实际问题与一元二次方程面积问题
- 格式:ppt
- 大小:299.50 KB
- 文档页数:5
实际问题与一元二次方程-面积问题知识点一:通道类面积问题1.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x 米,根据题意,可列方程为( ) A .(10)900x x -= B .(10)900x x +=C .10(10)900x +=D .2[(10)]900x x ++=2.直角三角形两条直角边的和为7,面积为6,则斜边为( )A B .5 C .25 D .73.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?4.如图,将一块正方形铁皮的四个角各剪去一个边长为4cm 的小正方形,做成一个无盖的盒子,如果盒子的容积为3400cm ,求原正方形铁皮的边长.知识点二:围墙类面积问题5.如图,有面积为2150m 的长方形养鸡场,鸡场的一边靠围墙(围墙长为18米),另外三边用篱笆围成,竹篱笆的总长为35m .(1)求鸡场的长与宽各为多少米?(2)能围成面积比2150m 更大的养鸡场吗?如果能,请求出最大面积.6.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?7.如图,矩形ABCD 的长AB 为42米,宽BC 为30米,黑色园区为宽度相等的一条“7”形的健身用鹅卵石小路,若鹅卵石小路的面积为140平方米,求小路的宽BE .F ECBA能力提升8.如图,某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m?9.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为2ycm.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.10.如图,一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道.(1)求人行通道的宽度;(2)一名园丁要对这56米2的绿地进行绿化,他在绿化了16米2后将效率提高了25%,结果提前1小时完成任务,求园丁原计划每小时完成多少米2.11.在一次美术展览活动中,小明画了一幅6040⨯的风景画.为了在展览时使画更好cm cm看,他决定在这幅画的四周镶上宽度相等的彩色纸条.经测量,在镶了彩色纸条后,这幅画的面积变成了22501cm.问小明所镶的彩色纸条有多宽?12.如图1,某小区的平面图是一个占地400300⨯平方米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形.如果要使四周的空地所占面积是小区面积的36%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为18000平方米,请算出小区道路的宽度.。
第3讲 实际问题与一元二次方程【知识导航】面积问题,增长率问题,传染问题,循环及握手问题,经济问题等.【板块一】面积问题【方法技巧】注意题目中隐含条件,用平移表示矩形的长度.【题型一 围栏靠墙】【例1】如图,要建一个矩形的鸡场ABCD ,鸡场的一边靠墙,另外三边用竹篱笆围成,墙的长度为14m ,墙的对面开一个1m 宽的门,现有竹篱笆总长31m .(1)若要围成的鸡场面积为120m 2,求鸡场的长和宽各是多少m ?(2)当边AB 的长为______m 时,鸡场面积最大,最大面积为______ m 2答案:(1)设鸡场的宽AB 为xm ,则BC =(31-2x +1)m ,依题意得, x (31-2x +1)=120,解得x 1=6,x 2=10,由0<31-2x +1≤14得9≤x <16,∴x =10.答:长为12m ,宽为10m .(2)S =x (31-2x +1)=-2(x -8)2+128,当x =8时,S 有最大值为128.【点评】矩形开口就是增加长度,要注意取值范围.【题型二 矩形中通道】【例2】如图,要设计一副宽20cm 、长30cm 的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少?答案:设横彩条的宽为2x cm ,竖彩条的宽为3x cm ,依题意,得:(20-2x )(30-3x )=81%×20×30.解之,得x 1=1,x 2=19当x =19时,2x =38>20,不符题意,舍去.所以x =1答:横彩条的宽为2cm ,竖彩条的宽为3cm .【题型三 边框设计】【例3】第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm 、宽为20cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程得________. 30cm答案:设镜框的宽度为x cm ,依题意列方程,(29+2x )(20+2x )=54×29×20, 化简得,4x 2+98x -145=0.【针对练习1】 1.如图,要设计一本书的封面,封面长27cm ,宽21cm ,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的边衬所占面积是封面面积的1781,上、下边村等宽,左、右边衬等宽,则上、下边衬的宽为( )cmA .1B .1.5C .2D .2.5答案:B2.要为一幅长30cm 、宽20cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的1124,则镜框边的宽度为( ) A .1cm B .2cm C .2cm D .2.5cm答案:D3.如图所示,在宽为20m ,长为32m 的矩形地面上修筑相同宽度的甬道(图中阴影部分),余下部分种上草坪,要使草坪面积为540m 2,求甬道宽.