OLED器件结构与发光机理解析
- 格式:ppt
- 大小:2.17 MB
- 文档页数:48
OLED器件结构与发光机理OLED(Organic Light Emitting Diode,有机发光二极管)是一种使用有机材料作为发光材料的显示器件。
它由发光层、电流传输层和阳极、阴极等多个层次构成。
OLED器件结构主要包括底层和上层结构。
底层结构由底电极、电沉积聚合材料层、有机发光层、电荷传输层和顶电极构成。
底电极一般采用具有透明性的材料,如ITO(锡氧化铟)薄膜。
有机发光层是OLED最重要的部分,它是由光电材料组成的,包括发光材料和载流子传输材料。
电荷传输层通常位于有机发光层和电荷注入层之间,用于增强载流子传输和均衡电荷。
顶电极可以是金属膜、半透明金属膜或透明导电氧化物膜。
OLED发光机理是基于有机半导体材料的特性,通过在有机发光层中施加电场来激发载流子,进而发生电子与空穴的复合产生光子的过程。
OLED发光机制主要有两种类型:有机発光二极管(Organic Light Emitting Diode,OLED)和薄膜结构OLED(Thin Film Structure OLED,TWOLED)。
有机发光二极管(OLED)的发光机理通过空穴冲击电子复合产生激子,进而产生光子。
当电流通过正极(阳极)注入有机发光层时,电子从阴极传输到有机发光层,空穴从有机发光层传输到阳极。
当空穴和电子在有机发光层中相遇时,它们会组合成激子。
激子会通过能量耗散机制发射光子,产生可见光。
薄膜结构OLED(TWOLED)的发光机理则是通过电荷复合产生轴向光子和平行光子。
轴向光子主要是空穴通过有机薄膜的外部向前传播后与电子相遇产生复合,产生的光子从薄膜的垂直方向发出。
平行光子主要是空穴与电子的正方向进行复合,产生的光子从薄膜的平行方向发出。
两种发光机理都是通过电子与空穴的复合产生光子来实现OLED的发光。
OLED器件结构和发光机理的优势在于材料可塑性高、分辨率高、对比度高、透明度高、颜色饱和度高等特点。
因此,OLED被广泛应用于各种显示设备中,如手机、电视、显示屏、车载显示等领域。
OLED显示结构及发光原理OLED(有机发光二极管)是一种基于有机分子的发光技术,它具有极高的色彩细腻度、对比度和视角范围,被广泛应用于显示领域。
OLED显示结构是由一系列的有机材料薄膜组成,它们在电流作用下发出光。
下面将详细介绍OLED的显示结构和发光原理。
1. 基底层(Substrate Layer):一般是透明的玻璃或塑料基底,可提供强度和支持。
2. 阳极层(Anode Layer):位于基底层之上,主要由导电材料构成,如ITO(透明导电氧化铟锡)等。
阳极层提供正极电流以激发有机发光材料。
3. 有机发光层(Organic Emitter Layer):是OLED显示结构的核心部分。
它由有机发光材料构成,可以分为不同的层次,例如发光层、空穴传输层和电子传输层。
发光层是OLED的主要部分,有机分子在电流的作用下发光。
4. 电子传输层(Electron Transport Layer)和空穴传输层(Hole Transport Layer):这两层主要负责正、负电荷的输送,并帮助控制电子和空穴的复合过程,从而产生发光效果。
5. 阴极层(Cathode Layer):位于有机发光层的顶部,由电子传输材料构成。
阴极层具有低电子亲和能力,使电子能够输送到有机发光层并与空穴复合,产生发光效果。
OLED的发光原理是通过电流激活有机发光材料,使其发射光子。
OLED中的有机发光材料是半导体材料,其分子结构中含有共轭键,当给予其中一个分子一个光子激发,它将处于一个激发态。
然后,这个高能激发态分子会与一个低能激发态分子发生共振作用,将能量传递给低能激发态分子。
低能激发态分子进一步传递给阴极层,与电子复合,从而产生光子发射。
通过调节电流的大小,可以控制有机发光材料的亮度。
此外,通过使用不同类型的有机分子,可以实现不同颜色的发光,例如红色、绿色和蓝色。
通过将这些颜色的OLED像素排列成一个矩阵,就可以构成彩色OLED显示屏。
OLED结构及发光原理OLED的原文是Organic Light Emitting Diode,中文意思就是“有机发光显示技术”。
其原理是在两电极之间夹上有机发光层,当正负极电子在此有机材料中相遇时就会发光。
一、OLED的结构OLED的基本结构是在铟锡氧化物(ITO)玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极,构成如三明治的结构。
OLED的基本结构主要包括:基板(透明塑料、玻璃、金属箔)——基层用来支撑整个OLED。
阳极(透明)——阳极在电流流过设备时消除电子(增加电子“空穴”)。
空穴传输层——该层由有机材料分子构成,这些分子传输由阳极而来的“空穴”。
发光层——该层由有机材料分子(不同于导电层)构成,发光过程在这一层进行。
