小学奥数:鸡兔同笼问题
- 格式:doc
- 大小:83.51 KB
- 文档页数:6
鸡兔同笼问题经典形式的解题思路(1)已知总头数和总脚数,求鸡、兔各多少:思路:假设全部都是鸡,总脚数减去鸡脚数后剩下的事兔子比鸡多的脚,ok 再除以脚的差,算出兔子数。
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多,求鸡和兔的数量思路:根据鸡兔脚数的差数,折算成鸡的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(总头数-脚数之差/一只鸡的脚数)÷(2+1)=兔数;例:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?兔:(40-32/2)÷(2+1)=8 只;鸡:40-8=3只(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多思路:和上题目一样,根据鸡兔脚数的差数,折算成兔的数量,总头数减去相应的折算数量后,剩下的鸡和兔的脚一样多,如果鸡和兔的脚一样多,他们的头数比肯定为2:1,根据比例算出兔的个数。
(4) 已知鸡和兔的头数差以及脚数和例:鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?思路:总脚数减去多的动物的脚数后,除以两种动物的单个脚数为兔子的个数。
274-(26×2)÷(2+4)=37(只) 兔(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),思路:根据互换前后的脚数相加除以(鸡的脚数加兔的脚数之和)为头数,再根据1求解。
小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
鸡兔同笼问题板块一、两个对象的“鸡兔同笼”【例 1】鸡兔同笼,头共46,足共128,鸡兔各几只【巩固】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只【巩固】鸡兔共有45只,关在同一个笼子中.每只鸡有两条腿,每只兔子有四条腿,笼中共有100条腿.试计算,笼中有鸡多少只兔子多少只【巩固】动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少【巩固】鸡兔同笼,上有35头,下有94足,求笼中鸡兔各几只【例 2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只【巩固】一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只【巩固】鸡兔同笼,鸡、兔共有107只,兔的脚数比鸡的脚数多56只,问鸡、兔各多少只【巩固】鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【巩固】鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只【巩固】鸡、兔同笼,鸡比兔多26只,足数共274只,问鸡、兔各几只【巩固】鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只【例 3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆【巩固】体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件【巩固】小建和小雷做仰卧起坐,小建先做了3分钟,然后两人各做了5分钟,一共做仰卧起坐136次.已知每分钟小建比小雷平均多做4次,那么小建比小雷多做了多少次【例 4】(中国古代僧粥问题)一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个【巩固】100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【巩固】100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人【解析】从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水多少个挑水【例 5】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个【巩固】乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶【巩固】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只【例 6】(2008年第八届“春蕾杯”小学数学邀请赛决赛)甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10发,共得208分,最后甲比乙多得64分,乙打中发。
小学奥数--鸡兔同笼一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.292.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.173.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,74.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.56.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.167.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?小学奥数--鸡兔同笼参考答案与试题解析一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.29【分析】假设全是鸡,则脚有29×2=58只,比实际少92﹣58=34只,又因为每只兔比每只鸡多4﹣2=2只脚,所以多出的脚是兔脚,所以兔的只数是:34÷2=17只,进而求出鸡的数量.【解答】解:兔的只数:(92﹣29×2)÷(4﹣2)=34÷2=17(只)鸡有29﹣17=12(只).答:鸡有12只.故选:B.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.2.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.17【分析】假设20只全是兔子,则一共有20×4=80只脚,这比已知的46只脚多出80﹣46=34只,又因为一只兔子比一只鸡多4﹣2=2只脚,所以鸡有34÷2=17只,据此即可解答.