《三年高考两年模拟》之函数的概念及基本初等函数第七节
- 格式:docx
- 大小:133.16 KB
- 文档页数:7
第七节 函数与方程A 组 三年高考真题(2016~2014年)1.(2015·山东,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D.[1, +∞)2.(2015·天津,8)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=b -f (2-x ),其中b∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2 3.(2014·湖南,10)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,1e B.()-∞,e C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝⎛⎭⎪⎫-e ,1e4.(2016·山东,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.5.(2015·湖南,15)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b有两个零点,则a 的取值范围是________.6.(2015·安徽,15)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2.7.(2015·江苏,13)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.8.(2015·北京,14)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,x -a x -2a ,x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.B 组 两年模拟精选(2016~2015年)1.(2016·湖北荆门模拟)对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点2.(2016·陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0B.-2,0C.12D.03.(2016·黑龙江佳木斯模拟)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.则函数f (x )=sgn(ln x )-ln x 的零点个数为( )A.1B.2C.3D.44.(2015·湖南衡阳模拟)设方程2x+x +2=0和方程log 2x +x +2=0的根分别为p 和q ,设函数f (x )=(x +p )(x +q )+2,则( ) A.f (2)=f (0)<f (3) B.f (0)<f (2)<f (3) C.f (3)<f (2)=f (0)D.f (0)<f (3)<f (2)5.(2015·青岛市模拟)函数f (x )=ln(x +1)-2x的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,e)D.(3,4)6.(2015·济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为( ) A.4B.2C.-4D.与m 有关7. (2015·南昌二模)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( ) A.9B.10C.11D.188.(2016·广西南宁模拟)已知函数f (x )=a x+x -b 的零点x 0∈(n ,n +1)(n ∈Z )其中常数a ,b 满足2a =3,3b =2,则n =________.9.(2016·天津南开中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.10.(2016·江西十校二联)给定方程⎝ ⎛⎭⎪⎫12x+sin x -1=0,下列命题中:①方程没有小于0的实数解; ②方程有无数个实数解;③方程在(-∞,0)内有且只有一个实数解;④若x 0是方程的实数解,则x 0>-1. 正确命题是________.11.(2015·长春模拟)设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ). (1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.12.(2015·青岛模拟)已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.C [当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C.]2.D [记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y=f (x )-g (x )恰有4个零点.选D.]3.B [由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x -12有正解,即e -x-ln(x +a )-12=0有正解,令F (x )=e -x -ln(x +a )-12,则F ′(x )=-e -x -1x +a <0,故函数F (x )=e -x-ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x-ln(x +a )-12≥0,所以a ≤1e 2ex x ---,又y =1e 2e x x ---在(0,+∞)上单调递减,所以a <1e 02e 0---=12e ,选B.]4.(3,+∞) [如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |. ∵m >0,∴m 2-3m >0,解得m >3.5.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3(x ≤a ),x 2 (x >a )在R 上递增,若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).] 6.①③④⑤ [令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤.]7.4 [令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.]8.(1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞) [(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,2x-1>-1.当x ≥1时,且当x =32时,f (x )min =f ⎝ ⎛⎭⎪⎫32=-1,∴f (x )最小值为-1. (2)1°当a ≤0时,2x-a >0,由4(x -a )(x -2a )=0得x =a 或x =2a .a ∉[1,+∞), 2a ∉[1,+∞), ∴此时f (x )无零点.2°当0<a <1时,若有2个零点,只须⎩⎪⎨⎪⎧a <1,2a ≥1,∴12≤a <1.3°当1≤a <2时,x <1,2x=a ,x =log 2a ∈[0,1),x ≥1时,由f (x )=0,得x =a 或2a ,a ∈[1,+∞).2a ∈[1,+∞),有3个零点,不合题意. 4°当a ≥2时,x <1,则2x-a <0,x ≥1时,由f (x )=0,得x =a 或2a ,a ,2a ∈[1,+∞),此时恰有2个零点,综上12≤a <1或a ≥2.]B 组 两年模拟精选(2016~2015年)1.C [利用排除法,f (a )·f (b )<0是函数f (x )在区间(a ,b )内有零点的充分不必要条件,故选C.]2.D [当x ≤1时,由f (x )=2x-1=0,得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解,函数f (x )的零点只有0.故选D.] 3.C [依题意得f (x )=⎩⎪⎨⎪⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1,令f (x )=0得x =e,1,1e,所以函数有3个零点,故选C.4. A [∵方程2x +x +2=0和方程log 2 x +x +2=0的根分别为函数y =2x,y =log 2 x 与直线y =-x -2的交点横坐标,而函数y =2x,y =log 2 x 互为反函数,其图象关于y =x 对称,又直线y =-x -2与直线y =x 垂直,且两直线的交点坐标为(-1,-1),∴p +q =-2,则f (x )=x 2+(p +q )x +pq +2=x 2-2x +pq +2,∵该二次函数的对称轴为x =1,∴f (2)=f (0)<f (3).故选A.]5.B [利用零点存在性定理得到f (1)·f (2)=(ln 2-2)·(ln 3-1)<0,故选B.]6.A [方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,因为函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4,选A.]7.B [在坐标平面内画出y =f (x )与y =|lg x |的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10,故选B.]8.-1 [a =log 23>1,b =log 32<1,令f (x )=0,得a x=-x +b ,在同一坐标系中画出函数y =a x和y =-x +b 的图象,如图所示;由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =-1.]9.(0,1) [f (x )=⎩⎪⎨⎪⎧2x-1,-x 2-2x =⎩⎪⎨⎪⎧2x-1,x >0,-(x +1)2+1,x ≤0,图象如图:由g (x )=f (x )-m 有3个零点,知f (x )=m 有三个根,则实数m 的范围是(0,1).]10.②③④ [在同一坐标系中画出函数y =⎝ ⎛⎭⎪⎫12x-1与y =-sin x (该函数的值域是[-1,1])的大致图象,结合图象可知,它们的交点中,横坐标为负的交点,有且只有一个,因此方程⎝ ⎛⎭⎪⎫12x+sin x -1=0在(-∞ ,0)内有且只有一个实数解,故③正确,①不正确,由图象易知②,④均正确.]11.解(1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x ,2-y ),代入f (x )=x +1x ,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g (x )=x -2+1x -4.(2)由⎩⎪⎨⎪⎧y =m ,y =x -2+1x -4,消去y 得x 2-(m +6)x +4m +9=0,Δ=[-(m +6)]2-4(4m +9), ∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0); 当m =4时,经检验合理,交点为(5,4).12.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3),作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时, 由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根.。