电子传输层——该层由有机材料分子构成,这些分子传输由阴极而来的“电子”。
阴极(可以是透明的,也可以不透明,视OLED类型而定)——当设备内有电流流通时,阴极会将电子注入电路。
二、OLED的发光原理OLED是双注入型发光器件,在外界电压的驱动下,由电极注入的电子和空穴在发光层中复合形成处于束缚能级的电子空穴对即激子,激子辐射退激发发出光子,产生可见光。
为增强电子和空穴的注入和传输能力,通常在ITO与发光层之间增加一层空穴传输层,在发光层与金属电极之间增加一层电子传输层,从而提高发光性能。
其中,空穴由阳极注入,电子由阴极注入。
空穴在有机材料的最高占据分子轨道(HOMO)上跳跃传输,电子在有机材料的最低未占据分子轨道(LUMO)上跳跃传输。
OLED的发光过程通常有以下5个基本阶段:载流子注入:在外加电场作用下,电子和空穴分别从阴极和阳极向夹在电极之间的有机功能层注入。
载流子传输:注入的电子和空穴分别从电子传输层和空穴传输层向发光层迁移。
载流子复合:电子和空穴注入到发光层后,由于库伦力的作用束缚在一起形成电子空穴对,即激子。
激子迁移:由于电子和空穴传输的不平衡,激子的主要形成区域通常不会覆盖整个发光层,因而会由于浓度梯度产生扩散迁移。
OLED结构及发光原理OLED(Organic Light Emitting Diode)是一种将有机化合物作为发光材料的电子器件。
与传统液晶显示技术相比,OLED具有较高的对比度、更广的视角、更快的响应速度和更低的能耗。
下面详细介绍OLED的结构和发光原理。
1.OLED的结构OLED器件主要由以下几个部分组成:(1)基底:OLED器件的基底是一种透明的材料,通常是玻璃或塑料。
在基底上可以选择加入透光电极,提供电流传输功能。
(2)发射层:发射层是OLED的发光部分,包含有机发光材料。
常用的有机发光材料有小分子和聚合物两种类型。
发光材料的种类和结构可以决定OLED的发射光谱和颜色。
(3)电荷注入层:电荷注入层是用来注入电子和空穴的材料层。
通常分为电子传输层和空穴传输层。
电子注入层用来向发射层注入电子,空穴注入层用来向发射层注入空穴。
(4)电荷传输层:电荷传输层用来传输电子和空穴,将电子注入层和空穴注入层所注入的电荷输送到发射层。
(5)电极:OLED器件通常需要两个电极完成对电流的控制。
一个电极用作透光电极,另一个电极用作阴极或阳极,完成电子和空穴的注入。
2.OLED的发光原理OLED的发光原理可以分为电荷注入和发射两个主要过程:(1)电荷注入:当在OLED器件中加上适当的电压时,阴极从阴极端注入电子,阳极从阳极端注入空穴。
电子和空穴在电荷传输层中聚集,并进一步注入到发射层中。
(2)发射:在发射层中,电子与空穴相遇,发生复合反应并释放能量。
这些能量以光子的形式发射出来,形成可见光。
发射层中的有机发光材料的分子结构决定了光的颜色和发光效率。
3.OLED的工作原理OLED器件可以分为分子型OLED(MOLED)和聚合物型OLED(POLED)两种类型。
(1)MOLED:MOLED是由小分子有机材料构成的OLED。
MOLED的特点是组织有序、生长质量高,具有较高的发光效率和较长的寿命。
但MOLED 制造工艺复杂、成本高。
OLED器件结构与发光机理解析OLED(Organic Light Emitting Diode)是有机发光二极管,其结构和发光机理有很大的关系。
下面从结构和发光机理两个方面来解析OLED器件。
一、OLED器件结构1.底部导电玻璃基板:底部导电玻璃基板是OLED器件的基础,主要起到支撑和导电的作用。
通过将ITO(铟锡氧化物)等透明导电材料沉积在玻璃基板上,实现电流的导电,同时还可以透过基板传递光线。
2.有机发光材料层:有机发光材料层是OLED器件发光的核心部分,也被称为发光层。
有机发光材料通常由有机发光分子和离子或溶剂等组成。
有机发光分子通常是含有共轭结构的芳香化合物,如多苯环芳香烃、吡啶类化合物等。
有机发光分子在外加电场作用下,通过激发态和基态之间的跃迁,发射可见光。
3.电子传输层:电子传输层主要是用来提供电子注入和传输的层。
此层通常采用有机材料,如芳香胺、芳香醚等。
电子通过电子传输层进入发光层,与有机发光分子发生能级相互作用,从而实现能级的电荷复合,激活发光分子的发光。
4.阴极:阴极是OLED器件中的辅助电极,起到对OLED器件进行电流注入和电子回收的作用。
阴极通常采用金属材料,如铝、钙等。
当外加正向电压时,阴极注入电子进入电子传输层,与有机发光分子发生复合,从而激发发光。
二、OLED器件发光机理1.激发态跃迁:当外加正向电压时,电子从阴极注入电子传输层,然后传输到发光层。
在发光层中,电子与有机发光分子之间发生能级相互作用,使得发光分子的电子从基态跃迁到激发态。
在激发态下,电子处于高能量状态,此时会吸收光子,使得发光分子发出发光。
发光的波长和颜色取决于有机发光分子的能级结构。
