三元乙丙橡胶(EPDM)简介之令狐文艳创作
- 格式:doc
- 大小:21.02 KB
- 文档页数:12
三元乙丙(EPDM)橡胶配方的配合体系介绍三元乙丙橡胶可以采用二烯烃类橡胶用的普通硫化方法硫化,但由于硫化速度较慢,故近年发展了高不饱和度三元乙丙橡胶,其硫化速度不低于高不饱和橡胶的。
三元乙丙橡胶通常可用硫黄、过氧化物、醌肟和反应性树脂等多种硫化体系进行硫化。
不同的硫化体系对其混炼胶的门尼粘度、焦烧时间、硫化速度以及硫化胶的次联键型、物理机械性能(如应力-应变、滞后、压缩变形以及耐热等性能)亦有着直接的影响。
硫化体系的选择要根据所用乙丙橡胶的类型、产品物理机械性能、操作安全性、喷霜以及成等因素加以综合考虑。
一、硫化体系乙丙橡胶常见交联剂体系的适用性和特点1硫黄硫化体系硫黄硫化体系是三元乙丙橡胶使用最广泛最主要的硫化体系。
在硫黄硫化体系中,由于硫黄在乙丙橡胶中溶解度较小,容易喷霜,不宜多用。
一般硫黄用量应控制在1~2份范围内。
在一定硫黄用量范围内,随硫黄用量增加,胶料硫化速度加快,焦烧时间缩短,硫化胶拉伸强度、定伸应力和硬度增高,拉断伸长率下降。
硫黄用量超过2份时,耐热性有下降,高温下压缩永久变形增大。
为使胶料不喷霜,促进剂的用量亦必须保持在三元乙丙橡胶的喷霜极限溶解度以下。
实际上,在工业生产中,基于以下原因几乎都是采用二种或多种促进剂的并用体系。
(1)多种促进剂并用,容易达到硫化作用平衡。
(2)许多促进剂在较低浓度时,就会发生喷霜,因此用量不宜太高。
(3)促进剂这间的协同效应,有利于导致硫化时间的缩短和交联密度的提高。
硫黄硫化体系中,促进剂的用量还可以通过增加硬脂酸的用量来提高,当其它条件不变的情况下,硬脂酸用量增加会导致交联密度、单硫和双硫交联键增加。
氧化锌用量的增加亦有助于在交联时形成促进剂,从而提高胶料的交联密度及抗返原性,改善动态疲劳性能和耐热性能。
2硫黄给予体硫化采用硫黄给予体代替部分硫黄,可使其生成的硫化胶主要具有单硫键或双硫键,因而可以改善胶料的耐热和高温下的压缩变形性能,延长焦烧时间。
三元乙丙的成分摘要:一、三元乙丙橡胶简介1.三元乙丙橡胶的简称2.广泛应用于汽车、建筑、电线电缆等领域二、三元乙丙橡胶的成分1.主要成分:乙烯、丙烯和少量的非共轭二烯烃2.辅助成分:硫磺、碳黑、氧化锌、硬脂酸等三、各成分的作用1.乙烯:提供弹性、耐磨性和耐老化性2.丙烯:增加硬度、耐磨性和耐热性3.非共轭二烯烃:调整硫化速度和加工性能4.硫磺:硫化剂,增加强度和耐磨性5.碳黑:提高耐磨性和抗老化性6.氧化锌:硫化剂,增强耐热性和耐老化性7.硬脂酸:增加加工性能和抗老化性四、三元乙丙橡胶的性能及应用1.优异的耐候性、耐臭氧性和耐化学腐蚀性2.良好的耐热性、耐寒性和电绝缘性3.适用于各种介质和环境正文:三元乙丙橡胶(EPDM)是一种广泛应用于汽车、建筑、电线电缆等领域的橡胶材料。
它具有优异的耐候性、耐臭氧性和耐化学腐蚀性,良好的耐热性、耐寒性和电绝缘性,适用于各种介质和环境。
三元乙丙橡胶的主要成分包括乙烯、丙烯和少量的非共轭二烯烃。
乙烯作为提供弹性和耐磨性的主要成分,使三元乙丙橡胶具有良好的回弹性和耐磨性。
丙烯则增加硬度、耐磨性和耐热性,使三元乙丙橡胶在高温环境下依然保持良好的性能。
非共轭二烯烃用于调整硫化速度和加工性能,以满足不同应用场景的需求。
除了主要成分外,三元乙丙橡胶还包含辅助成分,如硫磺、碳黑、氧化锌和硬脂酸。
硫磺作为硫化剂,增加三元乙丙橡胶的强度和耐磨性。
碳黑则进一步提高耐磨性和抗老化性,延长材料的使用寿命。
氧化锌同样作为硫化剂,增强耐热性和耐老化性。
硬脂酸则增加加工性能和抗老化性,使三元乙丙橡胶在生产过程中更容易加工。
