数电-第七章 DA转换器和AD转换器
- 格式:ppt
- 大小:3.21 MB
- 文档页数:33
第七章数/模(D/A)和模/数(A/D)转换电路教学目的:1.掌握权电阻D/A转换器和逐次逼近型A/D转换器的工作原理、特点,输入与输出之间的关系2.了解影响精度及速度的因素3.了解D/A转换器典型芯DAC0832的特点及应用。
4. 了解A/D转换器典型芯ADC0809的特点及应用教学重点:倒T型电阻网络D/A转换器的工作原理; A/D转换的一般步骤;逐次逼近型A/D转换器的工作原理。
教学难点:D/A转换器的工作原理;A/D转换器内部电路结构、工作原理教学方法:教学过程采用理论讲解方式。
学时分配:4学时教学内容:D/A转换器及A/D转换器的种类很多,本章介绍常用的权电阻网络D/A转换器,倒T 型电阻网络D/A转换器等几种类型;逐次逼近型A/D转换器,双积分型A/D转换器。
并介绍了D/A转换器和A/D转换器的技术指标及应用。
第一节数/模转换器DAC一、数/模转换器的基本概念把数字信号转换为模拟信号称为数-模转换,简称D/A(Digital to Analog)转换,实现D/A转换的电路称为D/A转换器,或写为DAC(Digital –Analog Converter)。
随着计算机技术的迅猛发展,人类从事的许多工作,从工业生产的过程控制、生物工程到企业管理、办公自动化、家用电器等等各行各业,几乎都要借助于数字计算机来完成。
但是,计算机是一种数字系统,它只能接收、处理和输出数字信号,而数字系统输出的数字量必须还原成相应的模拟量,才能实现对模拟系统的控制。
数-模转换是数字电子技术中非常重要的组成部分。
把模拟信号转换为数字信号称为模-数转换,简称A/D(Analog to Digital)转换;。
实现A/D转换的电路称为A/D转换器,或写为ADC(Analog–Digital Converter);。
D/A 及A/D转换在自动控制和自动检测等系统中应用非常广泛。
D/A转换器及A/D转换器的种类很多,这里主要介绍常用的权电阻网络D/A转换器,倒T型电阻网络D/A转换器。
一、AD及DA转换简介1.1 AD转换概述模拟信号与数字信号的概念模拟信号转换为数字信号的意义1.2 DA转换概述数字信号转换为模拟信号的意义DA转换的基本原理1.3 AD及DA转换的应用领域电子秤工业控制音频处理二、AD转换器(模数转换器)2.1 AD转换器的工作原理采样保持量化和编码2.2 AD转换器的类型逐次逼近型(SAR)双积分型流水线型2.3 AD转换器的主要性能指标分辨率和量化误差转换时间和转换速率动态范围和线性范围三、DA转换器(数模转换器)3.1 DA转换器的工作原理数字到模拟的转换过程D/A转换器的类型及特点3.2 DA转换器的主要性能指标分辨率转换误差转换速度3.3 DA转换器的应用实例音频DAC视频DAC通信系统中的DA转换应用四、AD及DA转换器的选择与评估4.1 AD及DA转换器的选择依据精度要求转换速度要求成本和功耗考虑4.2 AD及DA转换器的评估方法测试转换特性分析转换误差对比不同转换器的性能4.3 AD及DA转换器的应用案例分析模拟信号采集与数字处理数字信号调节与模拟输出五、AD及DA转换技术的未来发展5.1 高速AD及DA转换技术亚微米和深亚微米工艺并行处理技术5.2 高精度AD及DA转换技术低噪声和低功耗设计温度补偿技术5.3 集成AD及DA转换技术片上系统(SoC)混合信号集成技术5.4 新型AD及DA转换技术展望生物医学信号处理领域无线通信和物联网应用领域六、模拟信号的采样与保持6.1 采样定理奈奎斯特采样定理采样频率的选择6.2 采样保持电路采样保持电路的工作原理采样保持电路的设计要点七、模拟信号的量化与编码7.1 量化过程量化的概念与过程量化误差7.2 编码方法二进制编码格雷码编码八、逐次逼近型AD转换器(SAR ADC)8.1 SAR ADC的工作原理转换过程解析转换速率与功耗8.2 SAR ADC的设计要点模拟开关的选择基准电压源的设计九、双积分型AD转换器9.1 双积分型ADC的工作原理转换过程解析转换时间与精度9.2 双积分型ADC的应用场景电流传感器压力传感器十、流水线型AD转换器10.1 流水线型ADC的工作原理转换过程解析转换速率与功耗10.2 流水线型ADC的设计要点级间匹配与补偿模拟开关的选择十一、DA转换器(数模转换器)的类型及原理11.1 权电阻网络DA转换器工作原理分辨率和线性度11.2 电压反馈型DA转换器工作原理特点和应用11.3 电流反馈型DA转换器工作原理特点和应用十二、DA转换器的性能指标及评估12.1 分辨率数字位数的含义分辨率与精度的关系12.2 转换误差静态误差动态误差12.3 转换速度转换时间更新速率十三、DA转换器的应用实例13.1 音频DAC音频信号的数字到模拟转换音频DAC芯片的选择13.2 视频DAC视频信号的数字到模拟转换视频DAC芯片的选择十四、AD及DA转换器的接口技术14.1 模拟接口差分信号传输阻抗匹配14.2 数字接口SPI接口I2C接口USB接口十五、AD及DA转换器的实际应用问题与解决方案15.1 噪声问题模拟噪声的来源数字噪声的来源降噪技术15.2 匹配问题内部组件匹配外部组件匹配匹配技术15.3 温度补偿温度对AD及DA转换器的影响温度补偿技术重点和难点解析本文主要介绍了AD及DA转换的相关概念、原理、性能指标、应用实例以及接口技术,重点内容包括:1. AD及DA转换的基本原理:理解模拟信号与数字信号的转换过程,掌握AD 及DA转换的意义和应用领域。
