第十九讲两角和与差及二倍角公式
- 格式:pdf
- 大小:118.36 KB
- 文档页数:6
两角和与差及其二倍角公式知识点及典例1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=; C(α+β):cos(α+β)=;S(α+β):sin(α+β)=; S(α-β):sin(α-β)=;T(α+β):tan(α+β)=; T(α-β):tan(α-β)=;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;2、二倍角的正弦、余弦、正切公式2S α:sin2α=; 2T α:tan2α=;2C α:cos2α===;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为: tan α±tan β=_____________; tan αtan β= =. 1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、711B 、-713C 、713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( )A .-235 B.235C .-45D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665D .-16654、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B.3C .2 D .1例1求[2sin 50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒-例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.变式3:已知tan α= 17,tan β= 13,并且α,β 均为锐角,求α+2β的值.例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间?变式4(1)如果()()sin 2cos()f x x x ϕϕ=+++是奇函数,则tan ϕ= ;(2)若方程sin x x c =有实数解,则c 的取值范围是___________.1、下列各式中,值为12的是 ( )A 、1515sin cosB 、221212cos sin ππ- C 、22251225tan .tan .- D 2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件3、已知3sin 5α=,tan 0α<则tan()4πα-= . 4、=︒+︒-︒20sin 6420cos 120sin 32225、2sin()2sin()cos()333x x x πππ++---=______________.6、0000cos(27)cos(18)sin(18)sin(27)x x x x +---+=7、若sin α=sin β=,αβ都为锐角,则αβ+= 8、在△ABC 中,已知tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C 等于9、110sin - ;10、︒︒-︒70sin 20sin 10cos 2= 11、(1tan 22)(1tan 23)︒︒++=12、)20tan 10(tan 320tan 10tan ︒+︒+︒︒=13、(福建理17)在ABC △中,1tan 4A =,3tan 5B =.求角C 的大小; 14、已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(1)求α2tan 的值.(2)求β.15、如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B (1)求tan(α+β)的值;(2)求α+2β的值.。
两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( )A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435,∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247. 所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( )A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值. 解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115, 从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。
