高中数学 第一章 立体几何初步 1.1.5 三视图练习 新人教B版必修2
- 格式:doc
- 大小:310.02 KB
- 文档页数:5
数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。
(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。
(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。
(4) 理解柱,锥,台,球的表面积及体积公式。
(5) 理解平面的基本性质及确定平面的条件。
(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。
(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。
名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。
②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。
③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。
④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。
由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。
(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。
②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。
③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。
2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。
主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。
3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。
《三视图》(课堂案)1.根据三视图画出直观图.2.如图所示是物体的实物图,在图(2)四个选项中是其俯视图的是 ( )二.课内探究:探究1:画几何体的三视图例1.画出如图所示的正四棱台的三视图.变式训练1 下图为截去一角的长方体,画出它的三视图.探究2:简单组合体的三视图例2.画出如下图所示几何体的三视图.探究3:由三视图还原成直观图1图 2图例3 几何体的三视图如图所示,请画出它的直观图.变式练习:在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为( )练习1.如图所示的直三棱柱的正视图面积为2a 2,则左视图的面积为( )A .2a 2 B .a 2 C .23a D .243a2.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.3.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为( )A .8B .4C .4 3 D. 3《三视图》(课后作业)1.下列说法正确的是()aaa侧视图正视图俯视图A .任何几何体的三视图都与其摆放的位置有关B .任何几何体的三视图都与其摆放的位置无关C .有的几何体的三视图与其摆放的位置无关D .正方体的三视图一定是三个全等的正方形2.某几何体的三视图如图所示,那么这个几何体是( ) A .三棱锥 B .四棱锥 C .四棱台 D .三棱台 3.右面几何体各自的三视图中,有且仅有两个视 图相同的是( )A .①②B .①③C .①④D .②④4.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________. 5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )6.画出如图所示的几何体的三视图.78.三棱锥D -ABC 及其三视图中的正视图和侧视图如图所示,则棱BD的长为________.。
§1.2.2空间几何体的三视图教学目标:⒈知识目标:使学生学会画三视图、体会三视图的作用,能由三视图想象几何体,从而进行几何体与其三视图之间的相互转化.⒉能力目标:通过三视图的学习,提高学生的空间想象能力、分析问题、解决问题的能力.⒊情感目标:通过学生自己的实践,学会画三视图,从而培养学生大胆创新、敢于求异、勇于探索、自主合作的精神,并形成良好的思维习惯.教学的重点和难点:重点:画出空间几何体的三视图,体会三视图的作用.难点:识别三视图所表示的空间几何体.教学模式与手段:直观教学法、讨论教学法、启导发现法、多媒体辅助教学法.教案内容(一)创设情景,揭开课题展示几组图片,说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们需从多角度观看物体.(二)给出三视图的定义1、从几何体的前面向后面正投影,得到的投影图称为几何体的正视图(主视图).2、从几何体的左面向右面正投影,得到的投影图称为几何体的侧视图(左视图).3、从几何体的上面向下面正投影,得到的投影图称为几何体的俯视图.(三)通过多媒体课件展示长方体的三视图,并给出三视图之间的投影规律.正、俯视图——长对正;正、侧视图——高平齐;俯、侧视图——宽相等(四)例题讲解Ⅰ简单几何体的三视图例1、说出下列几何体的三视图:圆柱、圆锥、球体.练习:请画下面这两个圆台的三视图,如果你认为这两个圆台的三视图一样,画一个就可以;如果你认为不一样,请分别画出来.(图略)Ⅱ简单组合体的三视图画组合体的三视图的步骤:应认清组合体的结构,把组合体分解成几个简单的基本几何体,再按简单几何体画三视图.例2、画出几何体的三视图: flash演示练习:Ⅲ三视图与几何体之间的相互转化例3、三视图和实物图配对:动画演示.根据三视图判断几何体:思考:若只给出一组正,侧视图,那么它还可能是什么几何体?正四棱台(五)课堂小结问题:本节我们学习到了哪些内容?展示:本节内容.(六)作业P20 习题1.2 A组第1、2题。