第二节 函数的基本性质A 组 三年高考真题(2016~2014年)1.(2016·山东,9)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A.-2 B.-1 C.0D.2 2.(2015·天津,7)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =(log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.c <a <bD.c <b <a3.(2015·福建,2)下列函数为奇函数的是( )A.y =xB.y =|sin x |C.y =cos xD.y =e x -e -x4.(2015·广东,3)下列函数中,既不是奇函数,也不是偶函数的是( )A.y =x +e xB.y =x +1xC.y =2x +12xD.y =1+x 2 5.(2015·安徽,2)下列函数中,既是偶函数又存在零点的是( )A.y =cos xB.y =sin xC.y =ln xD.y =x 2+16.(2014·北京,2)下列函数中,在区间(0,+∞)上为增函数的是( )A.y =x +1B.y =(x -1)2C.y =2-xD.y =log 0.5(x +1)7.(2014·陕西,7)下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( )A.f (x )=12xB.f (x )=x 3C.f (x )=⎝⎛⎭⎫12x D.f (x )=3x 8.(2014·山东,5)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1)C.sin x >sin yD.x 3>y 3 9.(2014·湖南,3)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A.-3B.-1C.1D.310.(2014·新课标全国Ⅰ,3)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A.f (x )g (x )是偶函数B.f (x )|g (x )|是奇函数C.|f (x )|g (x )是奇函数D.|f (x )g (x )|是奇函数11.(2014·湖北,10)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,3312.(2016·四川,14)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=________. 13.(2016·北京,14)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a . (1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________.14.(2015·新课标全国Ⅰ,13)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.15.(2014·新课标全国Ⅱ,15)已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.16.(2014·四川,12)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. B 组 两年模拟精选(2016~2015年)1.(2016·天津河西模拟)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x2.若直线y =x +a 与函数y =f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A.0B.0或-12C.-14或-12D.0或-142.(2016·山东青岛模拟)已知f (x )是定义在R 上的偶函数,且对任意x ∈R ,都有f (x +4)=f (x )+f (2),则f (2 014)等于( )A.0B.3C.4D.63.(2016·山东日照模拟)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为( )A.4B.-4C.6D.-64.(2016·四川绵阳中学11月月考)设偶函数f (x )在[0,+∞)上单调递增,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞)C.⎝⎛⎭⎫-13,13D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 5.(2015·江西盟校联考)函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A.(1,3)B.(-1,1)C.(-1,0)∪(1,3) D .(-1,0)∪(0,1)6.(2015·广东惠州模拟)下列函数中,既是偶函数又在区间(0,1)上单调递减的函数为( )A.y =1xB.y =lg xC.y =cos xD.y =x 27.(2016·湖南常德市3月模拟)已知定义在R 上的函数f (x )满足f (x +2)-f (x )=0,当x ∈(0,2]时,f (x )=2x ,则f (2 016)=________.8.(2015·四川眉山一中模拟)已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2 014)=______.答案精析A 组 三年高考真题(2016~2014年)1. D [当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,即f (x )=f (x +1),∴T =1, ∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ),∴f (2)=f (1)=-f (-1)=2,故选D.]2.C [因为函数f (x )=2|x -m |-1为偶函数可知,m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 0.53|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m ),故选C.]3.D [由奇函数定义易知y =e x -e -x 为奇函数,故选D.]4.A [令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B 、C 、D 依次是奇函数、偶函数、偶函数,故选A.]5.A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点.]6.A [显然y =x +1是(0,+∞)上的增函数;y =(x -1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y =2-x =⎝⎛⎭⎫12x在x ∈R 上是减函数;y =log 0.5(x +1)在(-1,+∞)上是减函数.故选A.]7.D [根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x 是增函数,所以D 正确.]8.D [根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A 、B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.]9.C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.]10.B [f (x )为奇函数,g (x )为偶函数,故f (x )g (x )为奇函数,f (x )|g (x )|为奇函数,|f (x )|g (x )为偶函数,|f (x )g (x )|为偶函数,故选B.]11.B [当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2-a 2,a 2<x ≤2a 2x -3a 2,x >2a 2,又f (x )为奇函数,可得f (x )的图象如图所示,由图象可得,当x ≤2a 2时,f (x )max =a 2,当x >2a 2时,令x -3a 2=a 2,得x =4a 2,又∀x ∈R ,f (x -1)≤f (x ),可知4a 2-(-2a 2)≤1⇒a ∈⎣⎡⎦⎤-66,66,选B.]12. -2 [首先,f (x )是周期为2的函数,所以f (x )=f (x +2);而f (x )是奇函数,所以f (x )=-f (-x ),所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0,又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫12=412=2,故f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2.] 13. (1)2 (2)(-∞,-1) [ (1)当a =0时,f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤0,-2x ,x >0. 若x ≤0,f ′(x )=3x 2-3=3(x 2-1).由f ′(x )>0得x <-1,由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增;在(-1,0]上单调递减,∴f (x )最大值为f (-1)=2. 若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0.所以f (x )最大值为2.(2)f (x )的两个函数在无限制条件时图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2.所以a <-1.]14.1 [f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.]15.(-1,3) [由题可知,当-2<x <2时,f (x )>0.f (x -1)的图象是由f (x )的图象向右平移1个单位长度得到的,若f (x -1)>0,则-1<x <3.]16.1 [f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1.] B 组 两年模拟精选(2016~2015年)1.D [∵f (x +2)=f (x ),∴T =2.又0≤x ≤1时,f (x )=x 2,可画出函数y =f (x )在一个周期内的图象如图所示.