由于三元乙丙橡胶具有这些优异的性能,它被广泛应用于汽车密封件、建筑密封胶、电线电缆护套等领域。
在汽车行业,三元乙丙橡胶可用于制作轮胎、密封件、垫片等部件,以应对各种严苛的工况。
在建筑行业,三元乙丙橡胶可用于制作门窗密封胶条、防水卷材等,提供良好的密封性能。
在电线电缆行业,三元乙丙橡胶可用作护套,保护电线电缆免受外部环境的影响。
三元乙丙橡胶(EPDM)基本特性:1 三元乙丙橡胶的相对密度小(0.85-0.86),具有耐臭氧性、耐候性、耐热性和耐化学稳定性等特性。
2可采用硫磺促进剂硫化体系硫化,也可以用有机过氧化物交联,而制得高强度的制品。
3耐低温性好,电绝缘性能也好。
4配合时有容纳高量填料和油类的承受能力。
5可与不饱和橡胶、低不饱和橡胶和塑料相容并用。
6由于硫化胶表面良好具有高的物性,适于制作发泡制品。
7未硫化橡胶粘合性差。
应用范围:主要用于汽车工业、电线电缆工业、建筑和防水材料、工业橡胶制品、民用制品,与其它橡胶和塑料树脂等并用或共混,以及制作添加剂等等。
氯丁橡胶(CR)基本特性:1 原料橡胶贮存性差。
贮存过程要发生增硬现象。
耐寒性不好。
2 因受结晶引响,生胶强度较高,与天然橡胶相似。
3 有优良的耐寒性、耐臭氧性、耐热老化性和耐油耐溶剂性。
4 有好的耐化学性和优异的耐燃性。
5 有良好的粘合性。
6 相对密度大,一般在1.23,在相同体积下,用量比一般通用橡胶大。
7 与其它特种橡胶比较,个别性能差些,但总的性能平衡好。
8 可溶于苯、四氯化碳和氯苯等。
应用范围:主要用于耐油制品,各种胶管、胶带尤其是耐热输送带,耐油、耐酸碱胶管、密封制品,汽车飞机的部件,粘合剂和涂料,印刷胶辊,胶板,桥梁支座等,也大量用于电缆护套、电线包皮等。
小结:EPDM三元乙丙橡胶:具有很好的耐候性、耐臭氧性、耐水性以及耐化学性。
可用于醇类及酮类,还可以用于高温水蒸气环境之中的密封。
适用于卫浴设备、汽车散热器以及汽车刹车系统中。
不建议用于食用用途或是暴露于矿物油之中。
一般的使用温度范围为:-55~150℃。
CR 氯丁橡胶:耐阳光、耐天候性能特别好。
不怕二氯二氟甲烷和氨等制冷剂,耐稀酸、耐硅脂系润滑油,但是在苯胺点低的矿物油中膨胀量大。
在低温时易结晶、硬化。
适用于各种接触大气、阳光、臭氧的环境以及各种耐燃、耐化学腐蚀的密封环节。
不建议用于强酸、硝基烃、酯类、氯仿以及酮类的化学物之中。
三元乙丙(EPDM)胶条的特性EPDM橡胶为人工合成橡胶,主要成份为乙烯(CH2=CH—CH),引入第三单体合成后即为三元乙丙橡胶。
乙丙橡胶基本上是一种饱和橡胶,主链是由化学稳定的饱和烃组成,只是在侧链中含有不饱和双键,分子内无极性取代基,分子间内聚能低,分子链在宽的温度范围内保持柔顺性,因而使其具有独特的性能。
耐老化性能乙丙橡胶耐候性好,能长期在阳光、潮湿、寒冷的环境中使用。
含炭黑的乙丙橡胶硫化胶在阳油印机下曝晒三年后未发生龟裂,物理机械性能变化亦很小。
据外国资料介绍,乙丙橡胶在自然环境状态下,可使用30~50年。
耐热性能乙丙橡胶具有极高的化学稳定性,在通用橡胶中,其耐老化性能最好。
耐臭氧性能乙丙橡胶具有突出的耐臭氧化性,不但优于天然胶、丁苯胶、氯丁胶等通用橡胶,而且也优于一般被认为耐老化性能很好丁基橡胶。
例如,在含臭氧100PPhm的介质中,乙丙橡胶经2430小时仍不龟裂,可见,在通用橡胶中,乙丙橡胶的耐臭氧性能是佳的。
但乙丙橡胶的耐臭氧性能随第三单体的种类不同而有所差别,其中以DCPD-EPDM(第三单体为双环戊二烯)为最好。
耐候性能乙丙橡胶耐候性好,能长期在阳光、潮湿、寒冷的环境中使用。
含炭黑的乙丙橡胶、硫化胶在阳下暴晒三年后未发生龟裂,物理机械性能变化亦很小。
