第四章 波前变换与相因子分析
- 格式:ppt
- 大小:2.02 MB
- 文档页数:66
《光学》课程教学大纲一、课程说明本课程总授课时数为学,周学时,学分分,开课学期第三学期。
.课程性质:专业必修课光学是物理学专业本科生必修的基础课程。
光学是物理学中最古老的一门基础学科,又是当前科学领域中最活跃的前沿阵地之一,具有强大的生命力和不可估量的发展前途。
学好光学,既能为物理学专业学生进一步学习原子物理学、量子力学、相对论、电动力学、现代光学、光电子技术、激光原理及应用、光电子学、光子学等课程准备必要的前提条件,又有助于进一步探讨微观和宏观世界的联系与规律。
通过本课程的教学,使学生系统地掌握基本原理和基本知识,培养分析问题、解决问题的能力,通过讲授(包括物理学的历史和前沿的讲授)帮助学生建立辩证唯物主义的观点,提高学生的科学素质。
从兰州大学物理学院课程的整体设置出发,考虑到物理基地班与普通班的各自办学特点和人才培养的要求,对光学课程的教学内容进行适当的调整,适当压缩几何光学部分,删除原课程中与其他学科相重复的部分以及相对陈旧的内容,吸收利用最新科学研究成果,着重加强现代光学部分的讲授内容,并注意介绍光学研究前沿新动态,按照物理学近代发展的要求和便于学习的原则组织课程体系。
通过本课程的教学,使学生系统地掌握基本原理和基本知识,培养分析问题、解决问题的能力,通过讲授(包括物理学的历史和前沿的讲授)帮助学生建立辩证唯物主义的观点,提高学生的科学素质。
.课程教学目的与要求()了解光学发展的基本阶段,培养科学研究的素质,加深辩证唯物主义的理解。
()了解光学所研究的内容和光学前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。
()掌握光学的基本原理、基本概念和基本规律。
培养掌握科学知识的方法。
()掌握处理光学现象及问题的手段和方法。
培养科学研究的方法。
()光学是当前科学领域中较活跃的前沿学科之一,它与科学和技术结合日益加强,在教学中要展现现代光学技术的成就。
()在教学中要注意培养学生严谨的治学态度,引导学生逐步掌握物理学的研究方法和培养浓厚的学习兴趣。
《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。
应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。
连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。
它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。
)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。
其模量|),(|k X ω称为函数),(t x X 的振幅谱。
由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。
如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。
二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。
第五章傅里叶变换光学与相因子分析方法5.1 衍射系统 波前变换◆引言现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学. ◆衍射系统及其三个波前如图所示,一个衍射系统以衍射屏为界被分为前后两个空间.前场为照明空间,充满照明光波;后场为衍射空间,充满衍射光波.照明光波比较简单、常为球面波或平面波,这两种典型波的等幅面与等相面是重合的,属于均匀波,其波场中没有因光强起伏而出现的图样.衍射波较为复杂,它不是单纯的一列球面波或一列平面波,其等幅面与等相面—般地不重合,属于非均匀波,其波场中常有光强起伏而形成的衍射图样.在衍射系统的分析中,人们关注三个场分布:其中,入射场),(~1y x U 是照明光波到达衍射屏的波前函数;出射场),(~2y x U 是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场),(~y x U ''是纵向特定位置的波前函数。
由此可见,整个衍射系统贯穿着波前变换:波前),(~),(~21y x U y x U →这是衍射屏的作用: 波前),(~),(~2y x U y x U ''→这是波的传播行为.由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问 题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在 常见的傍轴情形下,其表达式为其积分核为ikre,这是一个球面波的相因子形式.换言之HFK 理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加.◆衍射屏函数及其三种类型我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:),(12),(),(~),(~),(~y x i ey x t y x U y x U y x t ϕ== 即,屏函数(screen function)等于出射波前函数与入射波前函数之比.对于透射屏,t ~可称作复振幅透过率函数;对于反射屏,t ~可称作复振幅反射率函数.无疑,屏函数通常也是复函数,含模函数),(y x t 和辐角函数),(y x ϕ.唯象地看,实际上的衍射屏可分为三种类型,振幅型、相位型和相幅型.若),(y x ϕ为常数,仅有函数),(y x t ,则该衍射屏为振幅型,凡孔型衍射屏均系振幅型.若),(y x t 为常数,仅有函数),(y x ϕ,则该衍射屏为相位型,这在此之前似乎少见,其实,闪耀光栅不论其为透射的或反射的,均是一个相位型衍射屏,下一节即将研究的透镜相位衍射元件.当然,更为一般的情况是相幅型衍射屏,),(y x t 、),(y x ϕ皆为函数形式,即不仅出射场的振幅分布),(2y x A 有别于入射场的),(1y x A ,而且出射场的相位分布),(2y x ϕ也有别于入射场的),(1y x ϕ。