显然a =0时,y =x 与y =x 2在[0,2]内恰有两个不同的公共点.另当直线y =x +a 与y =x 2(0≤x ≤1)相切时也恰有两个不同的公共点,由题意知y ′=(x 2)′=2x =1,∴x =12. ∴A ⎝⎛⎭⎫12,14,又A 点在y =x +a 上,∴a =-14,综上知选D.] 2. A [依题意,得f (-2+4)=f (-2)+f (2)=f (2),即2f (2)=f (2),f (2)=0,f (x +4)=f (x ),f (x )是以4为周期的周期函数,又2014=4×503+2,所以f (2014)=f (2)=0.故选A.]3. B [由f (x )是定义在R 上的奇函数得f (0)=1+m =0⇒m =-1,f (-log 35)=-f (log 35)=-(3log 35-1)=-4,选B.]4.A [由f (x )为偶函数,f (x )>f (2x -1)可化为f (|x |)>f (|2x -1|),又f (x )在[0,+∞)上单调递增,所以|x |>|2x -1|.解得13<x <1.] 5. C [f (x )的图象如图.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈(0,1)时,由xf (x )<0得x ∈∅;当x ∈(1,3)时,由xf (x )>0得x ∈(1,3).∴x ∈(-1,0)∪(1,3),故选C.6. C [首先y =cos x 是偶函数,且在(0,π)上单减,而(0,1)⊆(0,π),故y =cos x 满足条件.故选C.]7. 4 [f (x )周期为2,f (2 016)=f (2)=22=4.]8. 2 [∵f (x )=-f ⎝⎛⎭⎫x +32,∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=2.]。
第四节 指数与指数函数A 组 三年高考真题(2016~2014年)1.(2014·辽宁,3)已知a =132-,b =log 213,c =121log 3,则( ) A.a >b >c B.a >c >b C.c >a >b D.c >b >a2.(2015·山东,14)已知函数f (x )=a x +b (a >0,a ≠1) 的定义域和值域都是[-1,0],则a +b =________.3.(2014·上海,9)若f (x )=23x -12x -,则满足f (x )<0的x 的取值范围是________.B 组 两年模拟精选(2016~2015年)1.(2016·安徽马鞍山模拟)下列各式比较大小正确的是( )A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2 D.1.70.3<0.93.1 2.(2016·安徽马鞍山模拟)函数f (x )=ax -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A.y =1-xB.y =|x -2|C.y =2x -1D.y =log 2(2x ) 3.(2016·山东青岛模拟)已知函数f (x )=e |ln x |,则函数y =f (x +1)的大致图象为()4.(2016·福建福州模拟)设12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a<1, 那么( ) A.a a <a b <b a B.a a <b a <a b C.a b <a a <b aD.a b <b a <a a 5.(2015·辽宁沈阳模拟)已知函数f (x )=2x -12x +1,则不等式f (x -2)+f (x 2-4)<0的解集为( )A.(-1,6)B.(-6,1)C.(-2,3)D.(-3,2) 6.(2015·广东汕头模拟)若函数y =a x +b -1(a >0且a ≠1)的图象经过第二、三、四象限,则一定有( )A.0<a <1且b >0B.a >1且b >0C.0<a <1且b <0D.a >1且b <07.(2015·浙江湖州模拟)已知函数f (x )=m ·9x -3x,若存在非零实数x 0,使得f (-x 0)=f (x 0)成立,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫0,12C.(0,2)D.[2,+∞)8.(2016·浙江温州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a ) 的取值范围是________.9.(2016·豫晋冀三省调研)设函数f (x )=a x(a >0,a ≠1)在x ∈[-1,1]上的最大值与最小值之和为g (a ),则函数g (a )的取值范围是________.答案精析A 组 三年高考真题(2016~2014年)1.C [a =2-13∈(0,1),b =log 213∈(-∞,0),c =log 1213=log 23∈(1,+∞),所以c >a >b .]2.-32[当a >1时,f (x )=a x +b 在定义域上为增函数, ∴⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,方程组无解; 当0<a <1时,f (x )=a x+b 在定义域上为减函数,∴⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2.∴a +b =-32.] 3.(0,1) [令y 1=x 23,y 2=12x -,f (x )<0即为y 1<y 2,函数y 1=x 23,y 2=12x -的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).]B 组 两年模拟精选(2016~2015年)1.B [A 中,∵函数y =1.7x 在R 上是增函数,2.5<3,∴1.72.5<1.73.B 中,∵y =0.6x 在R 上是减函数,-1<2,∴0.6-1>0.62.C 中,∵(0.8)-1=1.25,y =1.25x 在R 上是增函数,0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,∵函数y =1.7x 在R 上是增函数且0.3>0,∴1.70.3>1.70=1,又函数y =0.9x在R 上是减函数且3.1>0,∴0.93.1<0.90=1.故1.70.3>0.93.1.2. A [易知A (1,1),经验证可得y =1-x 的图象不经过点A (1,1),故选A.]3.D [f (x )=e |ln x |=⎩⎪⎨⎪⎧x (x ≥1),1x(0<x <1),而函数y =f (x +1)的图象是由函数f (x )=e |ln x |向左平移了一个单位,故选D.]4.C [由于y =⎝ ⎛⎭⎪⎫12x 是减函数,12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <1,所以0<a <b <1,当0<a <1时,y =a x 为减函数,所以a b <a a ,排除A ,B ;因为y =x a 在第一象限内为增函数,所以a a <b a ,故选C.]5.D [因为函数f (x )=2x-12x +1为R 上的奇函数且增函数,所以不等式f (x -2)+f (x 2-4)<0可化为f (x 2-4)<f (2-x ),所以x 2-4<2-x ,则-3<x <2,故选D.]6.C [当0<a <1时,不论上下怎样平移,图象必过第二象限;当a >1时,不论上下怎样平移,图象必过第一象限.∵y =a x +b -1的图象经过第二、三、四象限,∴只可能0<a <1.如图所示,这个图可理解为将y =a x(0<a <1)的图象向下平移大于1个单位长度.∴⎩⎪⎨⎪⎧b -1<0,|b -1|>1,解得b <0. 可知0<a <1且b <0.]7.B [由题意得到f (-x )=f (x ),∴m ·9-x -3-x =m ·9x -3x,整理得到:m =3x (3x )2+1=13x +13x <12,又m >0,所以实数m 的取值范围是0<m <12,故选B.] 8.⎣⎢⎡⎭⎪⎫34,2 [依题意,在坐标平面内画出函数y =f (x )的大致图象,结合图象可知b ∈⎣⎢⎡⎭⎪⎫12,1,bf (a )=bf (b )=b (b +1)=b 2+b ∈⎣⎢⎡⎭⎪⎫34,2.] 9. (2,+∞) [f (x )在x ∈[-1,1]上的最大值和最小值在两端点处取得,∴g (a )=f (1)+f (-1)=a +1a ,又a >0,且a ≠1,所以g (a )=a +1a>2.]。
第八节 函数的模型及其综合应用A 组 三年高考真题(2016~2014年)1.(2016·山东,10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A.y =sin x B.y =ln x C.y =e xD.y =x 32.(2016·四川,5)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A.2018年B.2019年C.2020年D.2021年3.(2015·北京,8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油4.(2014·湖南,8)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q2B.p +q +-12C.pqD.p +q +-15.(2014·辽宁,12)已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12π D.186.(2015·四川,13)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 7.(2015·江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.8.(2014·湖北,14)设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ).例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b 的算术平均数.(1)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的几何平均数. (2)当f (x )=________(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b. (以上两空各只需写出一个符合要求的函数即可)9.(2014·山东,15)已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.B 组 两年模拟精选(2016~2015年)1.(2016·四川成都模拟)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A.10元B.20元C.30元D.403元2.(2016·湖北天门模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )3.