§15.2 两角和、两角差与二倍角公式在诱导公式中,我们有sin(α+2π)=cos α,sin(π-α)=sin α 等等一批公式,公式中同一个三角函数符号下出现了两个角,其中一个角α可以任意,但另一个角2π,π等却是固定的.如果把另一个角改成也是可以任意的例如β,那么sin(α+β)、sin(α-β)等与α,β的三角函数之间会有联系吗?如果有联系,又是怎样的联系?一、两角和与差的余弦1、知识要点设角α的终边与单位圆的交点坐标为P (cos α,sin α),角β的终边与单位圆的交点坐标为Q (cos β,sin β).记 a=OP =(cos α,sin α),b =OQ =(cos β,sin β), 则 a b =|a|⋅|b |cos(α-β)=cos(α-β); 又应用向量数量积的坐标表示公式 a b=cos α cos β+ sin α sin β,所以cos(α-β)=cos α cos β+ sin α sin β (C α-β )(1)我们把C α-β叫做两角差的余弦公式.在C α-β 中用-β代替β,就可以得到cos(α+β)= cos [α-(-β)] =cos α cos(-β)+ sin α sin(-β)即 cos(α+β)= cos α cos β- sin α sin β. (C α+β )(2)把C α+β 叫做两角和的余弦公式. 2、例题分析例1 不查表,求cos105°及cos15°的值. 解 设法把105°,15°分解成已知三角函数值的特殊角的和或差,再应用C α-β 或C α+β .cos105°=cos(60°+45°)=cos60°cos45°-sin60°sin45°=1222⋅=462-; cos15°=cos(45°-30°)= cos45°cos30°+sin45°sin30°12+=426+. 例2 已知cos α=-54, (2π<α<π),求cos(6π-α), cos(6π+α). 解 因为cos α=--54,且2π<α<π,所以sin α=2)54(1--=53.cos(6π-α)=cos6πcos α+sin6πsin α413)525-+⋅=10343-; cos(6π+α)= cos6πcos α-sin6πsin α413)525--⋅=10343+-. 例3 利用公式C α+β 证明cos [α+(2k +1)π]=-cos α.证明 cos [α+(2k +1)π]=cos αcos(2k +1)π-sin αsin(2k +1)π=cos α(-1)-sin α⋅0=-cos α,所以原式成立. 3、课内练习1. 不查表,求下列三角函数的值: (1)cos75°; (2)cos(-15°); (3)cos80°cos20°+sin80°sin20°;β)(4)cos20°cos25°-sin20°sin25°; (5)cos22.5°cos22.5°-sin22.5°sin22.5°; (6)cos 215°-sin 215°. 2.利用公式C α+β 、C α-β 证明(1)cos(α+2π)=-sin α; (2)cos(-α)=cos α.3.已知sin α=32,α (2π,π),求cos(3π+α), cos(3π-α). 4.已知sin α=1715, cos β=135-, α, β∈(2π,π),求cos(α+β), cos(α-β)的值.二.两角和与差的正弦.1、知识要点有了C α+β 和C α-β的公式,自然会联想两角和与差的正弦公式如何?因为sin(α+β)=cos [2π-(α+β)]=cos [(2π-α)-β]=cos(2π-α)cos β+sin(2π-α)sin β=sin αcos β+cos αsin β即 sin(α+β)=sin αcos β+cos αsin β. (S α+β)(1)我们把S α+β 叫做两角和的正弦公式.在两角和的正弦公式中,用(-β)代替β就可以得到 sin(α-β)=sin(α+(-β))=sin αcos(-β)+ cos αsin(-β),即 sin(α-β)=sin αcos β-cos αsin β. (S α-β)(2)我们把S α-β 叫做两角差的正弦公式. 2、例题分析例1 不查表,求sin75︒,sin15︒的值解 sin75︒=sin (45︒+30︒)=sin45︒⋅cos30︒+cos45︒⋅sin30︒=2322⋅ +2122⋅=426+;sin15︒=sin (45︒-30︒)=sin45︒⋅cos30︒-cos45︒⋅sin30︒=2322⋅ -2122⋅=426-.例2 已知向量OP =(3,4),绕原点旋转45︒到P O '的位置(见图10-2),求点P ’的坐标(x ’,y ’). 解 设∠xOP =α.因为|OP |=2243+=5,所以cos α=53,sin α=54,x ’=5cos(α+45︒)=5(cos αcos45︒- sin αsin45︒)=5(53⨯22-54⨯22)=-22;y ’=5sin(α+45︒)=5(sin αcos45︒+ cos αsin45︒)=5(54⨯22+53⨯22)=227.所以 P ’( -22, 227).3、课内练习1. 