【解答】解:(20×4﹣46)÷(4﹣2)=34÷2=17(只),答:鸡17只.故选:D.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,7【分析】假设全是蜘蛛,则一共有腿:10×8=80条,这比已知多了80﹣68=12条,又因为一只蜘蛛比一只蛐蛐多8﹣6=2条腿,所以蛐蛐有12÷2=6只,那么蜘蛛就是10﹣6=4只,据此即可解答.【解答】解:(10×8﹣68)÷(8﹣6)=12÷2=6(只)10﹣6=4(只)答:蛐蛐和蜘蛛分别有6只、4只.故选:B.【点评】解答此类题目一般都用假设法,这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.4.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人【分析】假设全是男生,那么一共可以植树12×5=60(棵),多植了60﹣56=4(棵),是因为一位男生比一位女生多植5﹣4=1(棵),那么女生的人数就是4÷1=4(人),进而可以求出男生的人数.【解答】解:假设全是男生,那么女生有:(12×5﹣56)÷(5﹣4)=4÷1=4(人)男生有:12﹣4=8(人)答:男生有8人.故选:C.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.5【分析】用总钱数减去两个大人门票的钱可得小孩买门票花的钱,再用总钱数除以小孩门票的价格即可得小孩的个数.【解答】解:(45﹣2×10)÷5=(45﹣20)÷5=25÷5=5(个)答:这两个大人带了5个小孩,故选:C.【点评】此题属于鸡兔同笼问题,关键是得出小孩买门票花的钱.6.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.16【分析】假设小华20道题全答对,应得100分,现在小华得了86分,少了14分.因为答对一题不但得不到5分还要倒扣2分,也就是每答错一题要减去5+2=7(分),那么,少的这14分,就是因为答错题的缘故,因此小华答错了:14÷7=2(道),进一步解决问题.【解答】解:20﹣(20×5﹣86)÷(5+2)=20﹣14÷7=20﹣2=18(道).答:小华答对了18道题.故选:B.【点评】此题解答的关键是运用了假设法,先求出答错了几道题,再求出答对的题的数量.7.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7【分析】假设11条全是大船,则一共有6×11=66人,这比已知的54人多了66﹣54=12人,又因为一条大船比一条小船多坐6﹣4=2人,所以可得小船有12÷2=6条,则大船就是11﹣6=5条,据此即可解答问题.【解答】解:(6×11﹣54)÷(6﹣4)=(66﹣54)÷2=12÷2=6(只)11﹣6=5(只)答:大船租了5只.故选:B.【点评】此题属于鸡兔同笼问题,采用假设法即可解答问题.二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?【分析】假设全是鸡,则脚的只数是(33×2)只,而实际有108只,实际就比假设多和(108﹣33×2)只脚,这因每只兔子比每只鸡多(4﹣2)只.据此解答.【解答】解:(108﹣33×2)÷(4﹣2)=42÷2=21(只)33﹣21=12(只)答:鸡有12只,兔有21只.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?【分析】假设全部为兔子,共有腿4×100=400条,比实际的260条多:400﹣260=140条,因为我们把鸡当成了兔子,每只多算了4﹣2=2条腿,所以可以算出鸡的只数,列式为:140÷2=70(只),那么兔子就有:100﹣70=30(只);据此解答.【解答】解:假设全是兔,鸡:(4×100﹣260)÷(4﹣2)=140÷2=70(只)兔:100﹣70=30(只)答:鸡有70只,兔有30只.【点评】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?【分析】假设全是羽毛球,则有16×3=48人,这样就少了54﹣48=6人,因为一副乒乓球比一副羽毛球少算了4﹣3=1人,即乒乓球有6÷1=6(副);进而求出羽毛球的数量.【解答】解:假设全是羽毛球,乒乓球:(54﹣16×3)÷(4﹣3)=6÷1=6(副)羽毛球:16﹣6=10(副)答:羽毛球有10副,乒乓球有6副.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?【分析】假设全部为乌龟,共有脚4×15=60只,比实际的58只多:60﹣58=2只,因为我们把仙鹤当成了乌龟,每只多算了4﹣2=2只脚,所以可以算出仙鹤的只数,列式为:2÷2=1(只),那么乌龟就有:15﹣1=14(只);据此解答.【解答】解:假设全是乌龟,仙鹤有:(4×15﹣58)÷(4﹣2)=2÷2=1(只);乌龟:15﹣1=14(只);答:乌龟有14只,仙鹤有1只.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?【分析】假设全部租大船,10条船能坐6×10=60人,比实际多算了:60﹣48=12人,因为把小船看作了大船,每条小船多算了6﹣4=2人,所以小船的条数是:12÷2=6条,那么大船的条数就是:10﹣6=4条,据此解答.【解答】解:(6×10﹣48)÷(6﹣4)=12÷2=6(条)10﹣6=4(条)答:大船租了4条,小船租了6条.【点评】解答鸡兔同笼问题一般用假设法,也就是假设全部为某种量,和实际的总量相比较,就会出现矛盾,然后利用这个矛盾求出另一个量,继而求出假设的量.13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?【分析】假设小亮20题全答对,他应得100分,但现在只得了86分,少了14分.因为答错一题不但不得分,而且要扣2分,也就是答错一题要少得7分.因此答错了14÷7=2(题),据此解答即可.【解答】解:(20×5﹣86)÷(5+2)=(100﹣86)÷7=14÷7=2(题)答:他答错了2题.【点评】此题运用了假设法解答盈亏问题,假设全答对,根据分数差即可求出答错了几题.14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?【分析】假设全是大船,能坐12×6=72人,比实际多72﹣58=14人,因为每条大船比每条小船多坐6﹣4=2人,所以小船有14÷2=7条,进而可以求出大船的数量.【解答】解:假设全是大船,则小船有:(12×6﹣58)÷(6﹣4)=14÷2=7(条);则大船有:10﹣7=3(条).答:大船有3条,小船有7条.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?【分析】因为小猴子3只分1个桃子,所以1只小猴子分得个桃子,大猴子每只分3个桃子,则1只大猴子比1只小猴子多分(3﹣)个桃子;假设都是小猴子,则桃子的个数是20×个,实际是20个桃子,多出的桃子个数是(20﹣20×)个,(20﹣20×)÷(3﹣)即为大猴子的只数,运用减法求出小猴子只数.【解答】解:因为小猴子3只分1个桃子,所以1只小猴子分得个桃子.(20﹣20×)÷(3﹣)=(20﹣)÷=×=5(只)20﹣5=15(只)答:猴村有5只大猴子,15只小猴子.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.。