ad和da的原理
ad和da分别是模拟信号和数字信号之间的转换过程中使用的
缩写词。
AD转换过程,即模拟信号(Analog Signal)转换为数字信号(Digital Signal)。
在AD转换中,模拟信号首先通过采样(Sampling)将连续的模拟信号转换为离散的信号,然后通过
量化(Quantization)将离散信号的幅值转换为一系列离散的
数值,最后通过编码(Encoding)将这些数值转换为二进制数,以便在计算机系统中传输和处理。
DA转换过程,则是数字信号转换为模拟信号。
在DA转换中,数字信号通过解码(Decoding)将二进制数转换为一系列离散的数值,然后通过数字到模拟转换器(DAC,Digital-to-Analog Converter)将这些离散数值转换为连续的模拟信号,
最终得到模拟信号。
AD和DA的原理是基于模拟信号和数字信号的不同特性来实
现的。
模拟信号是连续的,在时间和幅值上都可以取任意值;而数字信号是离散的,只能取有限个数值。
AD转换将模拟信
号的连续性转换为离散性,通过采样和量化将模拟信号离散化为数字信号。
DA转换则将数字信号的离散性转换为连续性,
通过解码和DAC将数字信号还原为模拟信号。
AD和DA的应用广泛,例如在音频设备中,AD转换将模拟
声音信号转换为数字信号进行处理和存储,然后DA转换将数
字信号转换回模拟信号输出。
这样的转换能够实现高质量的音频处理和传输,在音乐、广播等领域发挥重要作用。
电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。
而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。
本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。
一、AD转换AD转换是模拟信号转换为数字信号的过程。
在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。
AD转换器通常由采样器、量化器和编码器组成。
采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。
通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。
AD转换器广泛应用于各个领域,如音频、视频、电力系统等。
在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。
在电力系统中,AD转换器用于电能计量、监测等方面。
二、DA转换DA转换是数字信号转换为模拟信号的过程。
数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。
DA转换器通常由数字信号输入端和模拟输出端组成。
数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。
这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。
DA转换器广泛应用于音频设备、显示设备等领域。
在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。
在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。
三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。
目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。
在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。
A/D 和D/A 转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。
传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。
A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。
第一节 基本概念一、D/A 变换D/A 变换器一般由变换网络和模拟电子开关组成。
输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
(1)变换网络变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。