答案:设甬道宽为xm ,依题意得,(32-x )(20-x )=540,解得x 1=2,x 2=50,∵x <20,∴x =2 答:甬道宽为2m .4.如图,一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.答案:设横彩条的宽度为3x cm ,竖彩条的宽度为2x cm .(20-4x )(12-3x )=20×12×(1-25)解得x 1=1,x 2=8. ∵3x <12,∴x <4,∴x =1.答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .20m5.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为xm.(1)若两个鸡场总面积为96m2,求x;(2)若两个鸡场总面积和为Sm2,求S关于x的关系式;(3)两个鸡场面积和S有最大值吗?若有,最大值是多少?答案:(1)x=8,提示:x(36-3x)=96,x=4或x=8,当x=4,AD=24>0,舍去;(2)S=AD×AB=(36-3x)x=-3x2+36x(163≤x≤343);(3)S=-3x2+36x=-3(x-6)2+108,当x=6,即AB=6时,S取得最大值108.【板块二】循环向题、增长率问题、传染等问题1.n支球队参加单循环比赛、一共赛12n(n-1)场;n支球队参加双循环比赛,一共赛n(n-1)场;2.基数A经过两轮增长(下降),平均增长(下降)率为x,两轮后结果为A(1士x)2;3.一人感冒,经过两轮传染,平均每人传染x人,两轮后感冒人数为(1+x)2【题型一循环问题】【例1】要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?【解析】设应邀请x个球队参加比赛,依题意得,12x(x-1)=15,解得x1=6,x2=-5(舍去)答:应邀请6个球队参加比赛.【例2】九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1980张卡片.设全班有x名学生,根据题意列出方程为________.答案:x(x-1)=1980.【题型二增长率问题】【例3】今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投人3640万元,已知今年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.1000(1+x)2=3640 B.1000(x2+1)=3640C.1000+1000x+1000x2=3640 D.1000(1+x)+1000(x+1)2=2640答案:选D【例4】某工厂七月份出口创汇200万美元,因受国际大环境的严重影响,出口创汇出现连续下滑,至九月份时出口创汇下降到98万美元,设该厂平均每月下降的百分率是x,则所列方程_________答案:200(1-x)2=98.【题型三传染问题】【例5】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?答案:(1)设每轮感染中平均一台电脑会感染x台电脑,依题意得,1+x+(1+x)x=81,解得x1=8,x2=-10(舍去)∴平均一台电脑会感染8台电脑;(2)三轮感染后,(1+x)2=729>700,∴被感染的电脑会超过700台【题型四树枝分叉问题】【例6】某种植物主干长出若干数目的支干.每个支干又长出同样数目的小分支.主干、支干、小分支的总数是73,求每个支干长出多少个小分支?答案:设每个支干长出x个小分支,依题意得,1+x+x2=73,解得x1=8,x2=-9(舍去)答:每个支干长出8个小分支【例7】有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有133人收到短消息,问每轮转发中平均一个人转发给( )个人A.9 B.10 C.11 D.12答案:C【针对练习2】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺卡,全组共送贺卡72张,则此小组人数为( )A.7 B.8 C.9 D.10答案:C2.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛.设一共有x个球队参赛,根据题意,所列方程为____________答案:12x(x-1)=363.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支.若主干、支干和小分支的总数是57,则每个支干长出( )根小分支A.5 B.6 C.7 D.8答案:C4.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元,则平均每月降价的百分率为( )A.9.5% B.20% C.10% D.11%答案:C5.某村的人均收入前年为12000元,今年的人均收入为14520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为__________答案:12000(x+1)2=145206.有两个人患了流感,经过两轮传染后共有242个人患了流感,每轮传染中,平均一个人传染了____人.答案:10【板块三】利润问题【方法技巧】利润=单件利润×数量.【例1】某商店从生产厂家以每件21元的价格进一批商品,该商品以25元一件的价格出售,每天可卖出100件.后调査发现:每涨价2元每天将少卖20件,每件商品加价超过进价的20%但不能超过进价的50%.商店计划每天要赚400元,需要卖出多少件商品?每件商品的售价为多少元?答案:设售价为x 元,依题意得:[x -21][100-10(x -25)]=400,解得x 1=25,x 2=31.∵21(1+20%)≤x ≤21(1+50%),∴25.2≤x ≤31.5,∴x =3当x =31时,铺售量为100-10(x -25)=40件.故每件商品的售价为31元时,可卖出40件,每天可赚400元.