新人教版七上整式的加减:第4课时:整式的加减(1)
- 格式:doc
- 大小:48.50 KB
- 文档页数:3
新人教版七年级数学上册《整式的加减》优秀教案2.1 整式(第1课时)教学目标:1.理解字母表示数的意义,能够用含有字母的式子表示实际问题中的数量关系。
2.通过具体问题的抽象过程,发展符号意识。
教学重点:1.理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系。
2.感受其中“抽象”的数学思想。
教学难点:将实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来。
教法与学法:教法:互动探究法。
学法:小组研讨法。
教学过程:一、情境引入问题1:在青藏铁路线上,有一段很长的冻土地段,列车在冻土地段的行驶速度是100km/h。
列车在冻土地段行驶时,根据已知数据求出列车行驶的路程。
1.2 h行驶多少千米?3 h呢?8 h呢?th呢?2.字母t表示时间有什么意义?3.如果用v表示速度,列车行驶的路程是多少?4.回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?学生合作探究:找出题目中的已知量和未知量,并分析两者之间的关系。
学生:2 h行驶200 km,3h行驶300 km,8h行驶800 km,th行驶100tkm。
教师:上面这种用含有字母的式子来表示数量,就是我们今天要研究的新知识——用字母表示数。
二、范例研究例11.XXX原价是每千克p元,按8折优惠出售,用式子表示现价。
2.某产品前年的产量是n件,去年的产量是前年产量的m 倍,用式子表示去年的产量。
3.一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积。
4.用式子表示数n的相反数。
学生活动:小组合作探究,得出答案。
师生合作探究:我们可以将题目中的字母看成数字,然后分析问题中的数量关系,列出含有字母的式子表示这些数量关系。
教师总结:1.上面各个问题的结果分别是:0.8p,mn,a²h,-n。
2.数与字母、字母与字母相乘省略乘号;数与字母相乘时数字在前;带分数与字母相乘时,把带分数化成假分数。
课堂教学设计
、章节、港珠澳大桥
港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的
跨海大桥.一辆汽车从香港口岸行驶到东人工岛的平均速度为96
km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92
km/h.请根据这些数据回答下列问题:
(1)汽车在主桥上行驶t h的路程是多少千米?如果汽车通过海底隧
道需要a h,从香港口岸行驶到东人工岛的时间
(2)是通过海底隧道时间的1.25倍,你能用含a的代数式表示香港
口岸到西人工岛的全长吗?
(3)如果汽车通过主桥需要b h,通过海底隧道所需时间比通过主
桥的时间少0.15h,你能用含b的代数式表示主桥与海底隧道长
度的和吗?主桥与海底隧道的长度相差多少千米?
要解决上面的问题,需要进一步学习代数式.在本章中,我们
将学习一类基本的代数式--整式,以及整式的加减运算.你将进一
步学习列代数式表示数量和数量关系,体会数与整式在加减运算
中的一致性,为后续学习方程、不等式、函数等内容打下基础
引起学生的学习兴趣,激
发学生学习数学的热情
例1.用单项式填空,并指出它们的系数和次数.
(1)每包书有12册,n包书有_______册.
(2)底边长为a,高为h的三角形的面积是______.
(3)一个长方体的长和宽都是a,高是h,它的体积是____
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在售价为_____元.
(5)一个长方形的长为0.9,宽是a,这个长方形的面积是_________.