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是©⽆忧考⽹为⼤家整理的《⼩学奥数鸡兔同笼问题公式及⼝诀》供您查阅。
【第⼀篇:⼝诀】【第⼆篇:例题解析】【第三篇:计算公式】鸡兔同笼问题公式 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解⼀(100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。
解⼆(4×36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)…………………………兔。
(答略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数⽐兔的总脚数多时,可⽤公式 (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。
(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数⽐鸡的总脚数多时,可⽤公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。
(例略)。
小学奥数题:鸡兔同笼(含义+公式+例题答案)鸡兔同笼含义:已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
公式:【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例题答案:1、鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
2、李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。
鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
3、鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?解:解法一:假设全是兔子(4×45-146)÷(4-2)=17(只)——→鸡45-17=28(只)——→兔解法二:假设全是鸡(146-2×45)÷(4-2)=28(只)——→兔45-28=17(只)——→鸡所以:鸡有17只,兔子有28只。
鸡兔同笼问题全汇总“鸡兔同笼”是一个古老而有趣的数学问题,常常出现在小学奥数和数学教材中。
它看似简单,却蕴含着丰富的数学思维和解题方法。
接下来,让我们对鸡兔同笼问题来个全面的汇总。
一、鸡兔同笼问题的基本形式通常,鸡兔同笼问题会这样描述:在一个笼子里,有若干只鸡和兔。
从上面数,有若干个头;从下面数,有若干只脚。
问鸡和兔各有多少只?例如:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有 26 只脚。
问鸡和兔各有几只?二、常见的解题方法1、假设法假设全是鸡,那么脚的总数就应该是头的数量乘以 2。
如果总脚数比这个假设的脚数多,多出来的就是兔子比鸡多的脚数。
因为每只兔子比每只鸡多2 只脚,所以用多出来的脚数除以2 就得到兔子的数量,再用总数减去兔子的数量就是鸡的数量。
以刚才的例子来说,假设 8 个头全是鸡,那么脚应该有 8×2 = 16 只。
但实际有 26 只脚,多出来 26 16 = 10 只脚。
这 10 只脚就是兔子多出来的,每只兔子比鸡多 2 只脚,所以兔子有 10÷2 = 5 只,鸡就有8 5 = 3 只。
假设全是兔的方法也是类似的,先算出假设全是兔时的脚数,与实际脚数比较,少的部分除以 2 就是鸡的数量。
2、方程法设鸡的数量为 x 只,兔的数量为 y 只。
根据头的数量和脚的数量可以列出两个方程:x + y = 8 (头的总数)2x + 4y = 26 (脚的总数)通过解方程组,可以求出 x 和 y 的值,从而得到鸡和兔的数量。
3、列表法依次列举鸡和兔可能的数量组合,计算对应的脚数,直到找到符合条件的组合。
这种方法比较繁琐,但对于数量较小的情况还是可行的。
三、鸡兔同笼问题的变形1、已知头和脚的数量差比如:笼子里鸡和兔共有 30 个头,鸡脚比兔脚少 20 只,问鸡和兔各有多少只?这种情况下,可以先假设鸡和兔的脚数一样多,然后根据脚数差逐步调整鸡和兔的数量。
2、已知脚和头的数量比例如:笼子里鸡和兔的脚数比是 2:3,头共有 20 个,问鸡和兔各有多少只?可以根据脚数比得出鸡和兔数量的关系,再结合头的数量求解。
鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。
求大船和小船的只数。
7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。
大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。
其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。
求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
创作编号:BG7531400019813488897SX
创作者:别如克*
小学奥数:
第十一讲鸡兔同笼问题
“鸡兔同笼”问题小朋友们听说过吗?这是一类著名的数学问题。
比如:“鸡兔同笼,共有45个头,146只脚。
笼中各有多少只鸡兔?”鸡兔同笼问题的特点是:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
解题时,首先要根据题目中所给出的两个未知数的关系,用一个未知数代替另一个未知数,从而将两个未知数装化为一个未知数,从而解出答案。
典型例题
例【1】鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?