据外国资料介绍,乙丙橡胶制在自然环境状态下,可使用30~50年。
耐热性能乙丙橡胶制品在一般情况下,可以在120℃的环境中长期使用,其最高使用温度为150℃。
乙丙橡胶老化属交联型,老化后橡胶变硬。
电绝缘性乙丙橡胶具有非常好的电绝缘性能和电晕性,其电性能接近或优于丁橡胶、氯磺化聚乙烯。
乙丙橡胶的体积电阻和丁基胶相当,一般在1015~1018Ω·cm范围内,击穿电压和介电常数也较高,特别适于制造电气绝缘制品。
冲击弹性和低温性能乙丙橡胶具有较高的弹性,在通用橡胶中其弹性仅次于天然橡胶和顺丁胶。
同时乙丙橡胶又具有好的低温性能,在低温下仍保持较好的弹性和较小的压缩变形,其最低极限使用温度可达-50℃。
三元乙丙橡胶性能简介三元乙丙橡胶(EPDM)耐臭氧性、耐热性、耐候性、低温柔软性较好,可用于耐臭氧、耐候、耐紫外线场合,但基于自身的结构特点,其阻燃性、耐油性和粘结性较差。
这种橡胶均具有主链饱和结构,可共混,性能上可取长补短。
三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。
由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。
乙丙橡胶的化学结构使其硫化制品具有独特的性能。
1 低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0.8 7。
加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。
2 耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。
三元乙丙橡胶制品在1 20 ℃下可长期使用,在1 50~200 。
C下可短暂或间歇使用。
加入适宜防老剂可提高其使用温度。
用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。
三元乙丙橡胶在臭氧浓度50×10~,拉伸30% ,可达1 50 h以上不龟裂。
3 耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。
在浓酸长期作用下性能也要下降。
在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。
刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一~列举。
4 耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。
在230℃过热蒸汽中,近1 00 h后外观无变化。
而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。
三元乙丙橡胶及EPDM冷缩管简介
三元乙丙橡胶(英文名:Ethylene-Propylene-Diene Monomer,以下简称EPDM)是乙烯、丙烯以及非共轭二烯烃的三元共聚物。
EPDM橡胶具有优异的机械性能、耐刺扎性和高抗撕裂性能,耐天候、耐紫外线、耐臭氧老化、耐酸碱、耐盐雾腐蚀,耐高低温可达-55℃~+150℃。
在所有橡胶当中,EPDM橡胶具有最低的比重。
它能吸收大量的填料和油而影响特性不大。
这些特性使得EPDM成为一种具有多元化应用的橡胶品种,被广泛应用于制造密封条、软管、轮胎侧壁、车顶薄膜、导线和电缆绝缘层、防水材料以及中低压电缆附件等。
沃尔兴EPDM冷缩管采用优质EPDM橡胶原料制成,具有优异的耐天候、耐酸碱性能,可达到同呼吸密封的效果,是通讯电缆、同轴电缆、中低压电力电缆的理想密封产品。