2.基态复合:当电子从激发态返回基态时,激发态电子和基态离子形成复合态,释放出光子能量。
这是OLED器件发光的另一个重要机制。
基态复合的过程会产生较高的量子效率,从而提高OLED器件的发光效率。
总结起来,OLED器件的发光机理是由电子注入到发光层,激发发光分子进入激发态,经过能级跃迁后发出光子,最后发生基态复合产生发光。
OLED器件结构与发光机理OLED(Organic Light Emitting Diode)器件是一种使用有机材料作为发光层的发光二极管。
其结构可以简单地分为四个主要部分:阳极(Anode)、有机发光层(Organic Emission Layer)、电子传输层(Electron Transport Layer)和阴极(Cathode)。
首先,阳极是OLED器件的底部电极,一般是由透明导电材料(如氧化铟锡-ITO)制成。
阳极的作用是将正电荷输送到有机发光层,并将光从器件的底部辐射出来。
有机发光层是OLED器件最关键的部分,它是由有机化合物构成的发光层。
有机发光层通常是由一个或多个有机化合物层构成,其中最常用的有机材料有荧光材料和磷光材料。
当外加电压作用下,有机发光层中的有机分子被激发到激发态,然后从激发态退回到基态时,会释放出能量的光子。
这个过程称为荧光或磷光发射,产生可见光。
电子传输层位于有机发光层的下方,它具有电子传输和能级调节的功能。
在电子传输层中,电子被输送到有机发光层中,激发有机分子进入激发态。
常用的电子传输材料有聚苯胺(PANI)和聚三氮杂环己烷(PEDOT)等。
最后,阴极是OLED器件的顶部电极,其主要作用是提供电子的注入和电流输送。
阴极一般由薄层铝或钙、铝复合材料制成,有时也含有覆盖层以提高电子的注入效率。
OLED器件的发光机理可以通过能级图来解释。
在静止状态下,有机材料中的电子和空穴都处于基态能级。
当外加电压作用下,电子从阴极注入有机材料中,形成许多激子(电子-空穴对)。
其中一部分激子会在有机发光层中重新组合并发射出光子,产生发光现象。
具体来说,当电子从阴极注入到有机发光层中时,它们会与基态的空穴发生共振,形成激子。
这些激子会通过与激子之间的能量转移,迁移到具有较长寿命的激子激发态。
然后,这些激子激发态会通过非辐射跃迁返回到基态,并释放出能量的光子,从而发光。
值得注意的是,发光颜色是由有机材料的发光层决定的,不同的有机材料有不同的光发射特性,可以通过选择不同的材料来实现多种颜色的发光。
OLED器件结构与发光机理OLED(Organic Light Emitting Diode)是一种有机发光二极管,通过有机分子的电致发光来实现显示和照明。
OLED器件结构与发光机理包括以下几个方面:一、OLED器件结构:OLED器件由一系列薄膜层构成,主要包括玻璃基板、透明导电层、有机发光层、电子传输层和金属电极层等。
其中,玻璃基板起到支撑作用,透明导电层用于提供电源,金属电极层则用于引出电荷。
而有机发光层是OLED的核心,由发光分子和载流子传输体组成,其结构决定了器件发光的特性。
二、发光机理:OLED的发光机理基于有机分子的电致发光原理。
有机分子具有共轭的pi电子结构,其分子轨道的特性决定了电子和空穴的自旋轨道性质。
OLED的基本工作原理是通过施加外加电场,将电子注入有机发光层,与空穴相遇并发生复合,从而形成激子(exciton)。
激子会发生自旋翻转,并通过辐射或非辐射传递能量,最终发出光。
在OLED发光过程中,激子的复合方式决定了发光机理的不同。
分为荧光和磷光两种情况:1.荧光机理:荧光OLED采用双极分子作为有机发光材料,当电子和空穴相遇时,激子会很快发生复合,并释放出光子。
这种激子的自旋翻转是通过分子內多体作用完成的,可以快速形成发光。
2.磷光机理:磷光OLED采用三极分子作为有机发光材料,激子的自旋翻转需要通过外界的助剂以及激子与助剂之间的相互作用来实现。
这种激子的自旋翻转速度相对较慢,因此在发光之前会有一个相对较长的延迟时间,这使得磷光OLED的发光效率相对较低。
综上所述,OLED器件结构与发光机理中,器件结构决定了发光层的性能和器件的工作特性,而发光机理则是通过激子复合过程完成发光。
不同的发光机理使得OLED器件可以有不同的发光效果,如荧光和磷光。
随着有机材料和器件技术的不断发展,OLED显示技术在手机、电视等领域得到广泛应用,并且在低功耗、高对比度等方面具有独特的优势。
OLED器件结构与发光机理OLED(Organic Light Emitting Diode)是一种由有机材料组成的发光二极管。
它的器件结构和发光机理相互关联,共同组成了OLED技术的基础。
下面将详细介绍OLED器件结构和发光机理。
1.OLED器件结构1.1基底层:位于最底部的是基底层,通常是由玻璃或塑料制成。
它提供了OLED器件的物理支撑。
1.2透明导电层:位于基底层上方的是透明导电层,通常由氧化铟锡(ITO)等材料组成。