(2015·辽宁五校协作体模拟)一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t 内的路程为s =12t 2米,那么,此人( )A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米4.(2016·陕西西安模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.5.(2016·山东日照模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品,则获得利润最大时生产产品的档次是________.6.(2016·河南洛阳模拟)某食品公司为了解某种新品种食品的市场需求,进行了20天的测试,人为地调控每天产品的单价P (元/件).前10天每天单价呈直线下降趋势(第10天免费赠送品尝),后10天呈直线上升趋势,其中4天的单价记录如下表:而这20.(1)写出每天销售收入y (元)关于时间x (天)的函数;(2)在这20天中哪一天销售收入最高?此时单价P 定为多少元为好?(结果精确到1元)7.(2015·四川乐山模拟)某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x (百台),其总成本为g (x )万元(总成本=固定成本+生产成本),并且销售收入r (x )满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+7x -10.5(0≤x ≤7),13.5(x >7).假定该产品产销平衡,根据上述统计规律求: (1)要使工厂有盈利,产品数量x 应控制在什么范围? (2)工厂生产多少台产品时盈利最大?答案精析A 组 三年高考真题(2016~2014年)1.A [对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A.]2.B [设x 年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x =log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因资金需超过200万,则x 取4,即2019年.选B.]3.D [汽车每消耗1升汽油行驶的里程为“燃油效率”,由此理解A 显然不对;B 应是甲车耗油最少;C 甲车以80千米/小时的速度行驶10 km,消耗1升汽油.故D 正确.]4.D [设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.]5.B [不妨令0≤y <x ≤1,当0<x -y ≤12时,|f (x )-f (y )|<12|x -y |≤14;当12<x -y ≤1时,|f (x )-f (y )|=|[f (x )-f (1)]-[f (y )-f (0)]|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=12(1-x )+12y =12+12(y -x )<14.综上,|f (x )-f (y )|<14,所以k ≥14.]6.24 [由题意⎩⎪⎨⎪⎧e b=192,e22k +b =48,∴e 22k =48192=14,∴e 11k=12,∴x =33时,y =e33k +b=(e 11k )3·e b=⎝ ⎛⎭⎪⎫123·e b=18×192=24.]7.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b ,得⎩⎪⎨⎪⎧a25+b =40,a 400+b=2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2 000x3, 则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米. 8.(1)x (2)x [过点(a ,f (a )),(b ,-f (b ))的直线的方程为y -f (a )=f (a )+f (b )a -b(x -a ),令y =0得c =af (b )+bf (a )f (a )+f (b ).(1)令几何平均数ab =af (b )+bf (a )f (a )+f (b )⇒abf (a )+abf (b )=bf (a )+af (b ),可取f (x )=x (x >0); (2)令调和平均数2ab a +b =af (b )+bf (a )f (a )+f (b )⇒ab +ba a +b =af (b )+bf (a )f (a )+f (b ),可取f (x )=x (x >0).]9.(210,+∞) [函数g (x )的定义域是[-2,2],根据已知得h (x )+g (x )2=f (x ),所以h (x )=2f (x )-g (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2恒成立,即3x +b >4-x 2恒成立,令y =3x +b ,y =4-x 2,则只要直线y =3x +b 在半圆x 2+y 2=4(y ≥0)上方即可,由|b |10>2,解得b >210(舍去负值),故实数b 的取值范围是(210,+∞).]B 组 两年模拟精选(2016~2015年)1.A [依题题可设S A (t )=20+kt ,S B (t )=mt . 又S A (100)=S B (100),∴100k +20=100m ,得k -m =-0.2,于是S A (150)-S B (150)=20+150k -150m =20+150×(-0.2)=-10,即两种方式电话费相差10元,选A.]2.B [由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应逐渐增大,故函数的图象应一直是下凹的,故选B.]3. D [以汽车停止位置为参照,人所走过的位移为-25+6t ,汽车在时间t 内的位移为s =12t 2,故设相对位移为y m,则y =-25+6t -12t 2=-12(t -6)2-7,故不能追上汽车,且当t=6时,其间最近距离为7米.故选D.] 4.16 [依题意有a ·e-b ×8=12a ,∴b =ln 28,∴y =a ·e-ln 28·t . 若容器中只有开始时的八分之一,则有a ·e-ln 28·t =18a .解得t =24,∴再经过的时间为24-8=16 min.]5.9 [由题意,第k 档次时,每天可获利润为:y =[8+2(k -1)][60-3(k -1)]=-6k 2+108k +378(1≤k ≤10),配方可得y =-6(k -9)2+864,∴当k =9时,获得利润最大.]6.解 (1)P =⎩⎪⎨⎪⎧10-x ,x ∈[1,10],x -10,x ∈[11,20](x ∈N *),Q =100-(x -10)2,x ∈[1,20],x ∈N *,∴y =100QP =100(x -10)2[100-(x -10)2],x ∈[1,20],x ∈N *.(2)∵(x -10)2[100-(x -10)2]≤⎣⎢⎡⎦⎥⎤(x -10)2+100-(x -10)222=2 500, 当且仅当(x -10)2=100-(x -10)2, 即x =10±52时,y 有最大值.又x ∈N *,∴当x =3或17时,y max =70051≈4 999,此时,P =7. 答:第3天或第17天销售收入最高,此时应将单价P 定为7元为好. 7.解: 依题意得g (x )=x +3,设利润函数为f (x ),则f (x )=r (x )-g (x )所以f (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -13.5(0≤x ≤7)10.5-x (x >7)(1)要使工厂盈利,则有f (x )>0,因为f (x )>0⇒⎩⎪⎨⎪⎧0≤x ≤7,-0.5x 2+6x -13.5>0,或⎩⎪⎨⎪⎧x >7,10.5-x >0,⇒⎩⎪⎨⎪⎧0≤x ≤7,x 2-12x +27<0 或⎩⎪⎨⎪⎧x >7,10.5-x >0,⇒⎩⎪⎨⎪⎧0≤x ≤7,3<x <9,或7<x <10.5. 则3<x ≤7或7<x <10.5,即3<x <10.5,所以要使工厂盈利,产品数量应控制在大于300台小于1 050台的范围内. (2)当3<x ≤7时,f (x )=-0.5(x -6)2+4.5, 故当x =6时,f (x )有最大值4.5. 而当x >7时,f (x )<10.5-7=3.5. 所以当工厂生产600台产品时盈利最大.。
第一节 函数的概念A 组 三年高考真题(2016~2014年)1.(2015·某某,7)存在函数f (x )满足:对任意x ∈R 都有( )A.f (sin 2x )=sin xB.f (sin 2x )=x 2+x C.f (x 2+1)=|x +1| D.f (x 2+2x )=|x +1|2.(2015·新课标全国Ⅱ,5)设函数f (x )=⎩⎪⎨⎪⎧1+log 22-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12 3.(2014·某某,3)函数f (x )=1log 2x2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12B.(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 4.(2014·某某,2)函数f (x )=ln(x 2-x )的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)5.(2014·某某,3)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( ) A.1 B.2 C.3 D.-16.(2014·某某,9)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A.5或8 B.-1或5C.-1或-4 D.-4或87.(2014·某某,18)设f (x )=⎩⎪⎨⎪⎧x -a 2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值X 围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]8.(2016·某某,5)函数y =3-2x -x 2的定义域是________. 9.(2015·某某,10)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg x 2+1,x <1,则f (f (-3))=________,f (x )的最小值是________.B 组 两年模拟精选(2016~2015年)1.(2016·某某师X 大学附属中学第七次月考)已知f (x )=⎩⎪⎨⎪⎧sin π8x ,x ≥0,f (x +5)+2,x <0,则f (-2016)的值为( )A.810B.809C.808D.806 2.(2016·某某某某12月摸底考试)函数y =13x -2+lg(2x -1)的定义域是( )A.⎣⎢⎡⎭⎪⎫23,+∞B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫23,+∞D.⎝ ⎛⎭⎪⎫12,233.