沃尔兴EPDM橡胶冷缩管的特点:
1、强度高,耐刺扎、耐磨性能优良;
2、耐老化性能优异:长期使用不发硬、不发脆,耐天候、耐紫外线、耐臭氧老化性能更优;
3、耐高低温性能优良:使用温度可达-55℃~+150℃;
4、耐油、耐化学溶剂、耐酸碱性能优异;
4、优良的弹性,保障了扩张倍率高,可达3倍甚至以上。
扩张倍率越大,径向收缩力就越大,密封、防水、防潮性能越好;
5、耐水蒸气和过热水性能优异,吸水性小。
三元乙丙橡胶EPDM简介橡胶是一种具有高弹性的材料,在我们的日常生活和工业生产中都有着广泛的应用。
其中,三元乙丙橡胶(EPDM)作为一种重要的合成橡胶,以其独特的性能和特点,在众多领域发挥着不可或缺的作用。
三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物。
这种独特的化学组成赋予了它一系列优异的性能。
首先,从物理性能方面来看,EPDM 具有良好的耐老化性能。
无论是暴露在阳光、氧气、臭氧等环境中,还是在高温、低温等极端条件下,它都能保持相对稳定的性能,不易出现龟裂、硬化等老化现象。
这使得它在长期使用的场合,如户外建筑密封、汽车零部件等领域,具有明显的优势。
其次,EPDM 的耐化学腐蚀性也相当出色。
它能够抵抗酸、碱、盐等多种化学物质的侵蚀,这使得它在化工管道、储罐衬里等需要接触化学介质的场合得到广泛应用。
在机械性能方面,EPDM 具有较高的拉伸强度和扯断伸长率,同时还具备良好的回弹性。
这意味着它在承受外力作用时,不容易断裂,而且在变形后能够迅速恢复原状。
三元乙丙橡胶的电绝缘性能也非常优秀,这使得它在电线电缆的绝缘层等电气领域有着重要的应用。
此外,EPDM 还具有良好的透气性和吸水性低的特点。
透气性好这一特性在某些特定的应用中,如透气薄膜等方面具有优势;而吸水性低则保证了其在潮湿环境下仍能保持良好的性能。
由于三元乙丙橡胶具有上述众多优异的性能,因此它被广泛应用于多个领域。
在汽车工业中,EPDM 常用于制造汽车门窗密封条、散热器胶管、减震部件等。
汽车门窗密封条需要具备良好的密封性能和耐老化性能,以保证车内环境的安静和舒适;散热器胶管则需要能够承受高温和压力,同时具有良好的耐腐蚀性;减震部件则要求材料具有良好的弹性和耐磨性。
在建筑领域,EPDM 被用于制造防水卷材、门窗密封胶条、屋顶防水材料等。
防水卷材和屋顶防水材料需要具备优异的耐候性和防水性能,以保证建筑物的长期防水效果;门窗密封胶条则需要能够有效地阻挡空气和水分的渗透,提高建筑物的节能性能。
三元乙丙橡胶防晒冷缩管三元乙丙橡胶防晒冷缩管介绍三元乙丙橡胶(EPDM)冷缩管是一种预先扩张在可抽支撑管上的橡胶绝缘套管,在使用时只需定位后抽去支撑管即可,利用其径向压力形成包覆,起到防水、防潮密封作用。
三元乙丙橡胶防晒冷缩管具有优异的耐天候、耐酸碱性能,达到同呼吸密封的效果,是通讯电缆、同轴电缆、中低压电力电缆的理想密封产品。
三元乙丙橡胶防晒冷缩管特点与热缩管相比,更耐气候、抗紫外老化,长期使用不发脆与硅橡胶冷缩管相比,更耐刺扎、耐磨、耐酸碱在恶劣环境下与工件同步热胀冷缩,不产生缝隙、密封紧密在风吹摇摆状态下与工件同步呼吸,密封效果仍然优异适合1KV以下电力电缆,适合规格范围宽,可用于室内外、架空、水中或埋设等场合强韧回弹性、恒久径向压力大,长期对电缆密封紧密安装简易,无需加热或专门工具,接头处不需热熔胶或胶带加强密封标准颜色:黑色三元乙丙橡胶防晒冷缩管技术指标项目性能测试方法/条件硬度49邵A ASTM D 2240-75 拉伸强度9.8MPa ASTM D412-75断裂伸长率720% ASTM D412-75撕裂强度27kN/m