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .22.在正方体1111ABCD A BC D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) A .5B .25C .5 D .253.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥4.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,PA AB =,E 为AP 的中点,则异面直线PC 与DE 所成的角的正弦值为( ).A 2B 5C 15D 10 5.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,46.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α7.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A .43B .23C .83D .438.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④9.如图是某个四面体的三视图,则下列结论正确的是( )A .该四面体外接球的体积为48πB .该四面体内切球的体积为23π C .该四面体外接球的表面积为323π D .该四面体内切球的表面积为2π10.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .212.已知长方体1111ABCD A BC D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π二、填空题13.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.14.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.15.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.16.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 17.如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.18.已知四面体P ﹣ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC ,2AC 3=,若四面体P ﹣ABC 的体积为32,则该球的体积为_____. 19.在正方体1111ABCD A BC D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).20.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.三、解答题21.如图,三棱柱111ABC A B C -中,1CC ⊥平面ABC ,5AB =,3AC =,14BC CC ==,M 是1CC 的中点.(Ⅰ)求证:BC AM ⊥;(Ⅱ)若N 是AB 上的点,且//CN 平面1AB M ,求BN 的长.22.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值.23.如图,四棱锥P ABCD -,底面ABCD 为矩形,PD ⊥面ABCD ,E 、F 分别为PA 、BC 的中点.(1)求证://EF 面PCD ;(2)若2AB =,1AD PD ==,求三棱锥P BEF -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,M 是棱PD 的中点.(1)求证://PB 平面AMC ;(2)若PD ⊥平面ABCD ,2AD PD ==,3BAD π∠=,求点B 到平面AMC 的距离.25.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC ==30ACB ∠=,13AA =,11BC AC ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1AC ⊥平面1C EB . 26.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,226AB PD ==,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,求三棱锥B AEC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===133xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,2532x x-=,解得3x = 则1AO =,底面边长为23则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.D解析:D【分析】延长DA至G,使AG CE=,可证11//AG C E,得1GA F∠是异面直线1A F与1C E所成的角(或其补角).在1AGF△中,由余弦定理可得结论.【详解】延长DA至G,使AG CE=,连接1,GE GA,GF,11,AC AC,又//AG CE所以AGEC是平行四边形,//,GE AC GE AC=,又正方体中1111//,AC AC AC AC=,所以1111//,AC DE AC DE=,所以11AC EG是平行四边形,则11//AG C E,所以1GA F∠是异面直线1A F与1C E所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG10GF22222112(21)3A F AA AF=+=++=,1AGF△中,2221111125cos2253AG A F GFGA FAG A F+-∠===⋅⨯⨯.故选:D.【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 4.D解析:D 【分析】先取正方形的中心O ,连接OE ,由PC //OE 知OED ∠为异面直线PC 与DE 所成的角,再在OED 中求OED ∠的正弦即可. 【详解】连AC ,BD 相交于点O ,连OE 、BE ,因为E 为AP 的中点,O 为AC 的中点,有PC //OE ,可得OED ∠为异面直线PC 与DE 所成的角,不妨设正方形中,2AB =,则2PA =,由PA ⊥平面ABCD ,可得,PA AB PA AD ⊥⊥, 则145BE DE ==+=1122222OD BD ==⨯= 因为BE DE =,O 为BD 的中点,所以90EOD ∠=︒,210sin 5OD OED DE ∠===故选:D. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.5.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE中,利用三边关系求解即可.