智能控制大作业-神经网络
- 格式:doc
- 大小:303.00 KB
- 文档页数:9
控制系统中的神经网络控制方法控制系统是指通过对被控对象进行监测和调节,以达到预定要求的系统。
而神经网络控制方法是指利用神经网络模型和算法对控制系统进行优化和改进的方法。
本文将介绍神经网络控制方法在控制系统中的应用以及其原理和优势。
一、神经网络控制方法的原理神经网络控制方法主要基于人工神经网络模型,它模拟了生物神经系统的结构和功能。
该模型由多个神经元组成,这些神经元相互连接并通过权重参数传递和处理信息。
其原理主要包括以下几个方面:1. 网络拓扑结构:神经网络控制方法中使用的神经网络有多种拓扑结构,如前馈神经网络、循环神经网络和自适应神经网络等。
这些网络结构可以灵活地应用于不同的控制问题。
2. 学习算法:神经网络通过学习算法来调整网络中神经元之间的连接权重,以逐步优化网络的性能。
常见的学习算法包括反向传播算法、遗传算法和模糊神经网络算法等。
3. 控制策略:神经网络控制方法可以基于不同的控制策略,如比例积分微分(PID)控制、模糊控制和自适应控制等。
通过在神经网络中引入相应的控制策略,可以实现对被控对象的精确控制和调节。
二、神经网络控制方法在控制系统中的应用1. 机器人控制:神经网络控制方法在机器人控制中有广泛应用。
通过将神经网络嵌入到机器人的控制系统中,可以实现对机器人运动、感知和决策等方面的智能控制。
这种方法能够提高机器人的自主性和适应性,使其能够更好地适应不同环境和任务的需求。
2. 工业过程控制:神经网络控制方法在工业过程控制中也得到了广泛应用。
通过利用神经网络对工业过程进行建模和优化,可以提高生产效率、降低能耗和减少故障率。
此外,神经网络控制方法还可以应用于故障诊断和预测维护等方面,提高工业系统的可靠性和稳定性。
3. 航天飞行器控制:神经网络控制方法在航天飞行器控制方面也有重要应用。
通过神经网络对航天飞行器的姿态、轨迹和轨道控制进行优化,可以提高飞行器的稳定性和导航精度,降低燃料消耗和飞行风险。
神经网络在智能控制系统中的应用智能控制系统是一种基于前沿技术的控制系统,它具备学习和适应能力,可以自主地做出决策并改进自身的性能。
在智能控制系统中,神经网络作为一种重要的技术手段,展示了出色的应用效果。
本文将介绍神经网络在智能控制系统中的应用,并探讨其优势和未来发展方向。
一、神经网络在智能控制系统中的基本原理神经网络是一种通过模仿生物神经系统来模拟人类智能行为的技术方法。
神经网络由大量的神经元相互联结而成,通过学习和训练,神经网络能够对输入信息进行处理和分析,并对未知的数据作出预测和决策。
在智能控制系统中,神经网络起到了关键的作用。
首先,它能够通过学习和训练来从大量的数据中提取有用的信息,并有效地进行模式识别和分类。
其次,神经网络能够建立起输入和输出之间的映射关系,从而实现对输入信号的动态处理和控制。
最后,神经网络还能够通过自适应学习的方式,主动调整自身的结构和参数,以适应不同的环境和任务需求。
二、神经网络在智能控制系统中的应用领域1.自动驾驶技术神经网络在自动驾驶技术中具有广泛的应用。
通过对实时传感器数据的处理和分析,神经网络能够实现车辆的环境感知、路径规划和行为决策,从而实现自主驾驶功能。
神经网络的高并行性和适应能力使得自动驾驶系统能够在复杂多变的交通环境中实现精确的控制和决策。
2.智能制造神经网络在智能制造领域中的应用也日益重要。