ASTM D624C-73介电强度14.3kV/mm ASTM 149-75介电常数 5.0(原值)/5.6(90℃水中7天) /抗霉(菌)28天暴露无生长ASTM G-21抗紫外线紫外线照射2000小时无老化ASTM G-53结构示意图三元乙丙橡胶防晒冷缩管实拍图:三元乙丙橡胶防晒冷缩管规格表产品型号规格D(mm) 适用连接处的最小外径(mm) 适用连接处的最大外径(mm)全缩后长度 L(mm)VE18-3 Ф18 7.8 14.3 80 VE18-6 Ф18 7.8 14.3 152 VE18-7 Ф18 7.8 14.3 178 VE25-7 Ф25 10.1 20.9 178 VE25-8 Ф25 10.1 20.9 203 VE25-11 Ф25 10.1 20.9 279 VE25-12 Ф25 10.1 20.9 305 VE35-6 Ф35 13.9 30.1 152 VE35-8 Ф35 13.9 30.1 203 VE35-9 Ф35 13.9 30.1 229 VE35-11 Ф35 13.9 30.1 279 VE42-6 Ф42 16.8 35.1 152 VE42-8 Ф42 16.8 35.1 203 VE42-10 Ф42 16.8 35.1 254 VE42-12 Ф42 16.8 35.1 305 VE42-16 Ф42 16.8 35.1 406 VE42-18 Ф42 16.8 35.1 457VE50-8 Ф50 13.5 43.7 203VE58-6 Ф58 24.0 49.3 152VE58-7 Ф58 24.0 49.3 178VE58-8 Ф58 24.0 49.3 203VE58-10 Ф58 24.0 49.3 254VE58-12 Ф58 24.0 49.3 305VE58-18 Ф58 24.0 49.3 457VE58-24 Ф58 24.0 49.3 610VE58HP-10 Ф58 20.5 51.0 254VE65-10 Ф65 23.7 57.5 254VE77-6 Ф77 32.2 67.8 152VE77-7 Ф77 32.2 67.8 178VE77-9 Ф77 32.2 67.8 229VE77-12 Ф77 32.2 67.8 305VE77-13 Ф77 32.2 67.8 330VE77-14 Ф77 32.2 67.8 355VE77-18 Ф77 32.2 67.8 457VE77-22 Ф77 32.2 67.8 550VE77HP-13 Ф77 27.4 70.0 330VE105-8 Ф105 42.6 93.7 203VE105-9 Ф105 42.6 93.7 229VE105-18 Ф105 42.6 93.7 457VE105-20 Ф105 42.6 93.7 508VE120-24 Ф120 33.0 114.3 610VE160-24 Ф160 60.0 154.0 620注:可按要求订制特殊尺寸及包装。
三元乙丙橡胶EPDM简介在众多的橡胶材料中,三元乙丙橡胶(EPDM)以其独特的性能和广泛的应用领域,成为了橡胶家族中的一颗璀璨明星。
三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物。
这三种单体的结合赋予了 EPDM 许多优异的特性。
首先,从物理性能方面来看,EPDM 具有出色的耐老化性能。
它能够在长时间的使用过程中,抵抗紫外线、氧气、臭氧等因素的侵蚀,保持良好的性能和外观。
这使得它在户外应用中表现出色,比如用于制造汽车的门窗密封条、建筑的防水卷材等,长时间暴露在外界环境中也不易出现龟裂和老化现象。