【详解】由题意得BC x =,则212x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-212x AD +=,在ADE 中,由三边关系得:①221111224x x ++>-,②221111224x x +<-,③0x >;由①②③可得03x << 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.6.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.7.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以1144333333A BCD BCDV S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值. 8.A解析:A 【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.9.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD,AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得12OE BF AB ===所以2222,R R =+∴=,所以外接球的体积为343π⨯=,所以选项A 错误;所以外接球的表面积为2448ππ⨯=,所以选项C 错误;由题得AC AD ===所以△ACD △6=, 设内切球的半径为r ,则11111112446)243222232r ++⨯⨯+⨯⨯=⨯⨯⨯⨯所以2r,所以内切球的体积为343π⨯=,所以选项B 错误;所以内切球的表面积为242ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++就是几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .10.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.12.C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积. 【详解】 如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长, 所以球O 的半径R 满足2222688164R =++=, 所以球O 的表面积24164S R ππ==. 故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.二、填空题13.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,1263DM ⨯==, 63D M DM '==, 则222222666612cos 22333332DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.14.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()17117O HN O HO NHO ----∠=∠-∠====+ 11171827477tan tan()17117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是474733⎡⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.15.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径解析:4 【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】解:因为BC =8AC =,AB BC ⊥,所以AB =4PA PB ==, 所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,DE =DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 4EP =, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =. 故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.16.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26 【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.17.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为 解析:34【分析】 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 18.【分析】根据四面体是球的内接四面体结合位置关系可得棱锥的形状以及棱长之间的关系利用体积公式即可代值计算【详解】设该球的半径为R 则AB =2R2ACAB2R ∴ACR 由于AB 是球的直径所以△ABC 在大圆所解析:43π【分析】根据四面体是球的内接四面体,结合位置关系,可得棱锥的形状,以及棱长之间的关系,利用体积公式即可代值计算.【详解】设该球的半径为R ,则AB =2R ,2AC 3=AB 3=⨯2R , ∴AC 3=R ,由于AB 是球的直径,所以△ABC 在大圆所在平面内且有AC ⊥BC ,在Rt △ABC 中,由勾股定理,得:BC 2=AB 2﹣AC 2=R 2,所以R t △ABC 面积S 12=⨯BC ×AC 3=R 2, 又PO ⊥平面ABC ,且PO =R ,四面体P ﹣ABC 的体积为32, ∴V P ﹣ABC 13=⨯R 32⨯⨯R 232=,即3R 3=9,R 3=33, 所以:球的体积V 43=⨯πR 343=⨯π×33=43π. 故答案为:43π.【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去推导四面体的几何形态,从而解决问题.19.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1BC ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC BC C ⋂=,所以1BD ⊥平面1ABC ,又因为PC ⊂平面1ABC ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.20.