(2016·豫南豫北十校模拟)已知f (x )是定义在R 上的奇函数,且当x >0时, f (x )=⎩⎪⎨⎪⎧cos πx 6,0<x ≤8,log 2x ,x >8,则f (f (-16))=( ) A.-12 B.-32 C.12D.324.(2015·某某滨州模拟)已知函数f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则f (3)=( )A.8B.9C.11D.105.(2015·某某某某模拟)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,ln x ,x >1,则f (f (e))(e 为自然对数的底数)=( ) A.0B.1C.2D.ln(e 2+1)6.(2015·东城模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 13x ,x >0,2x ,x ≤0,若f (a )>12,则实数a 的取值X 围是( )A.(-1,0)∪(3,+∞)B.(-1,3)C.(-1,0)∪⎝⎛⎭⎪⎫33,+∞ D.⎝⎛⎭⎪⎫-1,337.(2016·豫南九校联考)若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是________.8.(2016·某某某某模拟)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1,log 2(1-x ),x <1,则f (f (4))=________;若f (a )<-1,则a 的取值X 围为________.9.(2015·某某聊城模拟)设二次函数f (x )满足f (2+x )=f (2-x ),且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.答案精析A 组 三年高考真题(2016~2014年)1.D [排除法,A 中,当x 1=π2,x 2=-π2时,f (sin 2x 1)=f (sin 2x 2)=f (0),而sin x 1≠sin x 2,∴A 不对;B 同上;C 中,当x 1=-1,x 2=1时,f (x 21+1)=f (x 22+1)=f (2),而|x 1+1|≠|x 2+1|,∴C 不对,故选D.]2.C [因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.]3.C [(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).] 4.C [由题意可得x 2-x >0,解得x >1或x <0,所以所求函数的定义域为(-∞,0)∪(1,+∞).]5.A [因为f [g (1)]=1,且f (x )=5|x |,所以g (1)=0,即a ·12-1=0,解得a =1.]6.D [当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a2,如图1可知,当x =-a2时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=a2-1=3,可得a =8;当a <2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,当x =-a2时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=-a2+1=3,可得a =-4.综上可知,答案为D.]图1 图27.D [∵当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解之,得-1≤a ≤2,∴a 的取值X 围是0≤a ≤2.选D.]8. [-3,1] [要使原函数有意义,需且仅需3-2x -x 2≥0.解得-3≤x ≤1.故函数定义域为[-3,1].]9.0 22-3 [f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.]B 组 两年模拟精选(2016~2015年)1.B [f (-2 016)=f (-2 011)+2=f (-2 006)+4=…=f (-1)+403×2=f (4)+404×2=808+sin ⎝ ⎛⎭⎪⎫π8×4=809.]2.C [由⎩⎪⎨⎪⎧3x -2>0,2x -1>0,得x >23,故选C.]3.C [因为f (x )为奇函数,所以f (f (-16))=-f (f (16))=-f (4)=-cos 2π3=12,故选C.]4.C [∵f ⎝⎛⎭⎪⎫x -1x =⎝⎛⎭⎪⎫x -1x 2+2,∴f (3)=9+2=11.]5.C [f (f (e))=f (1)=2,故选C.]6.D [由题意知:⎩⎪⎨⎪⎧a >0,log 13a >12或⎩⎪⎨⎪⎧a ≤0,2a >12.所以a 的取值X 围是⎝ ⎛⎭⎪⎫-1,33,故选D.]7. [0,1) [∵0≤2x ≤2,∴0≤x ≤1,又x -1≠0,即x ≠1.∴0≤x <1.即函数g (x )的定义域是[0,1).]8. 5 ⎝ ⎛⎭⎪⎫12,1∪(1,+∞) [f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 2(1+31)=5.当a ≥1时,由-2a 2+1<-1得a 2>1,解得a >1,当a <1时,由log 2(1-a )<-1,得log 2(1-a )<log 212,∴0<1-a <12,∴12<a <1.即a 的取值X 围为⎝ ⎛⎭⎪⎫12,1∪(1,+∞).]9.解 ∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0),则由f (0)=3,可得k =3-4a , ∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a,∴a =1.∴f (x )=x 2-4x +3.。
专题02函数的概念与基本初等函数考纲解读三年高考分析1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,且a ≠1)4.幂函数(1)了解幂函数的概念(2)结合函数y =x ,y =x 2,y =x 3,y =1x,y =12x 的图像,了解它们的变化情况.5.函数与方程6.函数模型及其应用函数的单调性和分段函数是考查的重点,解题时常用到函数的单调性和函数的周期性,考查学生的数形结合思想和计算推理能力,题型以选择填空题为主,中等难度.1、以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有选择、填空题,又有解答题,中等偏上难度.2、以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.3、利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根)的存在情况求相关参数的范围,是高考的热点,题型以选择、填空为主,也可和导数等知识交汇出现解答题,中高档难度.1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,]D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2]B.[,]C.[﹣2,2]D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x <4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减;当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅+的图象关于y 轴对称,则实数a 的值为()A .2B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =+也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为()A .()10-,B .()12-,C .()02,D .()2,+∞【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数,所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3,解可得:﹣1<x <2,即不等式的解集为(﹣1,2).故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则()A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3 f log 3-=∵320log 21,log 31,<f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则()A .a b c >>B .a c b >>C .b a c >>D .b c a>>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a<-<<<<<a b c∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=()A .bB .2b-C .b-D .4b-【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==---故函数()f x 关于点(2,1)对称,则()4f a -=2b -故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则()A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误;当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误;()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ()A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx -=--有两个不同的实数根,则实数k 的取值范围是()A .(),1-∞-B .()1,0-C .()0,4D .()()0,11,4 【答案】D 【解析】解:y 21111111x x x x x x -+-⎧==⎨----⎩,>或<,<<,画出函数y =kx ﹣2,y 21x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 21x -=-的图象有两个交点,即方程21x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 21x -=-的图象有1个交点,即方程21x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x -=-的图象有两个交点,即方程21x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 21x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4.故选:D.9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪⎪⎝⎭⎝⎭充分性成立,若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