它起到电子传输和光透过的作用,是电荷注入层的一部分。
1.3 电荷注入层:位于透明导电层上方的是电荷注入层,由电子传输层和空穴传输层组成。
电子传输层通常使用低能隙的有机材料,如Alq3;空穴传输层通常使用高能隙的有机材料,如N,N'-二苯基-N,N'-二甲基苯基-4,4'-联苯胺(TPD)。
1.4发光层:位于电荷注入层上方的是发光层,也被称为电荷复合层。
它是由有机发光材料组成的,根据不同的颜色可以选择不同的有机材料。
1.5 电荷输运层:位于发光层上方的是电荷输运层,它帮助电子和空穴在器件中自由移动,增强电子与空穴的复合,提高发光效率。
常用的电荷输运层材料有TPD和Alq3等。
1.6透明导电层:位于电荷输运层上方的是另一个透明导电层,与底部的透明导电层形成电极。
两个透明导电层必须保证电流均匀分布。
2.OLED发光机理OLED的发光机理是基于电荷注入和电荷复合的过程。
2.1电荷注入:在电极上施加电压时,正电压施加在透明导电层上,负电压施加在另一个透明导电层上。
这样正电荷(空穴)经过正电压传输层注入到发光层,负电荷(电子)经过负电压传输层注入到发光层。
透明导电层主要起到了电流引导和光透过的作用。
总结起来,OLED通过在电极上施加电压实现电子和空穴在发光层内的注入,然后通过电荷复合释放能量并发光。
而器件中的各个层次共同工作,起到传输电荷、发光和光透过的作用。
OLED器件结构和发光机理的研究和改进对于改善器件的效率和寿命至关重要。
摘要OLED 具有全固态、主动发光、高对比度、超薄、低功耗、无视角限制、响应速度快、低电压直流驱动、工作温度范围宽、易于实现柔性显示和3D 显示等诸多优点,将成为未来20 年最具“钱景”的新型显示技术。
同时,由于OLED 具有可大面积成膜、功耗低以及其它优良特性,因此还是一种理想的平面光源,在未来的节能环保型照明领域也具有广泛的应用前景。
本文将系统介绍OLED的发展背景、发展史、制备及应用,介绍了有机电致发光器件(OLED) 的结构和发光机理。
典型的传统OLED是生长在透明的阳极例如ITO玻璃上的,发射出来的光是由最底层衬底透出,这使得它与其他电子元件如硅基显示驱动器的集成变得非常复杂。
因此,理想的做法是研发一种OLED,其光的发射由器件顶部的透明电极透出。
重点介绍一种具有阴极作为底层接触层,阳极ITO薄膜作为顶部电极的表面发射型或者说有机“反转”的LED(OILED)。
介绍了该器件的制备工艺,对该OILED的I一V特性及EL谱进行了测试,发现与传统的OLED相类似,而工作电压有所升高,效率一定程度上降低。
为了进一步改善器件性能,我们对器件增加了保护层(PL),研究了PL对OILED器件性能的影响。
最后概述了器件的技术进展和应用前景, 并展望了未来OLED 发展的方向。
关键词:有机电致发光器件,有机反转电致发光器件,发光机理,保护层(PL),阳极ITO 薄膜AbstractOLED has a solid state, self-luminous, high contrast, ultra-thin, low power consumption, viewing angle, fast response, low-voltage DC drive, the operating temperature range, easy to implement many of the advantages of flexible displays and 3D displays future20 years of the most "money scene" of the newdisplay because OLED has a large-area film, low power consumption, and other fine features, so an ideal plane light source, also has broad application prospects in the future of energy saving lighting in the area. In this paper, the systematic introduction of OLED development background, history of the development, preparation and application, the structure of the organic electroluminescent devices (OLED) and the luminescence mechanism.Typical traditional OLED is growth in transparent anode ITO glass, for example, the light is emitted by