不查表,求下列各式的值(1)sin105︒; (2)sin165︒; (3)sin(-125π); (4)sin13︒cos17︒+cos13︒sin17︒; (5)sin70︒cos25︒-sin25︒cos70︒.2. 化简(1)sin(α+β)cos β-cos(α+β)sin α; (2)sin(α-β)cos β+cos(α-β)sin β.图10-2• yxαPO•P ' 45︒3.已知sin α=1715,α∈(2π,π),求sin(3π+α), sin(3π-α).4.已知sin α=32, cos β=-43,且α, β都是第二象限的角,求sin(α+β), sin(α-β).5.向量OP =(4,3)绕原点旋转60︒, 120︒, -60︒到1OP ,2OP ,3OP 的位置,求点P 1,P 2,P 3的坐标.三.两角和与差的正切1、知识要点根据同角三角函数的关系:tan(α+β)=)cos()sin(βαβα++,得tan(α+β)=βαβαβαβαsin sin cos cos sin cos cos sin -+;分子、分母同除以cos αcos β, (cos αcos β)≠0), 则tan(α+β)=βαβαtan tan 1tan tan -+. (T α+β )(1)我们把T α+β 叫做两角和的正切.在T α+β 中用-β代替β,并用负角公式tan(-x)=-tanx ,就可以得到tan(α-β)=βαβαtan tan tan tan ⋅+-1. (T α-β )(2)我们把T α-β 叫做两角差的正切. 2、例题分析例1 不查表,求下列各式的值(1)tan75︒; (2)︒︒︒+︒34tan 71tan -134tan 71tan .解 (1) tan75︒= tan (45︒+30︒)=︒⋅︒︒+︒30tan 45tan -130tan 45tan =3333-+=2+3;(2)︒︒︒+︒34tan 71tan -134tan 71tan =tan(17︒+43︒)= tan60︒=3例2 不查表,求下列各式的值(1)151151tan tan -+; (2)tan23︒+tan22︒+tan23︒tan22︒. 解 (1)︒-︒+15tan 115tan 1=︒︒-︒+︒15tan 45tan 115tan 45tan =tan (45︒+15︒)=tan60︒=3;(2)因为tan(23︒+22︒)=︒︒+︒+︒22tan 32tan 122tan 32tan ,所以tan23︒+tan22︒=tan(23︒+22︒)(1- tan23︒tan22︒),原式=tan45︒ (1-tan23︒tan22︒)+tan23︒tan22︒=1-tan23︒ tan22︒+ tan23︒ tan22︒ =1. 3、课内练习1. 不查表,求下列各式的值:(1)tan15︒; (2)tan105︒; (3)︒︒-︒+︒33tan 21tan 133tan 21tan ; (4)3tan125tan 13tan 125tanππππ-+. 2. 已知tan x =2, tan y =51,求tan (x +y ),tan (x -y ). 3. 不查表,求下列各式的值(1)︒+︒-75tan 175tan 1; (2)tan17︒ +tan43︒+3tan17︒ tan43︒.4. 求证(1)θθtan 1tan 1+-=tan(θπ-4); (2)θθtan 1tan 1-+=tan(θπ+4). 5. 已知tan α=52,tan β=73,求tan(α+β). 6. 已知tan α=23,tan β=53,求tan(α-β).四.倍角公式1、知识要点在和角公式S α+β , C α+β , T α+β 中,取β=α,就可得出相应的二倍角的三角函数公式: (1)sin2α=2sin αcos α; (S 2α ) (2)cos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α; (C 2α )(3)t a n2α=αα2tan -12tan . (T 2α ) 2、例题分析例1 已知sin α=135, α∈(2π,π),求sin2α, cos2α, tan2α的值.解 因为sin α=135, α∈(2π,π),所以cos α=-α2sin 1-=-2)135(1-=-1312.sin2α=2sin αcos α=2⨯135⨯(-1312)=-169120;cos2α=cos 2α-sin 2α=(-1312)2-(135)2=169119; tan2α=αα2cos 2sin =-169120÷169119=-119120.例2 证明恒等式θθθθθθtan cos sin 22cos 2sin 2sin 2=+++. 证明 左边=θθθθθθθcos sin 2)sin (cos 2sin cos sin 2222++-+=)1cos 2(cos )1cos 2(sin ++θθθθ=θtan =右边.所以原式成立.例3 证明sin50︒(1+3tan10︒)=1.