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故解析:163π 【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积.【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=. 故答案为:163π. 【点睛】 本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)52. 【分析】(Ⅰ)可证BC ⊥平面11AAC C ,从而可得BC AM ⊥.(Ⅱ)可证N 为AB 的中点,从而可得BN 的长.【详解】(Ⅰ)证明:1CC ⊥平面ABC ,BC ⊂平面平面ABC ,∴1CC BC ⊥.又5AB =,3AC =,4BC =,∴222AC BC AB +=,即BC AC ⊥.又1AC CC C =,∴BC ⊥平面11AAC C ,又AM ⊂平面11AAC C ,∴BC AM ⊥. (Ⅱ)过点N 作1//NE BB 交1AB 于点E ,连ME ,由三棱柱111ABC A B C -可得11//BB CC ,∴1//NE CC 即四边形NEMC 为平面图形. 又//CN 平面1AB M ,CN ⊂平面NEMC ,且平面NEMC 平面1AB M ME =, ∴//CN ME ,∴四边形NEMC 为平行四边形,∴NE CM =,且//NE CM ,又点M 为1CC 中点,∴112CM BB =,且1//CM BB ,∴112NE BB =,且1//NE BB , ∴1522BN AB ==. 【点睛】思路点睛:线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.由线面平行得到线线平行时,注意构造过线的平面.22.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案.【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点, ,,AB DA BH AE HBA EAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥,因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =,在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅,所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为10.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算.23.(1)证明见解析;(2)112. 【分析】(1)取PD 的中点M ,连接EM 、CM ,证明四边形CMEF 为平行四边形,可得出//EF CM ,利用线面平行的判定定理可证得结论成立;(2)连接AF ,取AD 的中点N ,连接EN ,由题意可知点P 、A 到平面BEF 的距离相等,并推导出EN ⊥平面ABCD ,可得出P BEF A BEF E ABF V V V ---==,利用锥体的体积公式可求得三棱锥P BEF -的体积.【详解】(1)如下图所示,取PD 的中点M ,连接EM 、CM ,因为四边形ABCD 为矩形,则//AD BC 且AD BC =,E 、M 分别为PA 、PD 的中点,则//EM AD 且12EM AD =, F 为BC 的中点,所以,//EM CF 且EM CF =,所以,四边形CMEF 为平行四边形,所以,//EF CM ,EF ⊄平面PCD ,CM ⊂平面PCD ,//EF ∴平面PCD ;(2)如下图所示,连接AF ,取AD 的中点N ,连接EN ,E 为PA 的中点,所以,点P 、A 到平面BEF 的距离相等, 所以,P BEF A BEF E ABF V V V ---==,E 、N 分别为PA 、AD 的中点,则//EN PD 且1122EN PD ==, PD ⊥平面ABCD ,EN ∴⊥平面ABCD ,ABF 的面积为111122222ABF S AB BF =⋅=⨯⨯=△, 因此,11111332212P BEF A BEF E ABF ABF V V V S EN ---===⋅=⨯⨯=△. 【点睛】方法点睛:常见的线面平行的证明方法有:(1)通过面面平行得到线面平行;(2)通过线线平行得到线面平行,在证明线线平行中,经常用到中位线定理或平行四边形的性质.24.(1)证明见详解;(2)22. 【分析】(1)连接BD 交AC 于点O ,连接OM ,根据题中条件,推出//OM PB ,再由线面平行的判定定理,即可证明结论成立;(2)根据题中条件,求出AMC S △,ABC S ,MD ;设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=,列出等式求解, 即可得出结果.【详解】(1)连接BD 交AC 于点O ,因为底面ABCD 为菱形,所以O 为AC 中点;连接OM ,因为M 是棱PD 的中点,所以//OM PB ,因为OM ⊂平面AMC ,PB ⊄平面AMC ,所以//PB 平面AMC ;(2)因为PD ⊥平面ABCD ,所以PD AD ⊥,PD DC ⊥,因为2AD PD ==,3BAD π∠=,所以22215AM MC ==+2BD =,23ABC π∠=, 则112sin 22sin 3223ABC S AB BC ABC π=⋅⋅∠=⋅⋅⋅=22cos 236AC AO AB π==⋅⋅= 所以22532MO MC CO =--=11232622AMC S AC MO =⋅⋅=⋅=, 设点B 到平面AMC 的距离为d ,由B AMC M ABC V V --=可得1133AMC ABC S d S MD ⋅=⋅, 则3226ABC AMC S MDd S ⋅===, 即点B 到平面AMC 的距离为22. 【点睛】方法点睛: 求解空间中点P 到平面的距离的方法:(1)空间向量的方法:建立适当的空间直角坐标系,求出平面的法向量m ,以及一条斜线的方向向量PA ,根据PA md m ⋅=,即可求出点到面的距离;(2)等体积法:先设所求点到面的距离,选几何体不同的定点为顶点,表示出该几何体的体积,列出等量关系,即可求出点到面的距离.25.(1)证明见解析;(2)证明见解析.【分析】(1)连接1AB 、1BC ,设11B C BC F =,连接EF ,可知点F 为1BC 的中点,利用中位线的性质可得出1//EF AB ,再利用线面平行的判定定理可证得结论成立; (2)推导出BE ⊥平面11AAC C ,可得出1BE AC ⊥,再由11BC AC ,利用线面垂直的判定定理可证得1AC ⊥平面1C EB . 【详解】(1)如下图所示,连接1AB 、1BC ,设11B C BC F =,连接EF ,在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,因为11B C BC F =,在点F 为1BC 的中点,又因为点E 为AC 的中点,1//EF AB ∴, 1AB ⊄平面1C EB ,EF ⊂平面1C EB ,所以,1//AB 平面1C EB ;(2)AB BC =,E 为AC 的中点,BE AC ∴⊥,因为平面11A ACC ⊥平面ABC ,平面11A ACC ⋂平面ABC AC =,BE ⊂平面ABC , BE ∴⊥平面11A ACC ,1AC ⊂平面11A ACC ,1AC BE ∴⊥, 11BC AC ⊥,1BE BC B =,1AC ∴⊥平面1C EB . 【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.26.(1)证明见解析;(226.。