第六节 函数的图象A 组 三年高考真题(2016~2014年)1.(2016·全国Ⅰ,7)函数y =2x 2-e |x |在[-2,2]的图象大致为( )2.(2016·全国Ⅱ,12)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A.0B.mC.2mD.4m3.(2016·全国Ⅱ,12)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A.0B.mC.2mD.4m4.(2015·新课标全国Ⅱ,10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()5.(2015·安徽,9)函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是()A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c<06.(2015·北京,7)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A.{x |-1<x ≤0}B.{x |-1≤x ≤1}C.{x |-1<x ≤1}D.{x |-1<x ≤2}7. (2014·新课标全国Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]上的图象大致为( )B 组 两年模拟精选(2016~2015年)1.(2016·浙江宁波一模)在同一个坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0且a ≠1,则下列所给图象中可能正确的是( )2.(2016·山东菏泽一模)函数y =4cos x -e |x |(e 为自然对数的底数)的图象可能是( )3.(2015·广东佛山模拟)已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的图象大致是( )4.(2015·山东菏泽模拟)已知函数f (x )=1x -ln x -1,则y =f (x )的图象大致为( )5.(2015·山东日照模拟)函数f (x )=sin xx 2+1的图象大致为( )6.(2016·贵州贵阳模拟)已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.7.(2016·湖北八校联考)函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =________.8.(2016·重庆巴蜀中学模拟)函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为________.9.(2015·洛阳月考)已知函数f (x )=x1+x .(1)画出f (x )的草图;(2)指出f (x )的单调区间.答案精析A 组 三年高考真题(2016~2014年)1.D [f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;在x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.2.B [当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.] 3.C [由图可知-c >0,∴c <0,又当x <-c 时,由图象形状可知,a <0且b >0,故选C.] 4.C [如图,由图知:f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]5.C [由题意知,f (x )=|cos x |·sin x ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=cos x ·sin x =12sin 2x ;当x ∈⎝⎛⎦⎥⎤π2,π时,f (x )=-cos x ·sin x =-12sin 2x ,故选C.]B 组 两年模拟精选(2016~2015年)1.D [当a >1时,y =sin ax 的周期小于2π,排除A 、C ,当0<a <1时,y =sin ax 的周期大于2π,故选D.]2. A [函数为偶函数,图象关于y 轴对称,排除B 、D.当x =0时,y =4cos 0-e 0=3>1,故选A. ]3. B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =ax -2(0<a <1)的图象即可确定,排除A ,C ,而y =log a |x |(0<a <1)的图象结合函数的单调性可知,故选B.] 4.A [f (x )的定义域为x >0且x ≠1,当x ∈(0,1)时,f (x )>0且为增函数,当x ∈(1,+∞)时,f (x )>0且为减函数,故选A.]5.A [首先由f (x )为奇函数,得图象关于原点对称,排除C 、D,又当0<x <π时,f (x )>0知,选A.]6.(2,8] [当f (x )>0时,函数g (x )有意义,由图象知当x ∈(2,8]时,f (x )>0,即所求定义域为(2,8].]7. 133 [由图知⎩⎪⎨⎪⎧f (-1)=0,f (0)=2,即⎩⎪⎨⎪⎧-a +b =0,b =2,∴a =b =2,又log c 19=2,所以c =13,则a +b +c =2+2+13=133.]8.⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上y =cos x <0.由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f (x )cos x <0,因为f (x )为偶函数,所以y =f (x )cos x 为偶函数,所以f (x )cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.]9. 解(1)f (x )=x1+x=1-1x +1,函数f (x )的图象是由反比例函数y =-1x的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )的单调递增区间为(-∞,-1),(-1,+∞).。
第一节 函数的概念A 组三年高考真题(2016~2014年)1.(2015·湖北,7)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn |x |C .|x |=|x |sgn xD .|x |=x sgn x2.(2015·重庆,3)函数f (x )=log 2(x 2+2x -3)的定义域为( ) A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)3.(2015·湖北,6)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]4.(2015·新课标全国Ⅰ,10)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-145.(2015·山东,10)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B.78C.34D.126.(2015·陕西,4)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14C.12D.327.(2014·山东,3)函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)8.(2014·江西,4)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥02-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12C .1D .2 9.(2015·新课标全国Ⅱ,13)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.B 组两年模拟精选(2016~2015年)1.(2016·安徽安庆三模)函数f (x )=1ln (2x +1)的定义域是( )A.⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,0∪(0,+∞) C.⎣⎡⎭⎫-12,+∞ D.[0,+∞)2.(2016·河南六市一联)函数y =x 2-2x -3+log 3(x +2)的定义域为( ) A.(-∞,-1)∪(3,+∞) B.(-∞,-1)∪[3,+∞) C.(-2,-1]D.(-2,-1]∪[3,+∞) 3.(2016·衡水中学调研)下列函数中,与函数y =13x的定义域相同的是( )A.y =1sin xB.y =ln xxC.y =cos x xD.y =x 3e x4.(2016·广东茂名第二次模拟)设函数f (x )={3-11+log (2-)131x x x x ⎧<⎪⎨≥⎪⎩,,,,则f (-7)+ f (log 312)= ( ) A.7 B.9 C.11D.135.(2015·湖南益阳模拟)函数f (x )=log 2(3x +1)的值域为( ) A.(0,+∞) B.[0,+∞) C.(1,+∞)D.[1,+∞)6.(2015·眉山市一诊)若f (x )=4log 2x +2,则f (2)+f (4)+f (8)=( ) A.12 B.24 C.30D.487.(2016·长春质量监测)函数f (x )=1-ln xln x的定义域为________. 8.(2015·绵阳市一诊)已知函数f (x )=3x -22x -1,则f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫311+…+f ⎝⎛⎭⎫1011=________.答案精析A 组三年高考真题(2016~2014年)(2016年高考题6月底更新)1.解析对于选项A ,右边=x |sgn x |=⎩⎪⎨⎪⎧x ,x ≠0,0,x =0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确;对于选项B ,右边=x sgn|x |=⎩⎪⎨⎪⎧x ,x ≠0,0,x =0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确; 对于选项C ,右边=|x |sgn x =⎩⎪⎨⎪⎧x ,x >00,x =0x ,x <0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然不正确;对于选项D ,右边=x sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,-x ,x <0,而左边=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,显然正确.