EPDM 的耐高低温性能也十分突出。
它可以在很宽的温度范围内保持良好的弹性和物理性能。
在低温环境下,EPDM 不会变得脆硬,仍能保持一定的柔韧性;而在高温环境下,也不会轻易软化变形。
这种特性使得它在极端温度条件下的应用成为可能,例如在航空航天领域的密封件、汽车发动机周边的部件等。
在化学性能方面,EPDM 具有良好的耐化学腐蚀性。
它能够抵抗酸、碱、盐等多种化学物质的侵蚀,这使得它在化工行业中得到广泛应用,如制作化工管道的密封件、储罐的衬里等。
EPDM 的电绝缘性能也颇为优秀。
这使得它在电气领域有着用武之地,如电线电缆的绝缘护套等。
从加工性能上来说,EPDM 易于混炼和硫化,能够满足各种复杂的加工工艺要求。
它可以通过挤出、注塑、压延等多种方式进行加工,制成各种形状和尺寸的制品。
在实际应用中,EPDM 被广泛用于汽车工业。
汽车的门窗密封条、雨刮器、散热器胶管等部件常常采用 EPDM 材料,因为它能够提供良好的密封性能和耐久性,保障汽车的正常运行和舒适性。
在建筑领域,EPDM 常用于屋顶防水卷材。
其优异的耐候性和防水性能,能够有效保护建筑物免受雨水的侵蚀,延长建筑物的使用寿命。
在电气行业,EPDM 制成的电线电缆绝缘护套,能够保证电力的安全传输,同时具有良好的耐老化和耐腐蚀性。
在医疗领域,由于 EPDM 具有良好的生物相容性和化学稳定性,也被用于一些医疗器械的制造,如输液管、密封件等。
三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。
每年全世界的消费量是80万吨。
EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。
由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。
在所有橡胶当中,EPDM具有最低的比重。
它能吸收大量的填料和油而影响特性不大。
因此可以制作成本低廉的橡胶化合物。
分子结构和特性三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。
二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。
另一个不饱和的不会成为聚合物主链,只会成为边侧链。
三元乙丙的主要聚合物链是完全饱和的。
这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。
三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。
在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。
EPDM第三单体的选择第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。
第三单体的选择必须满足以下要求:最多两键:一个可聚合,一个可硫化反应类似于两种基本的单体主键随机聚合产生均匀分布足够的挥发性,便于从聚合物中除去最终聚合物硫化速度合适二烯烃类型和含量对聚合物特性的影响三元乙丙生产中主要是用ENB和DCPD。
三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。
在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM<EPDM(ENB)<EPDM(DCPD)三元乙丙其他的受二烯烃第三单体影响的还有:ENB-快速硫化,高拉伸强度,低永久形变DCPD-防焦性,低永久应变,低成本随着二烯烃第三单体的增加,将会有下列影响发生:更快硫化率,更低的压缩形变,高定伸,促进剂选择的多样性,减少的防焦性和延展,更高的聚合物成本。