教学设计《三视图》一、教材分析:本节课是在学习了空间几何体结构特征,尚未学习点、直线、平面位置关系的情况下教学的。
三视图是空间几何体的一种表示形式,是立体几何的基础之一。
学好三视图为学习直观图奠定基础,同时有利于培养学生的空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣。
二、学情分析:(1)在义务教育阶段,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法。
但是对于三视图的概念还不清晰(2)只接触了从空间几何体到三视图的单向转化,还无法准确的识别三视图的立体模型。
三、教学目标:1、能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。
2、通过直观感知,操作确认,逐步提高学生的空间想象能力、几何直观能力,培养学生的应用意识。
3、通过游戏的参与,提高学生的学习立体几何的兴趣,逐步培养学生大胆创新、勇于探索、互相合作的精神。
四、教学的重点和难点:重点:空间几何体的三视图的画法。
难点:三视图所表示的空间几何体的识别。
五、教学准备:1、实物模型(长方体,球,圆柱,圆锥,棱柱、矿泉水瓶)。
2、若干个形状为正方体、长方体、球体、三棱柱的积木。
六、教学过程:活动一:创设情境,引入课题《题西林壁》苏轼横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
问题1:这首诗表达了什么意思?设计意图:引入古诗激发学生的学习兴趣,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力。
问题2:若要把握长方体的全貌,应该从几个视角来研究它?除了用文字的语言,是否可以用图形的语言表示?教师:上节课,我们学习了平行投影中的正投影,即一束平行光线正对着物体照射形成的投影。
为了较好地把握几何体的形状和大小,我们通常选择三种正投影,光线从几何体的前面向后面正投影在正面内得到正视图。
2018版高中数学第一章立体几何初步1.1.5 三视图学案新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章立体几何初步 1.1.5 三视图学案新人教B版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章立体几何初步 1.1.5 三视图学案新人教B版必修2的全部内容。
1.1.5 三视图学习目标1。
了解三视图的概念,理解三视图的画法特征.2。
能画出简单空间图形的三视图,能识别空间图形的三视图所表示的立体模型.知识点一正投影思考正投影的投射线和投射点之间是什么关系?梳理正投影的定义及性质(1)定义:在物体的平行投影中,如果投射线与投射面________,则称这样的平行投影为正投影.(2)特殊性质垂直于投射面的错误!知识点二三视图思考如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?梳理三视图(1)概念(2)画三视图遵循的原则错误!特别提醒:(1)作三视图时必须先确定从哪个方向看,因为从不同的角度得到的三视图有可能不同.(2)作三视图时能看见的轮廓线和棱画成实线,看不见的画成虚线.(3)三视图的排列顺序:先画主视图,左视图在主视图的右边,俯视图在主视图的下边.类型一正投影的问题例 1 两条平行线在一个平面内的正投影可能是________.(把正确的序号填到题中的横线上)①两条平行线;②两个点;③两条相交直线;④一条直线和直线外的一点;⑤一条直线.反思与感悟正投影问题与垂直关系联系紧密,投影图形的形状与投射线和投射图形有关系,解题时借助正方体模型是一种常见的方法.跟踪训练1 如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影为( )类型二三视图与直观图错误!例2画出如图所示的三视图.反思与感悟画三视图应遵循的原则和注意事项(1)务必做到“长对正,高平齐,宽相等”.(2)三视图的排列方法是主视图与左视图在同一水平位置,且主视图在左,左视图在右,俯视图在主视图的正下方.(3)在三视图中,要注意实、虚线的画法.(4)画完三视图草图后,要再对照实物图来验证其正确性.跟踪训练2 (1)一个长方体截去两个三棱锥,得到的几何体如图所示,则该几何体的三视图为( )(2)画出如图所示物体的三视图.错误!例3如图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.反思与感悟由三视图还原几何体,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.只要熟悉简单几何体的三视图的形状,由简单几何体的三视图还原几何体并不困难.对于组合体,需要依据三视图将它分几部分考虑,确定它是由哪些简单几何体组成的,然后利用上面的步骤,分开还原再合并即可.注意依据三视图中的虚线、实线确定轮廓线.跟踪训练3 (1)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )(2)如图所示为长方体木块堆成的几何体的三视图,此几何体共由________块木块堆成.类型三三视图中的计算问题例4 如图1所示,将一边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,其主视图与俯视图如图2所示,则左视图的面积为()A。
第7课时 1.1.5 三视图
课时目标
1.掌握三视图的基本原理,能画出简单空间图形(长方体、球、圆柱、圆锥等的简易组合)的三视图,并能识别上述的三视图所表示的立体模型.
2.掌握简单几何体的三视图,直观图之间的相互转化.
识记强化
三视图
(1)选取三个两两互相垂直的平面作为投射面,其中一个投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图.