在生产线的控制与优化中,神经网络能够通过学习和模式识别来分析生产数据,探测异常和故障,并实现自动故障诊断和预防。
此外,神经网络还能够优化生产调度和质量控制,提高生产效率和产品质量。
3.智能家居随着物联网技术的发展,智能家居正逐渐成为人们生活的一部分。
神经网络在智能家居中扮演着智能控制的重要角色。
通过对家庭环境和用户行为的学习和建模,神经网络可以实现智能家居设备的自主控制和个性化服务。
它能够根据不同的需求和偏好,自动调节室内温度、照明和安全系统,提供便捷、舒适和安全的居家环境。
神经网络在智能机器人中的应用随着人工智能技术的不断进步,智能机器人已经逐渐成为了我们日常生活中不可或缺的一部分。
而其中,神经网络技术更是智能机器人实现人工智能的关键之一。
本文将介绍神经网络在智能机器人中的应用及其优势。
一、神经网络技术概述神经网络,也称为人工神经网络,是一种模拟人脑组织结构和功能的人工智能技术。
它由多个节点和连接组成,每个节点代表一个人工神经元,连接则代表神经元间的突触连接。
通过对神经元和连接的模拟计算,神经网络能够实现模式识别、分类、预测等人类智能所具备的功能。
二、1.智能控制方面神经网络可用于智能机器人的控制系统,为机器人行为提供智能的指导。
通过神经网络对机器人环境和自身状态的分析,可以实现机器人在不同情况下的自主行动和智能决策。
例如,可以通过训练神经网络,实现智能机器人对目标物体的识别、跟踪和抓取等功能。
2.感知识别方面神经网络可用于智能机器人的感知识别系统,使机器人能够快速准确地对环境信号进行感知和处理。
例如,可以通过神经网络实现语音识别、视觉识别、手势识别等智能交互功能。
通过神经网络对数据的分析和训练,机器人能够识别不同的声音、图像和姿态,从而实现复杂的人机交互。
3.智能学习方面神经网络可用于智能机器人的学习系统,使机器人能够通过对数据的分析和学习,不断完善自身的识别和决策能力。
例如,可以通过神经网络实现机器人的强化学习,通过不断尝试和反馈,机器人逐渐改进自己的行为策略,从而实现更高效的任务完成。
三、神经网络在智能机器人中的优势1.自适应性强神经网络具有自适应性强的特点,可以根据环境和任务的变化,动态调整神经网络结构和参数,从而实现更好的性能表现。
智能机器人使用神经网络可以根据不同的环境和任务自主调整行为决策,从而更好地适应复杂多变的场景。
2.学习能力强神经网络具有学习能力强的特点,可以通过对数据的学习和不断尝试,逐渐改进自己的决策和行为策略。
智能机器人使用神经网络可以进行强化学习和监督学习等多种方式的学习,从而不断完善自己的能力和表现。
大工22夏《神经网络》大作业
1. 项目介绍
本次《神经网络》大作业旨在让同学们深入理解神经网络的工作原理,并能够独立实现一个简单的神经网络模型。
通过完成本次作业,同学们将掌握神经网络的基本结构,训练过程以及参数优化方法。
2. 任务要求
1. 独立实现一个具有至少三层神经网络的结构,包括输入层、隐藏层和输出层。
2. 选择一个合适的激活函数,并实现其对应的激活和导数计算方法。
3. 实现神经网络的正向传播和反向传播过程,包括权重更新和偏置更新。
4. 在一个简单的数据集上进行训练,评估并优化所实现的神经网络模型。
3. 评分标准
1. 神经网络结构实现(30分)
2. 激活函数实现(20分)
3. 正向传播和反向传播实现(20分)
4. 模型训练与评估(20分)
5. 代码规范与文档说明(10分)