bottom gives fully substrate, this makes it and other electronic components such as that the integration of the silica based drive become very complex. Therefore, the ideal way is developing a OLED, its light emission from the top of the device gives fully transparent electrodes. Focuses on a cathode as the bottom contact layer, the anode of ITO films as the top electrode surface emission or organic LED of the "reverse" (OILED). Of the device preparation process, the OILED I-V characteristics and EL spectra of the test, found that similar to the conventional OLED, the working voltage was increased efficiency to a certain extent on the lower. To further improve the device performance of the device to increase the protective layer (PL), PL OILED device performance. Finally an overview of the technical progress and prospects of the device, and looked to the future OLED, the direction of development.Keywords:Organic Electroluminescent Devices,Organic reverse electroluminescent devices, Luminescence mechanism,Protective layer (PL), the anode of ITO films.目录摘要 (I)Abstract........................................................... I I 目录.............................................................. I II 1.绪论.. (1)1.1课题背景 (1)1.2 OLED技术的发展概况 (2)1.2.1 全球OLED发展史 (4)1.2.2 中国OLED发展状况 (5)1.2.3 OLED的应用 (6)1.2.3 OLED的制备 (6)2.有机电致发光器件 (8)2.1 引言 (8)2.2 有机电致发光器件 (8)2.3 有机电致发光器件的结构 (9)2.4 OLED发光机理 (10)2.5 我国发展OLED产业存在的问题及发展趋势 (13)2.5.1 存在的问题 (13)2.5.2 发展趋势 (14)2.6 结论及建议 (14)3.有机反转电致发光器件 (16)3.1 引言 (16)3.2 器件制备工艺 (17)3.2.1 基片的清洗及表面处理 (17)3.2.2 阴极的蒸镀 (17)3.2.3 有机层的成膜 (18)3.2.4 阳极的溅射 (18)/ PVK:TPD/PTCDA/ITO结构的有机反转电致发光器件的研究3.3 Si/Al/Alq3 (19)3.3.1 OILED的I一V特性及亮度测试 (19)3.4 保护层(PL)对器件性能的影响 (26)3.4.1 PL厚度对器件j一V特性的影响 (26)的影响 (28)3.4.2 PL对器件的最大驱动电流Im ax的影响 (28)3.4.3 PL对器件外量子效率qe3.4.4 PL对EL发射谱的影响 (29)3.4.5 顶电极(阳极)面积对载流子注入效率的影响 (30)3.4.6 PL层对器件最表面状态的影响 (31)4.OLED与OILED的特性及存在的问题 (32)4.1 与目前占主流地位的CRT及LCD技术相比,OLED与OILED具有以下更多的优点: (32)4.2 与OLED相比OILED的不同 (34)4.3 OLED与OILED 急待解决的问题和未来发展趋势 (34)结论 (37)5.致谢 (38)6.参考文献: (39)1.绪论1.1课题背景信息显示是信息产业的核心技术之一, 而信息显示技术及显示器件多种多样, 到目前为止,有四种发光物理机制完全不同的固态场致发光形式。