(2)一个投射面放置在正前方,这个投射面叫做直立投射面,投射到这个平面内的图形叫做主视图.
(3)和直立、水平两个投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图.
课时作业
一、选择题(每个5分,共30分)
1.下列说法正确的是( )
A.任何几何体的三视图都与其摆放的位置有关
B.任何几何体的三视图都与其摆放的位置无关
C.有的几何体的三视图与其摆放的位置无关
D.正方体的三视图一定是三个全等的正方形
答案:C
解析:球的三视图与其摆放位置无关,正方体的三视图不一定是三个全等的正方形.2.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①②B.②③
C.①④ D.②④
答案:D
解析:①的三个视图都相同,都是正方形;②的主视图与左视图相同,都是等腰三角形,
俯视图不同;③的三个视图都不相同;④的主视图与左视图相同,都是等腰三角形,俯视图不同,故选D.
3.某几何体的三视图如图所示,那么这个几何体是( )
A.三棱锥 B.四棱锥
C.四棱台 D.三棱台
答案:B
解析:由三视图,知该几何体为如图所示的四棱锥,且PA⊥平面ABCD,AB⊥BC,BC∥AD.
4.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是图中的( )
答案:B
解析:截去的平面在俯视图中看不到,故用虚线,选B.
5.已知三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形.若三棱柱的主视图(如图所示)的面积为8,则左视图的面积为( )
A.8 B.4
C.4 3 D.2 3
答案:C
解析:设该三棱柱的侧棱长为a,则2a=8,所以a=4.该三棱柱的左视图是一个矩形,一边长为4,另一边长等于三棱柱底面等边三角形的高,为3,所以左视图的面积为4 3.故选C.
6.已知正三棱锥V-ABC的主视图、俯视图如图所示,其中VA=4,AC=23,则该三棱锥的左视图的面积为( )
A .9
B .6
C .3 3 D.39 答案:B 解析:由三视图与原几何体之间的关系可知此几何体的左视图为一个等腰三角形,且此等腰三角形的底边长等于原几何体的底面边长,两腰的长度不等于原几何体的侧棱长,其高的长度等于原几何体的高.由所给数据易解得原几何体的高为23,所以左视图的面积为S =1
2
×23×23=6,故选B.
二、填空题(每个5分,共15分)
7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,点P 是上底面A 1B 1C 1D 1内一动点,则三棱锥P -ABC 的主视图与左视图的面积的比值为________.
答案:1
解析:三棱锥P -ABC 的主视图与左视图为等底等高的三角形,故它们的面积相等,面积比值为1.
8.已知一正四面体的俯视图如图所示,它是边长为2 cm 的正方形,则这个正四面体的
主视图的面积为________cm 2
.
答案:2 2
解析:构造一个边长为2 cm 的正方体ABCD -A 1B 1C 1D 1,在此正方体中作出一个符合题意的正四面体A -B 1CD 1,易得该正四面体的主视图是一个底边长为2 2 cm ,高为2 cm 的等腰
三角形,从而可得主视图的面积为2 2 cm 2
.
9.如图是一个空间几何体的三视图,则该几何体为__________.
答案:正六棱台
解析:注意俯视图的“定位”作用,结合主、左视图将其还原.
三、解答题
10.(12分)根据三视图(如图所示),画出物体的实物草图.
解:由三视图,知物体的上部分是一个圆柱,下部分是一个底面边长相等的长方体,且圆柱的下底面圆内切于长方体的上底面正方形.
实物草图如图所示.
11.(13分)(1)如图是截去一角的长方体,画出它的三视图.
(2)如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.
解:(1)该图形的三视图如图所示.
(2)螺栓的三视图如图所示.
能力提升
12.(5分)
如图用□表示一个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么右图中有7个正方体叠成的几何体,正视图是( )
答案:B
13.(15分)用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它至少需要多少个小立方块?最多需要多少个小立方块?
解:不只有一种.由俯视图可知此几何体应是有三行和三列,且第三列的第一行、二行都没有小立方块,其余的各列各行都有小立方块,再根据主视图,第一列中至少有一行是三层,第二列中至少有一行是二层,第三列第三行只有一层,这样就可推出小立方块的个数.故最少要10个小立方块,最多要16个小立方块.。