4. 提交要求
1. 提交代码文件,包括神经网络结构、激活函数、正向传播、反向传播以及训练与评估的实现。
2. 提交一份项目报告,包括项目简介、实现思路、实验结果及分析。
3. 请在提交前确保代码的可运行性,并在报告中附上运行结果截图。
5. 参考资料
1. Goodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Deep learning. MIT press.
2. Russell, S., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited.
祝大家作业顺利!。
智能控制作业学生姓名: 学 号: 专业班级:7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象2)1(1)1(9.0)1()(-+-⨯--=k y k y k u k y ,分别进行matlab 仿真。
(一)采用BP 网络仿真网络结构为2-6-1。
采样时间1ms ,输入信号)6sin(5.0)(t k u ⨯=π,权值21,W W 的初值随机取值,05.0,05.0==αη。
仿真m 文件程序为:%BP simulationclear all;clear all;xite=0.5;alfa=0.5;w1=rands(2,6); % value of w1,initially by randomw1_1=w1;w1_2=w1;w2=rands(6,1); % value of w2,initially by randomw2_1=w2;w2_2=w2_1;dw1=0*w1;x=[0,0]';u_1=0;y_1=0;I=[0,0,0,0,0,0]'; % input of yinhanceng cellIout=[0,0,0,0,0,0]'; % output of yinhanceng cellFI=[0,0,0,0,0,0]';ts=0.001;for k=1:1:1000time(k)=k*ts;u(k)=0.5*sin(3*2*pi*k*ts);y(k)=(u_1-0.9*y_1)/(1+y_1^2);for j=1:1:6I(j)=x'*w1(:,j);Iout(j)=1/(1+exp(-I(j)));endyn(k)=w2'*Iout; %output of networke(k)=y(k)-yn(k); % error calculationw2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2for j=1:1:6FI(j)=exp(-I(j))/(1+exp(-I(j))^2);endfor i=1:1:2for j=1:1:6dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation endendw1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1% jacobian informationyu=0;for j=1:1:6yu=yu+w2(j)*w1(1,j)*FI(j);enddyu(k)=yu;x(1)=u(k);x(2)=y(k);w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;u_1=u(k);y_1=y(k);endfigure(1);plot(time,y,'r',time,yn,'b');xlabel('times');ylabel('y and yn');figure(2);plot(time,y-yn,'r');xlabel('times');ylabel('error');figure(3);plot(time,dyu);xlabel('times');ylabel('dyu');运行结果为:(二)采用RBF 网络仿真网路结构为2-4-1,采样时间1ms ,输入信号)2sin(5.0)(t k u ⨯=π,权值的初值随机取值,05.0,05.0==αη,高斯基函数初值T j C ]5.0,5.0[=,T B ]5.1,5.1,5.1,5.1[=。
基于神经网络的智能控制方法智能控制是近年来兴起的一种控制方法,它借助于神经网络的强大计算能力,能够对复杂的系统进行智能化的控制与决策。
本文将介绍基于神经网络的智能控制方法,并探讨其在实际应用中的潜力和优势。