分析题目中给出了鸡、兔共45只。
如果假设这45只全都是兔子,那么就应该有180只脚。
而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。
为什
么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。
如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34÷2=17(只)。
所以鸡有17只,兔子有28只。
当然,我们也可以把45只都假设成是鸡,把以上问题反过来考虑。
解法一假设全是兔子。
(4×45-146)÷(4-2)=17(只)——鸡
45-17=28(只)——兔
解法二假设全是鸡。
(146-2×45)÷(4-2)=28(只)——兔
45-28=17(只)——鸡
答:鸡有17只,兔子有28只。
例【2】盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。
盒中大钢珠、小钢珠各有多少个?
分析假设全部都是大钢珠,则共重:11×30=330(克);
比原来的克数重:330-266=64(克);
小钢珠的个数是:64÷(11-7)=16(个)
大钢珠的个数是:30-16=14(个)
同样,也可以假设全部都是小钢珠。
算法一样。
解法一假设全是大钢珠。
(30×11-266)÷(11-7)=16(个)——小钢珠
30-16=14(个)——大钢珠
解法二假设全是小钢珠。
(266-30×7)÷(11-7)=14(个)——大钢珠
30-14=16(个)——小钢珠
例【3】一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。
这个集邮爱好者买这两种邮票各多少张?
分析先假定买来的100张邮票全部是20分一张的,那么总值应是2000分,比原来的总值多120分。
而多的120分,是把10分一张的看作是20分的一张的,每张多算10分。
因此可以先求出10分一张的邮票有多少张。
解10分一张的邮票的张数有:
(2000-1880)÷(20-10)=12(张)
20分一张的邮票张数有:
100-12=88(张)
答:10分一张的邮票有12张,20分一张的邮票有88张。
例【4】学校买来3个排球和2个足球,共花去111元。
每个足球比每个排球贵3元。
每个排球和每个足球各多少元?
分析根据“每个足球比每个排球贵3元”可知,当把买2个足球换成买2个排球时,买球共花的钱就会比原来少6元,现在买的是(3+2)个排球,因此,可以求出每个排球的价钱。
解每个排球的价钱:
(111-3×2)÷(3+2)=21(元)
每个足球的价钱:
21+3=24(元)
答:每个排球的价钱是21元,每个足球的价钱是24元。
同样,这道题也可以将3个排球换成3个足球来考虑。
例【5】买2支钢笔的价钱等于买8支圆珠笔的价钱。
如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?
分析根据“买2支钢笔的价钱等于买8支圆珠笔的价钱”,可知“买1支钢笔的价钱等于买4支圆珠笔的价钱”,买3支钢笔的价钱可以买(4×3)支圆珠笔。
这样,我们就可以将买
钢笔的支数转换为买圆珠笔的支数了。
从而顺利地求出每支圆珠笔的价钱。
解一支圆珠笔的价钱:
5+(8÷2)×3=17(支)
17÷17=1(元)
一支钢笔的价钱:
1×8÷2=4(元)
答:一支钢笔4元,一支圆珠笔1元。
创作编号:BG7531400019813488897SX
创作者:别如克*
小结解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。
通常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算,直到求出结果。
概括起来,解“鸡兔同笼问题”的基本公式是:
鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
创作编号:BG7531400019813488897SX
创作者:别如克*。