时针转动,轮子角速度为72rad/s,物体平抛的水平位移多大?8.如图所示是长度为L=8.0m水平传送带,其皮带轮的半径为R=0.20m,传送带上部距地面的高度为h=0.45m。
传送带问题解题技巧
Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998
传送带问题
传送带问题是高中物理习题中较为常见的一类问题,因其涉及的知识点较多(力的分析、运动的分析、牛顿运动定律、功能关系等),包含的物理过程比较复杂,所以这类问题往往是习题教学的难点,也是高考考查的一个热点。
下面以一道传送带习题及其变式题为例,谈谈这类题目的解题思路和突破策略。
题目如图1所示,水平传送带以5m/s的恒定速度运动,传送带长
l=7.5m,今在其左端A将一工件轻轻放在上面,工件被带动,传送到右端B,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A运动到右端B(取g=10m/s2)
解析工件被轻轻放在传送带左端,意味着工件对地初速度v0=0,但由于传送带对地面以v=5m/s向右匀速运动,所以工件相对传送带向左运动,故工件受水平向右的滑动摩擦力作用,即:F f=μF N=μmg。
依牛顿第二定律,工件加速度m/s2,a为一恒量,工件做初速度为零的匀加速直线运动,当工件速度等于传送带速度时,摩擦力消失,与传送带保持相对静止,一起向右做匀速运动,速度为v=5m/s。
工件做匀加速运动的时间s,工件做匀加速运动的位移
m。
由于x1<l=7.5m,所以工件1s后做匀速运动,匀速运动的时间
s。
因此,工件从左端运动到右端的时间:t=t1+t2=2s。
变式一若传送带长l=2.5m,则工件从左端A运动到右端B一直做匀加速
运动,依有:s。
变式二若工件以对地速度v0=5m/s滑上传送带,则工件相对传送带无运动趋势,工件与传送带间无摩擦力,所以工件做匀速运动,工件运动时间
s。
变式三若工件以速度v0=7m/s滑上传送带,由于工件相对传送带向右运动,工件受滑动摩擦力水平向左,如图2所示。
工件做匀减速运动,当工件速度等于传送带速度后,二者之间摩擦力消失,工件随传送带一起匀速运动。
工件做匀减速运动时间s
工件做匀减速运动的位移m
工件做匀速运动的时间s
所以工件由左端A到右端B的时间t=t1+t2=1.42s。
变式四若工件以v0=3m/s速度滑上传送带,由于v0<v,工件先匀加速运动,后匀速运动。
工件匀加速运动的时间s
工件做匀加速运动的位移m
工件做匀速运动的时间s
所以工件由左端A到右端B的时间t=t1+t2=1.58s。
变式五本题若传送带与水平面间倾角θ=37,如图3所示,其他条件不变,那么工件由A滑到B时间为多少呢
首先应比较动摩擦因数μ与tanθ的大小,由于μ=0.4,tanθ=0.75,所以μ<tanθ,即μmgcosθ<mgsinθ,故工件一定沿传送带相对地向下滑。
当工件刚放在左上端A时,工件相对传送带向上运动,工件受的滑动摩擦力沿传送带向下,工件做匀加速运动的加速度
即a1=gsinθ+μgcosθ=10m/s2
工件与传送带速度相等的时间s
在0.5s内工件的位移m
随后,工件不会像传送带水平放置那样,工件与传送带一起匀速运动,而是沿传送带加速向下滑动,当工件速度超过传送带速度时,工件所受滑动摩擦力沿传送带斜面向上,如图4所示,工件的加速度即a
=gsinθ-μgcosθ=2m/s2
2
工件以2m/s2加速度运行的位移x2=l-x1=6.25m
设这段位移所需时间为t2,依有
解得:,(舍去)
故工件由A到B的时间t=t1+t2=1.5s。
变式六当传送带以5m/s速度向上运动时,如图5所示,工件相对传送带向下运动,所以工件所受滑动摩擦力方向始终沿传送带向上,工件一直向下匀加速运动,工件的加速度
依,有
故工件由A到B的时间t=2.7s。
变式七本题若求工件在传送带上滑过的痕迹长L是多少
由题意可知:痕迹长等于工件相对传送带滑过的距离。
依几何关系:痕迹长L=传送带对地的距离x-工件对地的距离x1;工件匀加速运动的时间内传送带匀速运动的位移x1;工件匀加速运动的位移即L=vt1-x
=(5×1-2.5)m=2.5m。
1
变式八如图6所示,水平传送带AB长l=8.3m,质量为M=1kg的木块随传送带一起以v1=2m/s的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因μ=0.5.当木块运动至最左端A点时,一颗质量为
m=20g的子弹以v
=300m/s水平向右的速度正对射入木块并穿出,穿出速度
v=50m/s,以后每隔1s就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g取10m/s2.求:
(1)在被第二颗子弹击中前,木块向右运动离A点的最大距离
(2)木块在传达带上最多能被多少颗子弹击中
(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统产生的热能是多少
解析(1)第一颗子弹射入木块过程中动量守恒
mv-MV=mv+MV′
解得:
木块向右作减速运动加速度
木块速度减小为零所用时间
解得t1=0.6s<1s
所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动
距离为
解得s1=0.9m.
(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t2=1s-0.6s=0.4s
速度增大为v2=at2=2m/s(恰与传送带同速)
向左移动的位移为
所以两颗子弹射中木块的时间间隔内,木块总位移s0=s1-s2=0.5m方向向右
第16颗子弹击中前,木块向右移动的位移为s=15×0.5m=7.5m
第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5m=8.4m>8.3m木块将从B端落下.
所以木块在传送带上最多能被16颗子弹击中.
(3)第一颗子弹击穿木块过程中产生的热量为
木块向右减速运动过程中板对传送带的位移为
产生的热量为
木块向左加速运动过程中相对传送带的位移为
产生的热量为
第16颗子弹射入后木块滑行时间为t3有
解得t3=0.4s
木块与传送带的相对位移为s=v1t3+0.8
产生的热量为
全过程中产生的热量为Q=15(Q1+Q2+Q3)+Q1+Q4
解得Q=14155.5J
通过以上几个变式问题的分析,传送带问题的方方面面就有了一个比较全面的了解。
如果我们平常在专题教学和训练时,能够将一个有代表性的问题进行发散、挖掘、变化、创新,一定能取得很好的复习效果。