一、神经网络简介神经网络是一种模拟人脑神经系统的计算模型,它由大量的神经元通过连接构成,能够对海量的信息进行高效的处理和学习。
神经网络具有自适应性、容错性和并行处理能力等特点,被广泛应用于图像识别、语音处理、自动驾驶等领域。
二、智能控制方法的基本原理基于神经网络的智能控制方法主要包括感知、决策和执行三个阶段。
感知阶段通过传感器采集系统的输入信号,并将其转化为神经网络可以处理的形式。
决策阶段利用训练好的神经网络对输入信号进行学习和判断,生成相应的控制策略。
执行阶段将控制策略转化为实际控制信号,通过执行器对系统进行控制。
三、基于神经网络的智能控制方法的优势1. 强大的学习能力:神经网络具有良好的自适应性和学习能力,能够通过大量的训练样本不断优化模型的参数,使之具备更好的控制性能。
2. 复杂系统的控制:神经网络可以对具有较高维度和非线性特性的复杂系统进行控制,能够应对更加复杂的实际场景和问题。
3. 实时性和适应性:神经网络能够在实时性要求较高的情况下对输入信号进行快速处理和决策,具备较强的适应性和反应能力。
4. 容错性和鲁棒性:神经网络在面对部分信息丢失或者噪声干扰时,仍能够保持较好的控制性能,具备较强的容错性和鲁棒性。
四、基于神经网络的智能控制方法的应用1. 智能交通系统:利用基于神经网络的智能控制方法,可以对交通流量进行实时监测和调度,达到优化交通流的效果,提高道路的通行能力和交通效率。
2. 工业自动化:神经网络可以应用于工业自动化领域中的生产线控制、设备故障预测等任务,提高生产效率和产品质量。
3. 智能机器人:通过神经网络实现智能机器人的导航、目标识别和路径规划等功能,使其具备更强的自主决策和执行能力。
自动控制系统中的神经网络控制自动控制系统是一种通过使用各种控制器和算法来实现对系统行为的调节和优化的系统。
神经网络控制是其中一种灵活且性能强大的控制方法,它模仿了人类大脑的神经网络,通过学习和适应来实现对系统的控制。
神经网络控制在自动控制系统中的应用非常广泛。
它可以用于机械控制、电力系统、通信网络等各种领域。
神经网络控制可以通过大量的输入输出数据来训练网络模型,并利用这些模型对未知的系统进行控制。
这使得神经网络控制能够处理非线性、时变和模型未知的系统。
神经网络控制的基本原理是通过训练神经网络来建立系统的模型,然后使用这个模型来预测系统的下一状态,并基于预测结果进行控制。
神经网络控制的训练过程通常包括两个阶段:离线训练和在线调整。
在离线训练阶段,使用大量的已知输入输出数据对神经网络进行训练,调整网络的权重和偏差,使其尽可能准确地描述系统的动态行为。
在在线调整阶段,根据实际的控制效果,对网络进行参数的实时调整,以适应系统的变化。
与传统的控制方法相比,神经网络控制具有以下几个优势:1. 适应性强:神经网络控制可以自适应地调整控制策略,以适应不同的工作环境和系统条件。
即使在存在模型误差和系统变化的情况下,它仍然能够保持较好的控制性能。
2. 鲁棒性强:神经网络控制对参数的变化和噪声的抗干扰能力较强。
它可以通过学习和适应来抵抗外部干扰和异常情况的干扰,从而使控制系统更加稳定可靠。
3. 非线性能力强:由于神经网络模型的非线性特性,神经网络控制可以有效地应对非线性系统。
它能够处理传统控制方法难以解决的非线性问题,并在控制精度和稳定性方面取得显著的改善。
在实际应用中,神经网络控制也存在一些挑战和限制。
首先,神经网络控制的设计和参数调整较为复杂,需要具备相关的知识和经验。
其次,神经网络控制的计算量较大,需要较高的计算资源和处理能力。
此外,神经网络控制还面临着数据不准确和训练样本不足的问题,这可能导致网络模型的性能下降。
控制系统中的神经网络与智能控制技术在现代科技的发展中,控制系统扮演着重要的角色,它用于监测和管理各种工业和非工业过程。
随着技术的不断进步,控制系统也在不断提升。
神经网络和智能控制技术作为现代控制系统中的关键组成部分,正在被广泛研究和应用。
本文将重点探讨控制系统中神经网络和智能控制技术的应用和发展。
一、神经网络与控制系统神经网络是模拟人脑神经元网络结构和功能的数学模型,它能够通过学习和训练来逼近和模拟人脑的决策过程。
在控制系统中,神经网络可以用于处理和解决复杂的非线性控制问题。
通过神经网络的学习和适应能力,控制系统可以更好地应对不确定性和非线性特性。
1.1 神经网络在控制系统中的基本原理神经网络模型由多个神经元组成,这些神经元通过连接权重相互连接。
每个神经元将输入信号经过激活函数进行处理,产生输出信号,并传递给其他神经元。