乙烯丙烯比乙烯丙烯比可以在硫化阶段进行改变,商业的三元乙丙聚合物乙烯丙烯比由80/20到50/50。
当乙烯丙烯比由50/50变化到80/20时,正面的影响有:更高的压坯强度,更高的拉伸强度,更高的结晶化,更低的玻璃体转化温度,能将原材料聚合物转化成丸状,以及更好的挤出特性。
不好的影响就是不好的压延混合性,较差的低温特性,以及不好的压缩形变。
当丙烯比例更高时,好处就是更好的加工性能,更好的低温特性以及更好的压缩形变等。
分子量和分子量分布弹性体的分子量通常用门尼粘度表示。
在三元乙丙的门尼粘度中,这些值是在高温下得到的,通常为125℃,这样做的主要原因是要消去由高乙烯含量所产生的任何影响(结晶化),由此会掩盖聚合物的真正分子量。
三元乙丙的门尼粘度范围在20到100之间。
也有更高分子量的商用三元乙丙也有生产,但一般都充油,以便混炼。
分子量以及在三元乙丙中的分布可以在聚合过程中通过以下途径聚合:催化剂以及共催化剂的类型和浓度温度改性剂,如氢的浓度三元乙丙的分子量分布可以通过凝胶渗透色谱法使用二氯苯作为溶剂在高温下(150℃)测量而得。
分子量分布通常被称为是重量平均分子量与数量平均分子量的比例。
根据普通和高度支化的结构,这个值在2到5之间变化。
由于有分键,含有DCPD的三元乙丙橡胶更宽的分子量分布。
通过增加三元乙丙的分子量,正面影响有:更高的拉伸和撕裂强度,在高温情况下更高的生坯强度,能够吸收更多的油和填料(低成本)。
随着分子量分布的增加,正面的影响有:增加的混炼和碾磨加工性。
但是,较窄的分子量分布可以改进硫化速度,硫化状态以及注塑行为。
硫化类型三元乙丙可以利用有机过氧化物或者硫来进行硫化。
但是,相比与硫磺硫化,过氧化物交链的三元乙丙用于电线电缆工业时具有更高的温度抗性,更低的压缩形变以及改进的硫化特性。
过氧化物硫化的不好的地方就在于更高的成本。
正如前面所提到的,三元乙丙的交链速度和硫化时间随着硫化类型和含量而改变。
当三元乙丙与丁基,天然橡胶,丁苯橡胶混合时,在选择合适的三元乙丙产品时,必须要考虑到下列因素:当与丁基进行混合时,由于丁基具有较低的不饱和度,为适应丁基的硫化速度,最好选择相对较低含量的DCPD和ENB含量的三元乙丙。
当与天然橡胶和丁苯橡胶混合时,最好选择8%到10%ENB含量的三元乙丙,以满足其硫化速度。
令狐文艳三元乙丙橡胶(ethylene-Propylene terpolymer)是乙烯、丙烯和少量非共轭二烯烃的共聚物,是乙丙橡胶的主要品种。
它除保持二元乙丙橡胶优良的耐臭氧性、耐候性、耐热性等特性外。
在硫化速度、配合和硫化胶性能等方面又不完全同于二元乙丙橡胶。
1.基本配合和质量检验方法:三元乙丙橡胶的质量检验,除国际标准化组织(ISO)和美国材料试验学会(ASTM)制定的三元乙丙橡胶硫化胶性能检验方法外,我国和其它国家目前尚无统一的国家级和部级乙丙橡胶质量标准及检验方法,大多数生产者均采用其公司或厂家的企业检验方法和质量控制标准。
ISO和ASTM三元乙丙橡胶硫化胶性能检验方法三元乙丙橡胶100 氧化锌 5 硫磺 1.5 硬脂酸 1.0 油炉法炭黑②80 ASTM103号油③50 促进剂TMTD1.0 促进剂M0.5 ①y=在充油母炼胶中,每100份基础橡胶中油的份数。
如y大于50份,则配方3不在加油。
②现行工业参比炭黑,可用NB378炭黑代替,其结果稍有不同。
③ASTM103号油特征:100℃时运动粘度为16.8±1.2mm2/S,粘度比重常数为0.889±0.002。
④适用于通用型三元乙丙橡胶。