例2、填空
例3、用字母表示数后,同一个式子可以表示不同的含义.你能赋予0.9a一个含义吗?项式的概念
学抽象能力核心素养。
整式的加减(一)教学设计一、教学目标知识与技能:1.理解同类项的概念,并能正确辨别同类项。
2.掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
过程与方法:1.探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括能力。
2通过类比数的运算律得出合并同类项的法则,在教学中渗透“类比”的数学思想。
情感、态度与价值观:1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。
2培养学生合作交流的意识和探索精神。
二、教学重点与难点重点:合并同类项法则。
难点:对同类项概念的理解以及合并同类项法则的应用。
三、教学过程(一)创设情境,引入新课引入:大家听过韩红唱的歌天路吗?里面描述的是一个什么的故事呢?学生回答青藏铁路,换下来我们先一起欣赏以下有关青藏铁路的文字.问题1:青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。
列车在琼土地段的行驶速度可以到达100千米/时,在丰冻土地段的行驶速度可以到达120米/时,请根据这些数据回答下列问题,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的1倍,如果通过冻土地段需要1小时,你健用含r的式子表示这段铁路的全长吗?学生合作探究:分析已知量与未知量之间的数量关系教师总结:依题意可列出通过该土地段所需时间为2.1t,根据路程时问x速度,铁路全长是100t+120 × 2.1t.即100t+252t.100t+252t这是个多项式,能化简成一个单项式吗?这就是我们今天要学习的新知识-同类项设计意图:创设学生感兴趣的实际问题,可以激发学生的学习兴趣,调动学生学习的积极性,让学生感觉数学来源于我们的生话,数学服务于我们的生话,通过小组讨论、合作交流,能提高他们的学习热情,在教师适当的启示、鼓励下,激发学生的求知愿望.(二)合作交流,探究新知问题2:(1)运用运算律计算:100×2+252×2 100×(-2)+252×(-2)(2)根据(1)中的方法将下面的式子化简,并说明其中的道理100t+252t教师课件展示第62页“探究”,学生会试回答,4)中两式的结构相同,每个式子两项都含有一个相同的因数,因此根据分配律可得:100×2+251×2=(100+252)×2=352×2=704,100×(-2)+252×(-2)=(100+252)×(-2)=-704师:100t+252t与问题(1)中的两个算式有什么联系?你是如何理解化简式子100t+252t的方法的?学生尝试解释,教师根据学生回答情况进行引导教师引导学生归纳:①算式100×2+252×2与100×(-2)+252×(-2)和式子100t+252t具有相同的结构,由于字母t代表的是一个因(乘)数,因此根据分配律应有100t+252t=(100+252)t=352t:②由于整式中的字母表示数因此可以类比数的运算运用数的运算法则和运算律进行整式的运算问题3:填空(1)100t-252t=(100-252)=152t(2)3x2+2x2=(3+2)x2=5x2(3)3ab2-4ab2=(3-4)ab2 = -ab2对于上面的(1),(2),(3),利用分配律可得上述运算有什么特点你能从中得到什么规律学生活动:在独立完成的基础上小组合作交流这就是说,上面的三个多项式都可以合并为一个单项式.具备什么特点的单项式可以合并呢?视察(1)中多项式的项100t和-252t,它们都含有相同字母,并且字母t的指数都是1(2)中的多项式的项3x 2 2x2都含有相同字母,并且字母的指数都是2(3)中的多项式的3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
第4课时:整式的加减(1)
教学内容:
教科书第63—64页,2.2整式的加减:1.同类项。
教学目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴、5个人+8个人=
⑵、5只羊+8只羊=
⑶、5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2, 83
, 9a , -32
xy , 0, 0.4mn 2, 95
,
2xy 2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)
二、讲授新课:
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。
8x 2y 与-x 2y 可以归为一类,2xy 2与-
3
2
xy 可以归为一类,-mn 2、7mn 2与0.4mn 2可以归为一类,5a 与9a 可以归为一类,还有83
、0与95也可以归为一类。
8x 2y 与-x 2y 只有系数不同,各自所含的字母都是x 、y ,并且x 的指数都是2,y 的指数都是1;同样地,2xy 2与-32
xy 也只有系数不同,各自
所含的字母都是x 、y ,并且x 的指数都是1,y 的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(simil a r terms)。
另外,所有的常数项都是同类项。
比如,前面提到的83、0与95也是同类项。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。
(板书课题:同类项。
)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。
)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
2.例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )
(3)3x 2y 与-3
1yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( )
(5)23与32是同类项。
( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。
一部分学生可能会单看指数不同,误认为不是同类项。
)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。
学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。
)
例3:指出下列多项式中的同类项:
(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2。
解:(1)3x 与-2x 是同类项,-2y 与3y 是同类项,1与-5是同类项。
(2)3x 2y 与-23yx 2是同类项,-2xy 2与31xy 2是同类项。
例4:k 取何值时,3x k y 与-x 2y 是同类项?
解:要使3x k y 与-x 2y 是同类项,这两项中x 的次数必须相等,即 k =2。
所以当k =2时,3x k y 与-x 2y 是同类项。
例5:若把(s +t)、(s -t)分别看作一个整体,指出下面式子中的同类项。
(1)31(s +t)-51(s -t)-43(s +t)+6
1(s -t); (2)2(s -t)+3(s -t)2-5(s -t)-8(s -t)2+s -t 。
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。
例4让学生明确同类项中相同字母的指数也相同。
例5必须把(s -t)、(s +t)分别看作一个整体。
)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。
)
6.课堂练习:请写出2ab 2c 3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。
)
三、课堂小结:
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。
)
四、课堂作业:若2a m b 2m+3n 与a 2n -3b 8的和仍是一个单项式,则m 与 n 的值分别是______ 板书设计:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。
在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。