通过调整连接权重和激活函数参数,神经网络可以逐步地优化输出结果,实现更精确的控制。
1.2 神经网络在控制系统中的应用神经网络在控制系统中有广泛的应用,例如在机器人控制、电力系统控制和交通管理等领域。
在这些应用中,神经网络能够通过学习和自适应的方式,提高系统的鲁棒性和稳定性,使得系统能够更好地适应不确定性和变动性。
二、智能控制技术智能控制技术是指结合人工智能和控制理论,用于设计和实现智能化的控制系统。
智能控制技术通过引入模糊逻辑、遗传算法和专家系统等,能够更好地适应动态和非线性控制问题。
2.1 智能控制技术的基本原理智能控制技术的核心思想是将人类专家的经验和知识转化为计算机程序,使得系统能够进行智能化的决策和控制。
通过建立模糊规则和使用遗传算法进行参数优化,智能控制系统能够自主学习和适应环境的变化,对于复杂的动态系统具有较好的控制性能。
2.2 智能控制技术的应用智能控制技术在工业自动化、机器人控制和交通管理等领域有着广泛的应用。
例如,在工业生产中,智能控制系统可以根据实时数据和模糊规则,自主地进行生产调度和质量控制;在交通管理中,智能控制系统可以根据交通流量和路况信息,优化信号配时和路线选择,提高交通效率和安全性。
智能控制系统中的神经网络控制算法研究智能控制系统,作为现代智能技术的重要应用领域之一,正逐渐在各个行业和领域中得到广泛应用。
智能控制系统的核心是算法,而神经网络控制算法作为其中一种重要技术手段,正在引起学术界和工业界的高度关注和广泛研究。
本文将从神经网络控制算法的基本原理、应用领域以及未来的发展方向等角度进行深入探讨。
第一部分:神经网络控制算法的基本原理神经网络控制算法是通过模拟人类神经系统的工作原理,将模糊控制、遗传算法等多种智能算法与控制系统相结合,形成一种新的控制方法。
神经网络控制算法的基本原理是神经元之间通过权值的连接来传递信号,并通过训练来调整神经元之间的连接权值,从而实现对控制系统的优化调节。
神经网络控制算法的基本结构包括输入层、隐层和输出层。
输入层接收外部的控制信号,隐层是神经网络的核心部分,通过神经元之间的连接进行信息传递和处理,输出层将隐层的结果转化为实际控制信号。
第二部分:神经网络控制算法的应用领域神经网络控制算法具有很强的适应性和优化能力,因此在许多领域都得到了广泛应用。
在工业自动化领域,神经网络控制算法可以对复杂的工业过程进行建模和控制,例如化工过程中的温度、压力和流量等参数控制。
在机器人技术领域,神经网络控制算法可以实现机器人的智能控制和路径规划,提高机器人的自主性和适应性。
在金融领域,神经网络控制算法可以用于股票价格预测和交易策略优化,提高投资者的收益率和风险控制能力。
第三部分:神经网络控制算法的未来发展方向虽然神经网络控制算法已经在多个领域得到应用,但仍然面临一些挑战和难题。
首先,神经网络控制算法的鲁棒性和可解释性需要进一步提高。
目前的神经网络模型往往是黑箱模型,难以解释其内部的决策过程,这在某些关键领域(如医疗和安全)可能会受到限制。
其次,神经网络控制算法在处理大规模数据和复杂问题时的计算复杂度较高。
如何提高算法的计算效率和准确性是一个亟待解决的问题。
此外,在人工智能和大数据的推动下,深度学习等新兴技术也对神经网络控制算法的发展提出了新的要求和机遇。
神经网络控制大作业-南航-智能控制-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII南京航空航天大学研究生实验报告实验名称:神经网络控制器设计姓名:学号:专业:201 年月日一、题目要求考虑如下某水下航行器的水下直航运动非线性模型:()||a m m v k v v u y v++==其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为100,15,10a m m k ===。
作业具体要求:1、设计神经网络控制器,对期望角度进行跟踪。
2、分析神经网络层数和神经元个数对控制性能的影响。
3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。
二、神经网络控制器的设计1.构建系统的PID 控制模型在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示:图1 水下航行器的PID 控制系统其中,PID控制器的参数设置为:K p=800,K i=100,K d=10。