故应选D.答案 D2.解析需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪ (1,+∞). 答案 D3.解析依题意,有4-|x |≥0,解得-4≤x ≤4;① 且x 2-5x +6x -3>0,解得x >2且x ≠3,②由①②求交集得函数的定义域为(2,3)∪(3,4].故选C. 答案 C4.解析若a ≤1,f (a )=2a -1-2=-3,2a -1=-1(无解); 若a >1,f (a )=-log 2(a +1)=-3,a =7, f (6-a )=f (-1)=2-2-2=14-2=-74.答案 A5.解析由题意,得f ⎝⎛⎭⎫56=3×56-b =52-b . 若52-b ≥1,即b ≤32时,522=4b -,解得b =12. 若52-b <1,即b >32时,3×⎝⎛⎭⎫52-b -b =4,解得b =78(舍去). 所以b =12.答案 D6.解析∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝⎛⎭⎫14=1-14=1-12=12,故选C. 答案 C7.解析由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2, 即函数f (x )的定义域是(2,+∞). 答案 C8.解析因为-1<0,所以f (-1)=(1)2--=2,又2>0,所以f [f (-1)]=f (2)=a ·22=1, 解得a =14.答案 A9.解析由函数f (x )=ax 3-2x 过点(-1,4),得4=a (-1)3-2×(-1),解得a =-2. 答案-2B 组两年模拟精选(2016~2015年)1.解析 由ln(2x +1)≠0且2x +1>0得x >-12且x ≠0.答案 B2.解析要使函数有意义需满足2-2-30+20x x x ⎧≥⎨>⎩,,即3-1-2x x x ≥≤⎧⎨>⎩或,,所以其定义域为(-2,-1]∪[3,+∞),故选D. 答案 D3.解析 易知函数y =13x 的定义域为{x |x ≠0},而函数y =1sin x 的定义域为{x |x ≠k π,k ∈Z },函数y =ln x x 的定义域为{x |x >0},函数y =cos xx 的定义域为{x |x ≠0},函数y =x 3e x 的定义域为实数集R ,所以与函数y =13x 的定义域相同的函数是y =cos xx ,故选C.答案 C4.解析 f (-7)=1+log 39=3,f (log 312)=f (1+log 34)=3log 34=4. 所以f (-7)+f (log 312)=3+4=7. 答案 A5.解析 ∵3x +1>1,且y =log 2x 在(0,+∞)上为增函数, ∴f (x )>0,∴f (x )的值域为(0,+∞).故选A. 答案 A6.解析 ∵f (2)=4log 22+2=4×1+2=6,f (4)=4log 24+2=4×2+2=10, f (8)=4log 28+2=4×3+2=14, ∴f (2)+f (4)+f (8)=6+10+14=30. 答案 C7.解析由函数f (x )的解析式可得1-ln 0ln 00x x x ≥⎧⎪≠⎨⎪>⎩,,,即ln 1ln 00x x x ≤⎧⎪≠⎨⎪>⎩,,,解得0x e <≤且 1.x ≠所以函数f (x )的定义域为(0,1)∪(1,e]. 答案 (0,1)∪(1,e]8.解析 因为f (x )=3x -22x -1,所以f (1-x )=3(1-x )-22(1-x )-1=3x -12x -1,所以f (x )+f (1-x )=3,所以所求=3×102=15.答案 15。
第四节 指数与指数函数A 组三年高考真题(2016~2014年)1.(2014·辽宁,3)已知a =132-,b =log 213,c =121log 3,则( ) A.a >b >c B.a >c >b C.c >a >b D.c >b >a2.(2015·山东,14)已知函数f (x )=a x +b (a >0,a ≠1) 的定义域和值域都是[-1,0],则a +b =________.3.(2014·上海,9)若f (x )=23x -12x -,则满足f (x )<0的x 的取值范围是________.B 组两年模拟精选(2016~2015年)1.(2016·安徽马鞍山模拟)下列各式比较大小正确的是( )A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.12.(2016·安徽马鞍山模拟)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A.y =1-xB.y =|x -2|C.y =2x -1D.y =log 2(2x )3.(2016·山东青岛模拟)已知函数f (x )=e |ln x |,则函数y =f (x +1)的大致图象为()4.(2016·福建福州模拟)设12<⎝⎛⎭⎫12b <⎝⎛⎭⎫12a<1, 那么( ) A.a a <a b <b a B.a a <b a <a b C.a b <a a <b a D.a b <b a <a a5.(2015·辽宁沈阳模拟)已知函数f (x )=2x -12x +1,则不等式f (x -2)+f (x 2-4)<0的解集为( ) A.(-1,6) B.(-6,1) C.(-2,3) D.(-3,2)6.(2015·广东汕头模拟)若函数y =a x +b -1(a >0且a ≠1)的图象经过第二、三、四象限,则一定有( )A.0<a <1且b >0B.a >1且b >0C.0<a <1且b <0D.a >1且b <07.(2015·浙江湖州模拟)已知函数f (x )=m ·9x -3x ,若存在非零实数x 0,使得f (-x 0)=f (x 0)成立,则实数m 的取值范围是( )A.⎣⎡⎭⎫12,+∞B.⎝⎛⎭⎫0,12C.(0,2)D.[2,+∞)8.(2016·浙江温州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a ) 的取值范围是________.9.(2016·豫晋冀三省调研)设函数f (x )=a x (a >0,a ≠1)在x ∈[-1,1]上的最大值与最小值之和为g (a ),则函数g (a )的取值范围是________.答案精析A 组三年高考真题(2016~2014年)1.C[a =2-13∈(0,1),b =log 213∈(-∞,0),c =log 1213=log 23∈(1,+∞),所以c >a >b .] 2.-32[当a >1时,f (x )=a x +b 在定义域上为增函数, ∴⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,方程组无解; 当0<a <1时,f (x )=a x +b 在定义域上为减函数,∴⎩⎨⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2.∴a +b =-32.] 3.(0,1) [令y 1=x 23,y 2=12x -,f (x )<0即为y 1<y 2,函数y 1=x 23,y 2=12x -的图象如图所示,由图象知:当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1).]B 组两年模拟精选(2016~2015年)1.B [A 中,∵函数y =1.7x 在R 上是增函数,2.5<3,∴1.72.5<1.73.B 中,∵y =0.6x 在R 上是减函数,-1<2,∴0.6-1>0.62. C 中,∵(0.8)-1=1.25,y =1.25x 在R 上是增函数, 0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,∵函数y =1.7x 在R 上是增函数且0.3>0,∴1.70.3>1.70=1,又函数y =0.9x 在R 上是减函数且3.1>0,∴0.93.1<0.90=1.故1.70.3>0.93.1.2. A[易知A (1,1),经验证可得y =1-x 的图象不经过点A (1,1),故选A.]3.D [f (x )=e |ln x |=⎩⎪⎨⎪⎧x (x ≥1),1x (0<x <1),而函数y =f (x +1)的图象是由函数f (x )=e |ln x |向左平移了一个单位,故选D.]4.C[由于y =⎝⎛⎭⎫12x 是减函数,12<⎝⎛⎭⎫12b <⎝⎛⎭⎫12a<1,所以0<a <b <1,当0<a <1时,y =a x 为减函数,所以a b <a a ,排除A ,B ;因为y =x a 在第一象限内为增函数,所以a a <b a ,故选C.]5.D[因为函数f (x )=2x -12x +1为R 上的奇函数且增函数,所以不等式f (x -2)+f (x 2-4)<0可化为f (x 2-4)<f (2-x ),所以x 2-4<2-x ,则-3<x <2,故选D.]6.C [当0<a <1时,不论上下怎样平移,图象必过第二象限;当a >1时,不论上下怎样平移,图象必过第一象限.∵y =a x +b -1的图象经过第二、三、四象限,∴只可能0<a <1.如图所示,这个图可理解为将y =a x(0<a <1)的图象向下平移大于1个单位长度.∴⎩⎪⎨⎪⎧b -1<0,|b -1|>1,解得b <0. 可知0<a <1且b <0.]7.B[由题意得到f (-x )=f (x ),∴m ·9-x -3-x =m ·9x -3x , 整理得到:m =3x(3x )2+1=13x +13x <12,又m >0,所以实数m 的取值范围是0<m <12,故选B.] 8.⎣⎡⎭⎫34,2 [依题意,在坐标平面内画出函数y =f (x )的大致图象,结合图象可知b ∈⎣⎡⎭⎫12,1,bf (a )=bf (b )=b (b +1)=b 2+b ∈⎣⎡⎭⎫34,2.]9.(2,+∞) [f (x )在x ∈[-1,1]上的最大值和最小值在两端点处取得,∴g (a )=f (1)+f (-1)=a +1a ,又a >0,且a ≠1,所以g (a )=a +1a>2.]。