证明 左边=sin50︒(1+10cos 10sin 3)=sin50︒ 10cos 10sin 310cos + =2sin50︒1010102321cos sin cos +=2 sin50︒10cos 10sin 30cos 10cos 30sin + =2sin50︒ 10cos 40sin = 10cos 50cos 50sin 2=10cos 100sin =10cos 10cos =1=右边.所以原式成立. 在例10的证明过程中,使用了正弦函数的和角公式、倍角公式,两次应用了诱导公式,还使用了分子、分母同除以2的技巧,其目的是要把看似互不关联的三角函数值关联起来,应用已知公式予以简化,达到证明的目的.可见熟悉公式并灵活应用的重要性.3、课内练习1. 不查表,求下列各式的值:(1)2sin67°30cos67°30'; (2)cos 28π-sin 28π; (3)2cos 212π-1;(4)1-2sin 275°;(5)5.22tan 15.22tan 22-; (6)sin15°cos15°. 2.化简下列各式:(1)(sin α-cos α)2; (2)sin 2θcos 2θ; (3)cos 4ϕ-sin 4ϕ; (4)θθtan 11tan 11+--. 3.已知sin α=0.8,α∈(0, π),求cos2α,sin2α.4.已知cos α=1312-,α∈(2π,π),求cos2α,sin2α.5.已知tan α=21,求tan2α.6.证明下列恒等式:(1)2sin (π-α)cos (π+α)=-sin2α; (2)1+2cos 2θ-cos2θ=2; (3)αααsin 2sin 2cos 1=-; (4)ααα2tan 2cos 12cos 1=+-.五、和、差、倍角公式的综合应用1、知识要点(1)两角和与差的三角函数的简单应用应用三角函数的和差角公式和倍角公式,为许多数学问题和实际问题的解决,提供了有力的工具.(2)三角函数式的变形 三角式化简、求值及三角恒等式证明中,主要手段是对三角函数式作各种变形,使之或简单或易于求值或与另一种形式相等.三角函数的和差角公式、倍角公式本身就是一种变形,因此在上述各类问题讨论中有广泛应用.下面将通过一些例子来看一下具体问题中是如何灵活应用的.2、例题分析例1 应用三角函数的和差角公式导出三角函数诱导公式.解 只要取和差角公式中两角之一为诱导公式中的特殊角,就能导出所有的诱导公式.下面挑选几个予以证明,类似可以证明其余.(1)sin(π-α)=sin πcos α-cos πsin α=0⋅cos α-(-1)sin α=sin α; (2)cos(π-α)=cos πcos α+sin πsin α=(-1) cos α+0⋅sin α=-cos α; (3)cos(2π+α)=cos 2πcos α-sin 2πsin α0⋅cos α-1⋅sin α=-sin α.例2 求函数y =sin x +cos x 的最大值和最小值,并判断它是否是周期函数.解 y =sin x +cos x =2(21 sin x +21cos x )=2(sin x cos4π+ cos x sin 4π)=2sin(x +4π). 当x +4π=2π+2k π (k ∈Z ),即x =4π+2k π, (k ∈Z )时,y 达到最大y max =2;当x +4π=-2π+2k π(k ∈Z ),即x =-43π+2k π, (k ∈Z )时,y 达到最小y min =-2 因为sin(x +4π)是以2π为周期的周期函数,所以y =sin x +cos x 是周期是2π的周期函数.例3 如图2三个相同的正方形相接,求证α+β=4π.证明 如图2易知tan α=21, tan β=31,且α,β∈(0,2π).tan(α+β)=βαβαtan tan 1tan tan -+=312113121⨯-+=1,因为α,β∈(0,2π),所以α+β∈(0, π).在区间(0,π)内,正切值为1的角只有1个,即tan4π=1,所以α+β=4π.例4 求cos20°cos40°cos80°的值.解一 由sin2α=2sin αcos α,得cos α=ααsin 22sin .分别应用于原式中三个因子,得cos20°cos40°cos80°=︒︒20sin 240sin ⋅︒︒40sin 280sin ⋅︒︒80sin 2160sin =︒︒20sin 8160sin =81.解二 将所求式的分子分母同乘以23sin20°,逐次应用S 2α ,原式=︒︒︒︒︒20sin 280cos 40cos 20cos 20sin 233=︒︒︒︒20sin 280cos 40cos 40sin 232=︒︒︒20sin 280cos 80sin 23=︒︒20sin 8160sin =81. 例5 已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α. 分析 2α=(α-β)+(α+β), sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).