需要注意的一点是,经过signal to workspace模块提取出的数据的Save format为Array格式。
2.BP神经网络控制器的训练首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。
经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。
然后,新建m文件,编写神经网络控制器设计程序:%----------------------------------------------------------------p=x'; %inputt=u'; %inputnet=newff(p,t,3,{'tansig','purelin'},'trainlm');net.trainparam.epochs=2500;net.trainparam.goal=0.00001;net=train(net,x',u'); %train networkgensim(net,-1); %generate simulink block%----------------------------------------------------------------上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为 1、 3 和1。
神经网络大作业题目神经网络模型的对比与分析学院学号学生姓名神经网络的网络拓扑结构大体有前向型、反馈型、自组织竞争型和随机型网络等拓扑结构(出发点不同网络结构的分法也不一样)。
前向型的人工神经网络有学习、分类等功能,反馈型的人工神经网络有联想记忆、优化计算等功能,自组织竞争型的人工神经网络有聚类、搜索、自组织、自学习等功能。
截至目前,我们主要学习了四种网络模型,即:感知机、有监督的Hebb网络、ADLINE (Widrow-Hoff)模型和反向传播模型(BP)都隶属于前向网络。
下面,我就各个网络模型的学习规则以及异同谈一些体会。
1.感知机学习规则:1943年,Warren McCulloch和Walter Pitts最早提出了一种人工神经元模型,把神经元输入信号的加权和与其阈值相比较以确定神经元的输出。
如果加权和小于阈值,则该神经元的输出值为0;如果加权和大于阈值,则该神经元的输出值为1。
但由于没有找到训练这一网络的方法,因此必须设计这些神经元网络的参数以实现特定的功能。
上世纪50年代,Frank Rosenblatt等研究人员提出了一种感知机的神经网络,引入了用于训练神经网络解决模式识别问题的学习规则,并证明了只要求解问题的权值存在,那么其学习规则通常会收敛到正确的权值上。
但是,感知机网络却存在一定的局限性,其只能解决模式识别中的线性可分问题。
正是由于这种局限性,一度导致神经网络的研究工作陷入低潮。
我们知道,对于1-3维输入单层神经元的模式识别问题,可以通过图解法解决。
其基本程序为:1、画出判定边界,该判定边界实现了区域划分的目的;2、求解权值矩阵,权值矩阵求解的关键是判定边界总是和权值矩阵相正交,对于同一模式识别问题,判定边界的不同会造成权值矩阵的不同。
这一不同,在与当前模式精确匹配时不会产生错误的输出,而在其他模式的判别中可能引起较大的误差(下面将举例说明)。
3、求解偏值,偏值b的求解,可以在求解权值矩阵的基础上,将判定边界上任意一点的坐标带入方程WT*P+b=0得到,如果我们划定的判定边界通过坐标原点,那么此时的b值可以设定为0。
智能控制理论与技术设计报告学院自动化学院专业控制科学与工程班级1303姓名聂鹏指导教师徐华中2014 年 2 月20 日武汉理工大学硕士研究生试题课程名称:智能控制理论与技术专业:双控1303班学号:1049721303692 姓名:聂鹏一、简答题(每小题10分)1.智能控制由哪几部分组成?各自的特点是什么?答:智能控制系统由广义对象、传感器、感知信息处理、认知、通信接口、规划和控制和执行器等七个功能模块组成;各部分的特点是:广义对象——包括通常意义下的控制对象和外部环境;传感器——包括关节传感器、力传感器、视觉传感器、距离传感器、触觉传感器等;感知信息处理——将传感器得到的原始信息加以处理;认知——主要用来接收和储存信息、知识、经验和数据,并对它们进行分析、推理,作出行动的决策,送至规划和控制部分;通信接口——除建立人机之间的联系外,还建立系统各模块之间的联系;规划和控制——是整个系统的核心,它根据给定的任务要求、反馈的信息以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用;执行器——将产生的控制作用于控制对象。