【例2】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金—各种费用)为275万元?【解析】(1)24间(2)设每间商铺的年租金增加x 万元,则(30-x 0.5)×(10+x )-(30-x 0.5)×1-x 0.5×0.5=275,解得1x =0.5,2x =5.答:当每间商铺的年租金定为15万元或10.5万元时,该公司的年收益为275万元.针对练习31.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现, 在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?解:设每千克水果应涨价x 元,则(500 —20x )(10+x ) = 6000,解得1x =5,2x =10. 要使顾客得到实惠,应取x =5.答:每千克应涨价5元.2.某宾馆有30个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每间房间定价x 元(x ≥100).(1)每天有游客居住的房间数为 (用x 表示结果化简)(2)当毎间房价定为多少元,宾馆的利润w (元)最大?解:(1)30-110x ; (2)w =(x -20)(30-110x )=-1102x +32x -600=-1102160x () +1960 当x =160时,w 有最大值为1960;。
41203023422023302x x x x )411(2030)3220)(2230(x x 41203023422023302x x x x )411(2030)3220)(2230(x x 《实际问题与一元二次方程》---(面积问题)教学设计导入:我们知道议程是刻画实际问题中数学关系的有效数学模型,所以我们经常用议程来分析解决实际问题,在以前的学习中,我们已经了解并掌握了怎样用一元一次方程、二元一次方程组及分式方程等去解决实际问题,那么今天,我们就尝试着用一元二次方程去分析解决实际问题。
板书:实际问题与一元二次方程活动一:(你一言、我一语,道破天机)如图是某中学长30m 、宽20m 的矩形草坪活动场,因需要四周要铺成四条小路,使横、纵路的宽度之比是3:2,如果小路的面积是原矩形草坪面积的四分之一,那么小路宽应是多少?都有哪些已知量?表示等量关系的又是哪些?思考后说说。
解:设横路的宽是3Xm ,纵路的宽是2Xm ,据题意可列方程:用一元二次方程解决实际问题的基本步骤是什么?活动二:(独上高楼赏月)变式:为了美观和实用,学校计划重新铺筑小路,有些同学为学校设计了新的图案,如图所示:如果其它条件都不变,那么这时的小路应修多宽?独立完成后,组内交流。
板演。
通过这两个题,你有什么联想?解:设横路的宽是3Xm ,纵路的宽是2Xm ,据题意可列方程:这两个图形有什么区别和联系?你还能为学校设计别的图案吗?总结:我们可以利用“图形平移位置变,面积大小不改变”的道理,也可叫做“靠边站”,这样使所列方程更容易些,以便求出路宽,也就是把不规则的图形转化为规则的图形,是解决这类问题的关键所在。
活动三:(大显身手)独立完成,男女同学每题各找一名同学板演,方法补充(喜羊羊)如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.解法(1):由题意转化为右图,设道路宽为x 米.根据题意,可列出方程为2032540x x. 整理得2521000xx . 解得150x (舍去),22x .答:道路宽为2米.解法(2):由题意转化为右图,设道路宽为x 米,根据题意列方程得:133x 2233x ()2舍去220322032540x x .整理得:2521000x x . 解得:12x ,250x (舍去).答:道路宽应是2米.(灰太狼)如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?活动四:(团结就是力量)先独立,再小组合作,充分发挥合作探索交流的优势,充分交流后,小组出代表发言(注意语言的总结)。
实际问题与一元二次方程一、教材分析本节是在学习学习了一元二次方程解法后,解决生活中的实际问题,重点是分析实际问题中的数量关系并以方程形式进行表示的这种数学建模思想。
二、学情分析学生已经学会了一元二次方程的解法,并且能在实际问题中抽象和建立一元一次方程、可化为一次方程的分式方程的模型,从而在此基础上建立一元二次模型则水到渠成.三、教学目标1.知识与能力(1)、掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.(2)、能根据具体问题的实际意义,检验结果是否合理.2.过程与方法在解决实际问题的过程中体会知识间的关系,感受数学与生活的联系.3.情感、态度与价值观培养学生分析解决问题的能力,体会数学知识应用的价值.四、重点、难点重点:据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型交流宽,左、右边衬等宽,•应如何设计四周边衬的宽度(结果保留小数点后一位)?自学指导:1、题目等量关系是什么?2、如何设未知数?3、你还有其他方法列方程吗?学习热情,使学生体会解决问题方法的多样性。
试一试我校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米思考:以上2图有什么联系和区别?还有下面几种方案:在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种上草坪,要使草坪的面积为540m2,求道路的宽。
(只写解设、列出方程即可)试一试中,思考中的问题是中心环节,以图形对比的问题为引导,通过对比两个图形的联系和区别,启发学生以边框问题为模型,构建草坪问题的解题思路。
充分思考之后,学生会产生动手实践的欲望,教师要给学生一定的空间,同时也注意对图形变换的指导。