解 由2π<β<α<43π,知π<α+β<23π,0<α-β<4π,所以 sin(α-β)=)(cos 12βα--=2)1312(1-=135;cos(α+β)=-)(sin 12βα+-=-2)53(1--=-54, 故 sin2α= sin(α+β)cos(α-β)+ cos(α+β)sin(α-β)=-135)54(131253⨯-+⨯=6556-.例6 不查表,求︒-︒10sec 2310csc 21的值.解 原式=︒-︒10cos 2310sin 21=︒︒︒-︒10cos 10sin 210sin 310cos =︒︒-︒20sin )1030sin(2=︒︒20sin 20sin 2=2. 切割化弦(把正切、余切、正割、余割函数化为正弦或余弦函数表示),使函数名得到统一,是化简三角式中常用手段;遇到三角式a sin α+b cos α时,常用技巧是a sin α+b cos α=2222b a b a b a ++⋅+ααcos sin ,进而简化为22b a +cos(α+ϕ)或22b a +sin(α+ϕ).例7 若α, β均为锐角,且cos α=552,cos β=10103,求α+β的值. 分析 求α+β的值,一般可先求(α+β)的三角函数值.解 因为α、β均为锐角,所以图2 αβsin α=α2cos 1-=2)552(1-=55,sin β=β2cos 1-=2)10103(1-=1010,cos(α+β)=cos α cos β- sin α sin β=因为0<α+β<π,所以α+β=4π.例8 在斜∆ABC 中,求证:tan A +tan B +tan C =tan A tan B tan C .分析 因为A ,B ,C 为三角形内角,有A +B +C =π,A +B =π-C ,考虑选用两角和的正切公式. 证明 因为A ,B ,C 为三角形内角,有A +B +C =π, A +B =π-C ,且A ,B ,A +B 都不等于π,所以 tan(A +B )=tan(π-C ),即BA B A tan tan 1tan tan -+=-tan C .所以tan A +tan B +tan C =tan A tan B tan C .3、课内练习 1.不查表,求值(1)cos65°sin70°+sin65°sin20°; (2)︒-︒5.22tan 15.22tan 2; (3)1-22cos 8π; (4)sin40°(tan10°-3); (5)cos 10°cos20°cos40°.2.已知α+β=4π,求(1+tan α)(1+tan β)的值.3.已知tan(α+β)=52, tan(β-4π)=41,求tan(α+4π)的值.4.若α, β是锐角,且满足cos α=54, cos(α+β)=53,求sin β的值.5.已知sin α=53, α∈(2π,π), tan(π-β)=21,求tan(α-2β)的值.6.已知α, β是锐角,且tan α, tan β是方程6x 2-5x +1=0的两个根,求α+β的值. 7.求证:(1)sin2x (cot2x -tan 2x)=4cos 2x ; (2)2sin(2π+x )cos(2π-x )cos α+(2cos 2x -1)sin α=sin(2x +α).8.求下列函数的最小值和最大值: (1)y =x x sin cos 2123-; (2)y =2(sin x -cos x ). 9.如图在ΔABC 中,AD ⊥BC 垂足为D ,BD :DC :AD =2:3:6,求∠BAC . 10.已知等腰三角形的顶角的余弦等于257,求它底角的正弦、余弦和正切.第9题图AB§15.2 知 识 体 系一、三角化简变换:1、同角变换:①1cos sin 22=+αα, ②1cot tan =⋅αα, ③αααcos sin tan =2、负角变换:①ααsin )sin(-=-, ②ααcos )cos(=-, ③ααtan tan(-=-)3、余角变换:①ααπcos )2sin(=±, ②ααπsin )2cos( =±, ③ααπcot )2tan( =±4、平角变换:①ααπsin )sin( =±, ②ααπcos )cos(-=±, ③ααπtan )tan(±=±5、周期变换:①ααπsin )2sin(±=±,②ααπcos )2cos(±=±,③ααπtan )tan(±=± 二、两角和公式1、两角和的正弦: βαβαβαsin cos cos sin )sin(+=+;2、两角和的余弦:βαβαβαsin sin cos cos )cos(-=+;3、两角和的正切:βαβαβαtan tan 1tan tan )tan(-+=+。
第十九讲两角和与差及二倍角公式两角和与差及二倍角公式是初等数学中常用的一类基本公式,它们主要用于解决角度之间的关系和计算问题。
掌握了这些公式,可以方便地计算出两个角的和与差,以及一个角的二倍角。