2. 智能控制是在什么背景下产生的?答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
智能控制与应用实验报告神经网络控制器设计
一、 实验内容
考虑一个单连杆机器人控制系统,其可以描述为:
0.5sin()Mq mgl q y q
τ
+==
其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长,
29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系
统的控制输入。
具体要求:
1、设计神经网络控制器,对期望角度进行跟踪。
2、分析神经网络层数和神经元个数对控制性能的影响。
3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。
4、为系统设计神经网络PID 控制器(选作)。
二、 对象模型建立
根据公式(1),令状态量
121
=,x q x x =得到系统状态方程为:
12121
0.5**sin()
x x mgl x x M
y x τ=-=
=
(1)
由此建立单连杆机器人的模型如图1所示。
图1 单连杆机器人模型
三、系统结构搭建及神经网络训练
1.系统PID结构如图2所示:
图2 系统PID结构图
PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
t/s
a n g l e /r a d
图3 PID 控制响应曲线
采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b';
net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'});
产生的神经网络控制器如图4所示:
图3 神经网络工具箱
训练过程如图4所示:
图4 神经网络训练过程图
用训练好的神经网络控制器替换原来的PID 控制器,得到仿真系统结构图如图5所示:
control input q
plant
t
To Workspace1
y To Workspace
Step
Scope
1
s Integrator2du/dt Derivative1
NNET Input Output
Custom Neural Network
Clock
图5 神经网络控制系统结构图
运行系统得到神经网络控制下的响应曲线如图6所示:
01234
5678910
0.2
0.4
0.6
0.8
1
1.2
1.4
t/s
a n g l e /r a d
图6 神经网络控制响应曲线图
四、 神经网络和PID 控制器的性能比较
1.抗干扰能力
在神经网络控制器和PID 控制器中分别加入相同的随机噪声,系统响应如图7所示:
1234
5678910
00.2
0.4
0.6
0.8
1
1.2
1.4
t/s
a n g l e /r a d
图7 加入噪声的系统响应曲线
从图7中的响应曲线可以看出,神经网络控制和PID 控制的抗干扰效果相差不大。
2.加入饱和
饱和区间为[,],得到的系统响应曲线如图8所示:
1234
5678910
00.2
0.4
0.6
0.8
1
1.2
1.4
t/s
a n g l e /r a d
图8 加入饱和的系统响应曲线
从图8中可以看出加入饱和特性后,神经网络控制比PID 控制要平缓一些。
3.加入时滞
在PID 系统和神经网络系统中分别加入相同的时滞后,系统的响应曲线如图9所示:
1234
5678910
00.5
1
1.5
2
2.5
t/s
a n g l e /r a d
图9 加入时滞的系统响应曲线
从图9中可以看出,加入时滞特性后神经网络控制的控制效果明显比PID 控制要好很多。
五、 总结
经典PID 控制原理和现代控制原理的共同特点是:控制器设计必须建立在被控对象的精确建模上。
没有精确的数学模型,控制器的控制效果及精度将受到很大的制约。
但在现实生活中,大多数系统具有非线性、时变、大延迟等特点,很难建立精确的数学模型。
因此经典控制原理和现代控制原理都很难实现对这种系统的精确控制。
神经网络控制不需要建立基于系统动态特性的数学模型。
神经网络具有的任意非线性逼近能力,可以通过对系统性能的学习来实现具有最佳组合的PID 控制。