第七节 函数与方程A 组三年高考真题(2016~2014年)1.(2015·山东,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎡⎦⎤23,1B.[0,1]C.⎣⎡⎭⎫23,+∞D.[1, +∞) 2.(2015·天津,8)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2, x -2 2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝⎛⎭⎫74,+∞B.⎝⎛⎭⎫-∞,74C.⎝⎛⎭⎫0,74D.⎝⎛⎭⎫74,2 3.(2014·湖南,10)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( ) A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫-1e ,e D.⎝⎛⎭⎫-e ,1e 4.(2016·山东,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.5.(2015·湖南,15)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.6.(2015·安徽,15)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号).①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2;④a =0,b =2;⑤a =1,b =2.7.(2015·江苏,13)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.8.(2015·北京,14)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,4 x -a x -2a ,x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.B 组两年模拟精选(2016~2015年)1.(2016·湖北荆门模拟)对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点2.(2016·陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B.-2,0C.12D.03.(2016·黑龙江佳木斯模拟)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.则函数f (x )=sgn(ln x )-ln x 的零点个数为( ) A.1 B.2 C.3D.44.(2015·湖南衡阳模拟)设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,设函数f (x )=(x +p )(x +q )+2,则( ) A.f (2)=f (0)<f (3)B.f (0)<f (2)<f (3)C.f (3)<f (2)=f (0)D.f (0)<f (3)<f (2)5.(2015·青岛市模拟)函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( )A.(0,1)B.(1,2)C.(2,e)D.(3,4)6.(2015·济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为( ) A.4B.2C.-4D.与m 有关7. (2015·南昌二模)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( ) A.9B.10C.11D.188.(2016·广西南宁模拟)已知函数f (x )=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z )其中常数a ,b 满足2a =3,3b =2,则n =________.9.(2016·天津南开中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.10.(2016·江西十校二联)给定方程⎝⎛⎭⎫12x+sin x -1=0,下列命题中: ①方程没有小于0的实数解; ②方程有无数个实数解;③方程在(-∞,0)内有且只有一个实数解; ④若x 0是方程的实数解,则x 0>-1. 正确命题是________.11.(2015·长春模拟)设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ). (1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.12.(2015·青岛模拟)已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.答案精析A 组三年高考真题(2016~2014年)1.C[当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝⎛⎭⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C.] 2.D [记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.]3.B [由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x -12有正解,即e -x -ln(x +a )-12=0有正解,令F (x )=e -x -ln(x +a )-12,则F ′(x )=-e -x -1x +a<0,故函数F (x )=e -x -ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x -ln(x +a )-12≥0,所以a ≤1e 2ex x ---,又y =1e 2ex x ---在(0,+∞)上单调递减,所以a <1e 02e0---=12e ,选B.]4.(3,+∞) [如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |. ∵m >0,∴m 2-3m >0,解得m >3.5.(-∞,0)∪(1,+∞) [若0≤a ≤1时,函数f (x )=⎩⎪⎨⎪⎧x 3 (x ≤a ),x 2 (x >a )在R 上递增,若a >1或a <0时,由图象知y =f (x )-b 存在b 使之有两个零点,故a ∈(-∞,0)∪(1,+∞).] 6.①③④⑤ [令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤.]7.4 [令h (x )=f (x )+g (x ),则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x+1x =1-2x2x <0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.]8.(1)-1 (2)⎣⎡⎭⎫12,1∪[2,+∞)[(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1. 当x <1时,2x -1>-1.当x ≥1时,且当x =32时,f (x )min =f ⎝⎛⎭⎫32=-1,∴f (x )最小值为-1. (2)1°当a ≤0时,2x -a >0,由4(x -a )(x -2a )=0得x =a 或x =2a .a ∉[1,+∞), 2a ∉[1,+∞), ∴此时f (x )无零点.2°当0<a <1时,若有2个零点,只须⎩⎪⎨⎪⎧a <1,2a ≥1,∴12≤a <1.3°当1≤a <2时,x <1,2x =a ,x =log 2a ∈[0,1), x ≥1时,由f (x )=0,得x =a 或2a ,a ∈[1,+∞). 2a ∈[1,+∞),有3个零点,不合题意. 4°当a ≥2时,x <1,则2x -a <0,x ≥1时,由f (x )=0,得x =a 或2a ,a ,2a ∈[1,+∞), 此时恰有2个零点,综上12≤a <1或a ≥2.]B 组两年模拟精选(2016~2015年)1.C[利用排除法,f (a )·f (b )<0是函数f (x )在区间(a ,b )内有零点的充分不必要条件,故选C.]2.D[当x ≤1时,由f (x )=2x -1=0,得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解,函数f (x )的零点只有0.故选D.]3.C[依题意得f (x )=⎩⎪⎨⎪⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1,令f (x )=0得x =e,1,1e,所以函数有3个零点,故选C.4.A[∵方程2x +x +2=0和方程log 2x +x +2=0的根分别为函数y =2x ,y =log 2x 与直线y =-x -2的交点横坐标,而函数y =2x ,y =log 2x 互为反函数,其图象关于y =x 对称,又直线y =-x -2与直线y =x 垂直,且两直线的交点坐标为(-1,-1),∴p +q =-2, 则f (x )=x 2+(p +q )x +pq +2=x 2-2x +pq +2,∵该二次函数的对称轴为x =1,∴f (2)=f (0)<f (3).故选A.]5.B[利用零点存在性定理得到f (1)·f (2)=(ln 2-2)·(ln 3-1)<0,故选B.]6.A [方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,因为函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4,选A.]7.B [在坐标平面内画出y =f (x )与y =|lg x |的大致图象(如图),由图象可知,它们共有10个不同的交点,因此函数F (x )=f (x )-|lg x |的零点个数是10,故选B.]8.-1[a =log 23>1,b =log 32<1,令f (x )=0,得a x =-x +b ,在同一坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示;由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =-1.]9.(0,1) [f (x )=⎩⎪⎨⎪⎧2x -1,-x 2-2x =⎩⎪⎨⎪⎧2x -1,x >0,-(x +1)2+1,x ≤0,图象如图:由g (x )=f (x )-m 有3个零点,知f (x )=m 有三个根,则实数m 的范围是(0,1).]10.②③④[在同一坐标系中画出函数y =⎝⎛⎭⎫12x-1与y =-sin x (该函数的值域是[-1,1])的大致图象,结合图象可知,它们的交点中,横坐标为负的交点,有且只有一个,因此方程⎝⎛⎭⎫12x+sin x -1=0在(-∞ ,0)内有且只有一个实数解,故③正确,①不正确,由图象易知②,④均正确.]11.解(1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x ,2-y ),代入f (x )=x +1x ,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g (x )=x -2+1x -4.(2)由⎩⎪⎨⎪⎧y =m ,y =x -2+1x -4,消去y 得x 2-(m +6)x +4m +9=0,Δ=[-(m +6)]2-4(4m +9), ∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0); 当m =4时,经检验合理,交点为(5,4).12.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3), 作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0. 由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎡⎦⎤-1,-34时方程至少有三个不等实根.。