一、两角和与差公式1.两角和公式sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)2.两角差公式sin(A-B) = sinAcosB - cosAsinBcos(A-B) = cosAcosB + sinAsinBtan(A-B) = (tanA - tanB) / (1 + tanAtanB)1.正弦sin2A = 2sinAcosA2.余弦cos2A = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)3.正切tan2A = (2tanA) / (1 - tan^2(A))这些公式的推导可以通过三角函数的定义和相关三角恒等式进行推导,具体推导过程可以参考相关数学书籍。
而在解题时,我们通常是根据已知条件,利用这些公式来求解出未知角度的值。
例如,如果已知sinA = 1/2,cosB = 3/5,要求求出sin(A+B)。
根据两角和公式sin(A+B) = sinAcosB + cosAsinB,可以将已知值代入计算,得到:sin(A+B) = (1/2)(3/5) + (1/2)(4/5) = 3/10 + 4/10 = 7/10同样地,利用这些公式还可以解决一些复杂的几何问题。
例如,已知两直线的夹角为α,要求求出这两条直线的切线之间的夹角β。
根据切线的几何定义,可以知道tanβ = tan(α+90) = -1/tan(α)。
因此,利用刚才提到的两角和公式中的tan(A+B) = (tanA + tanB) / (1 - tanAtanB),可以直接计算出tanβ的值。
5.两角和与差、二倍角公式一、相关概念及知识点 1.两角和与差的三角函数()βαβαβαsin cos cos sin sin +=+ ()βαβαβαs in c o sc o s s in s in -=- ()cos cos cos sin sin αβαβαβ+=- ()βαβαβαs in s in c o s c o s c o s+=- 2.二倍角公式: αααcos sin 22sin =22222cos sin12sin 2cos 11tan cos22tan tan2αααααααα-=-=--==以下公式不作要求 3. 半角公式2cos 12sin αα-±=2c o s 12c o s αα+±=t a n 2α=ααααs in c o s 1c o s 1s in -=+4. 万能公式:22tan 2sin 1tan 2ααα=+ 221t a n 2c o s 1t a n 2ααα-=+22t a n 2t a n 1t a n 2ααα=-5. 积化和差:()()[]βαβαβα-++=sin sin 21c o s sin ()()[]βαβαβα--+=s in s in 21s in c o s ()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=c o s c o s 21s in s in 6. 和差化积:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2c o s 2s in 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-2s in 2c o s 2s in s in y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2cos 2cos 2cos cos y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=-2s in 2s in 2c o s c o s y x y x y x重要结论:1.sin α±cos α)4πα±.sin()2.tan tan tan()(1tan tan )cos cos αβαβαβαβαβ±±=±=3.a sin α+b cos α(α+φ(α-φ1),. 4.tan α+cot α=sec α·csc α=2sin 2α. 5.tan α-cot α=-2ctg2α.6.cot α±cot β=sin()sin sin βααβ±. 7.(sin α±cos α)2=1±sin2α.8.21cos sin 22αα-=. 9.21cos cos 22αα+= .10.αααααcos3cos 43cos ,sin 4sin 33sin 33-=-= 11.1tan tan().1tan 4απαα±=± 二、重点难点两角和与差、二倍角公式三、课前预习1、下列各式中,值为12的是 ( ) A 、1515sin cosB 、221212cossin ππ- C 、22251225tan .tan .-D2、命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 ( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 3、若02πβα<<<且45513cos(),sin()αβαβ+=-=,那么2cos α的值是( ) A 、6365 B 、6365- C 、3365 D 、5665或1365-4、已知,αβ为锐角且cos αβ==,则αβ+的值等于____。