ⅰ、权电阻变换网络权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。
对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。
令V REF /2n-1R=I REF ,则有 I i =2i I REF ,即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。
权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。
图8-1 权电阻D/A 变换器ⅱ、R-2R 电阻变换网络R-2R 电阻网络中串联臂上的电阻为R ,並联臂上的电阻为2R ,如图8-2所示。
从每个並联臂2R 电阻往后看,电阻都为2R ,所以流过每个与电子开关S i 相连的2R 电阻的电流I i 是前级电流I i+1的一半。
因此, I i =2i I 0=2i I REF /2n ,即与二进制i 位权成正比。
DA 转换器----数字信号转换成模拟信号,注意模拟地和数字地要分开,采用单端共地的方式权电阻型DAC :模拟开关S i 受信号D i 控制,当D i =1时,开关左拨,当D i =0时,开关右拨。
假设求和放大器为理想放大器 那么根据“虚短、虚断”的概念I =I 0d 0+I 1d 1+I 2d 2+I 3d 3 I=V REF 23R d 0+V REF 22R d 1+V REF 2R d 2+V REFR d 3=V REF 23R(d 3⋅23+d 2⋅22+d 1⋅21+d 0⋅20)U =−I ∙R f归纳后优点:简单缺点:电阻值相差较大,难以保证精度,且大电阻 不易集成权电阻网络型 倒梯形电阻网络 权电流型 权电容型 开关树型倒T型电阻网络DAC (原则上还是权电阻网络,但所用电阻系列少)开关置于电阻网络和运放之间,开关无论是在实地还是虚地,支路上的电流始终保持不变,这样就无需电流建立时间,也不会产生尖脉冲。
从节点D开始分析,D左侧的两条支路并联等效电阻为R,依次类推节点A两条支路电阻分别为2R,并联等效电阻为R,I=V RR ,I3=I3′=V R2R,,,类推:I∑=I3∙d3+I2∙d2+I1∙d1+I0∙d0=V R2R d3+V R4Rd2+V R8Rd1+V R16Rd0=V R16R(23∙d3+22∙d2+21∙d1+20∙d0)权电流型DACDAC主要技术指标分辨率(理论精度):12n−1转换误差(实际精度):失调误差、增益误差、非线性误差绝对值之和失调误差失调误差(或称零点误差)定义为数字输入全为0码时,其模拟输出值与理想输出值之偏差值。
对于单极性D/A转换,模拟输出的理想值为零伏点。
对于双极性D/A转换,理想值为负域满量程。
偏差值的大小一般用LSB的份数或用偏差值相对满量程的百分数来表示。
增益误差D/A转换器的输入与输出传递特性曲线的斜率称为D/A转换增益或标度系数,实际转换的增益与理想增益之间的偏差称为增益误差(或称标度误差)。
课题12:A/D转换器与D/A转换器课型:讲授教学目的:1、理解D/A转换器的概念和技术参数2、掌握D/A转换器输入和输出电压的关系3、理解A/D转换的一般步骤4、掌握A/D转换器的技术参数教学重点:掌握D/A转换器的技术参数,输入和输出电压的关系,掌握A/D转换器的技术参数教学难点:掌握D/A转换器的技术参数掌握A/D转换器的技术参数复习、提问:555定时器的应用有哪些?教学导入:在电子技术中,模拟量与数字量之间的相互转换很重要。
如自动控制、自动检测、遥控、通信等系统中广泛使用数字电路来处理模拟信号。
要使数字电路能处理模拟信号,必须有能将模拟信号转换成数字信号的转换器(Analog to Digital Converter),简称A/D转换器。
有时还要把经处理后的数字信号转换成模拟信号,这就需要将数字信号转换成模拟信号的转换器(Analog to Digital Converter),简称D/A转换器。
一、D/A转换器1、D/A转换器的分类:有权电阻网络、T形电阻网络、倒T形电阻网络等几种。
2、D/A转换器的功能:无论何种形式的D/A转换器,都是把输入的数字量转换成与之成比例的模拟量。
倒T形电阻网络D/A转换器是目前D/A转换器中速度最快的一种,也是用得最多的一种。
下面以倒T形电阻网为例说明D/A转换器。
3、D/A转换器的组成:(1)倒T形电阻网络D/A转换器它由即倒T电阻网络、模拟开关、求和放大器及基准电源组成。
(2)输出模拟电压U0值与输入二进制值D为成正比的关系,从而能实现了D/A转换。
U0=-U R(D n-12n-1 + D n-22n-2+---+ D12+ D020)/2nU0为输出电压D为输入二进制值U R或(U REF)为基准电压4、D/A转换器的主要技术指标(1).分辨率DAC分辨率是指最小输出电压与最大输出电压之比。
分辨率与DAC的位数有关,位数越高,分辨率值越小,分辨能力越高。