⑤适用于乙烯含量大于67%的高生胶强度的压出类三元乙丙橡胶。
⑥适用于充油三元乙丙橡胶。
2混炼方法:ISO混炼方法有方法A和方法B两种。
方法A 为开放式混炼方法;方法B为密炼机混炼,开炼机加硫化体系及下片的方法。
ASATM用于检验三元乙丙橡胶的混炼方法有密炼机法、微型密炼机方法和开炼机方法三种方法。
方法出处ISO 4097—1980(E)ASTM D3568—81a一、结构特征乙丙橡胶系以乙烯和丙烯为基础单体合成的弹性体合成物。
乙丙橡胶依分子链中单体单元组成不同,有二元乙炳胶合三元乙丙胶之分。
前者为乙烯和丙烯两种组分的共聚物,后者为乙烯、丙烯和少量的第三单体(非共轭二烯听)的共聚物。
乙丙橡胶分子链段的序列组成属聚亚甲基型结构。
按国际合成橡胶命名法,二元乙丙橡胶和三元乙丙橡胶分别定名为:EPM(ethylene propylene methylene) 和EPDM(ethyl-ene propylene diene methylene ); 两者统称为乙丙橡胶(ethylene propylene rubber, EPR )。
二、品种牌号的划分(1)划分原则乙丙橡胶商品牌号的划分,主要是依据分子结构与物性关系的基本原理。
根据这个原理,分子量与分子量分布、组成与组成分布是决定物性的最重要的分子结构参数。
聚集态结构也对物性有重要影响。
这些结构因素及其相互作用,使乙丙橡胶具有多样的性质,从而适应多方面的应用。
根据这种结构- 物性- 应用关系,工业上制定出多种多样的商品牌号总计超过200 种,其中各具特点、不相重复的牌号亦有50 余种。
(二)品种牌号的标志及其含义①、按单体单元组成不同,有二元乙丙橡胶(EPM )和三元乙丙橡胶(EPDM )两大类,例如,Dutral CO 和Dutral TER 分属之。
②、依第三单体种类不同,三元乙丙橡胶有乙叉降冰片烯型、双环戊二烯型 1 ,4- 已二烯型三大类,例如,Dutral TER 054/E 、三井EPT1045 和Nordel 分属之。
③、二元乙丙橡胶和三元乙丙橡胶各按不同门尼粘度区分。
例如,Dutral CO 054 、Dutral TER 048/ 的门尼粘度(ML 100 ℃1+4 )分别为40 和80 。
④、二元乙丙橡胶和三元乙丙橡胶各按不同结合丙烯(或乙烯)含量区分。
例如,Dutral CO 034 和Dutral TER 235/E2 的结合丙烯含量分别约为30% 和40% 。
⑤、同一类型三元乙丙橡胶按不同第三单体含量(或碘值)区分。
例如,Dutral TER054/E 、Dutral TER/E2 和Dutral TER 046/ 的第三单体含量分别为标准值、 2 倍标准值和 3 倍标准值。
⑥、二元乙丙橡胶和三元乙丙橡胶各有充油与否以及充油时不同充油量之分。
例如,Dutral CO 054 、Dutral CO 554P 、Du tral TER 048/E 、Dutral TER 535/E 的充油量分别为0 、50 、0 和50% ;后缀字母P 表示石蜡系油品。
⑦、特殊牌号:高乙烯含量结晶型牌号。
例如,JSR EP 912P 、JSR EP 01P ,主要用于聚烯烃树脂改性,后缀字母P 表示橡胶为粉末状;组成分布均匀、低分子量和窄分子量分布牌号。
例如,Dutral CO 043 ,主要用于润滑油改性。
以上主要通过对Dutral 系列二元和三元乙丙橡胶品种牌号编制规则,说明了分类原则。
其他商品牌号系列亦大同小异。
由于以上分子结构的特点,在实际应用中,往往进一步细分为通用型、易加工型、标准硫化型、快速硫化型、超快速硫化型、高填充型、余二烯烃橡胶并用型和聚烯烃改性型等使用品级。