第6章 傅里叶变换光学与相因子分析方法6.1 衍射系统 波前变换 6.2 相位衍射元件——透镜和棱镜 6.3 波前相因子分析法 6.4 余弦光栅的衍射场6.5 夫琅禾费衍射实现屏函数的傅里叶变换6.6 超精细结构的衍射——隐失波6.7 阿贝成像原理与空间滤波实验6.8 光学信息处理列举 6.9 泽尼克的相衬法6.10 相位物可视化的其他光学方法6.11 夫琅禾费衍射的普遍定义与多种装置6.12 傅里叶变换和δ函数 6.13 准确获得物频谱的三种系统 习题21道6.1 衍射系统 波前变换• 引言 •衍射系统及其三个波前•衍射屏函数及其三种类型 •例题——两个衍射屏相叠 •什么是衍射引言经典波动光学6.1衍射光学现代发展概貌图6.26.3衍射系统 ▲系统的划分▲关注三个场分布入射场 ),(~1y x U , 出射场 ),(~2y x U , 衍射场 ),(~y x U′′. ▲波前变换概念波前 ),(~1y x U →),(~2y x U ,这是衍射屏的作用;波前 ),(~2y x U →),(~y x U ′′, 这是波的传播行为 ——由HFK 理论给出, 常见,傍轴情况∫∫⋅−≈′′dxdy e y x U r i y x U ikr ),(~),(~2λ.6.4衍射屏函数),(12),(),(~),(~),(~y x i e y x t y x U y x U y x t ϕ⋅== ▲唯象看,三种类型。
振幅型——仅),(y x t ,而ϕ与),(y x 无关; 相位型——仅),(y x ϕ,而t 与),(y x 无关; 相幅型——有),(y x t ,且),(y x ϕ,一般情况。
▲于是,衍射场∫∫⋅⋅−≈′′dxdy e y x U y x t r i y x U ikr),(~),(~),(~10λ ≠∫∫⋅−dxdy e y x U r iikr ),(~1λ, 自由传播场 什么是波的衍射▲形成对波衍射的普遍表述先前,曾有过关于“什么是波衍射”的两种说法:(参见书278页) 现在,可以这样表述:当光波在传播中,由于某种因素,使其波前振幅分布或相位分布发生变化,则其后场不同于自由传播场——发生衍射。
信息光学复习提纲 (自编)第一章 二维线性系统1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性? 2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?对于单色光波。
时间量 空间量 22v T πωπ== 22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期 λ-----空间周期物理意义: ① 当090,,<γβα时0,,>z y x f f f , 表示k 沿正方向传播; 当090,,>γβα时0,,<z y x f f f , 表示k沿负方向传播。
② 标量性, 当α↗时,αcos ↘→x f ↘→x d ↗; 当α↘时,αcos ↗→x f ↗→x d ↘。
③标量性与矢量性的联系 x x f d 1= λαcos =x f条纹密x d ↘→x f ↗→α↘→θ↗条纹疏x d ↗→x f ↘→α↗→θ↘ 可见 :条纹越密(x d 小),衍射角越大 条纹越疏(x d 大),衍射角越小2.空间频率概念光波的表示式为:(,,)0(,,,)(,,)j t j x y z x y z t x y z e e ωϕμμ-=⋅ 0(,,)jK r j t x y z e e ωμ-=⋅ (1.10.2)显然,光波是时间和空间的函数,具有时间周期性与空间周期性。
3.平面波的表达式 ① 单色平面波的公式 ()()()00,,,cos ,,j t jk r j tU x y z t t k r e e U x y z e ωωμωμ-⋅-=-⋅=⋅= 式中复振幅为:()0,,jk r U x y z e μ⋅=()[]γβαμcos cos cos ex p 0z y x jk ++=令 c z y x =++γβαcos cos cos 可见:等相面是一些平行平面 ②任一平面上的平面波表示式()()()101,,exp cos exp cos cos U x y z jkz jk x y μγαβ=+⎡⎤⎣⎦(()exp exp cos cos 0jkz jk x y μαβ⎡⎤=+⎣⎦ ()[]βαcos cos ex p 0y x jk U +=(1.10.36)令 c y x =+βαcos cos 可见,等位线是一些平行线③用空间频率表示的平面波公式 λαcos 1==x x T f ,1cos y y f T βλ==,1cos z z f T γλ== ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0 4、球面波的表达式 ⑴ 单色球面波的复振幅 发散波:(k 与γ一致) ()()0,,,,,jkr j t j t a U x y z t e e U x y z e r ωω--==式中: ()0,,jkr a U x y z e r = (1.10.5) 会聚波:(k 与γ 反向)()()0,,,,,jk r j t j t aU x y z t e e U x y z e r ωω-⋅--==式中: ()0,,jkr a U x y z e r-= (1.10.6)r ⑵ 球面波光场中任一平面上的复振幅分布 设球面波中心与坐标原点重合,则y x ,平面上的复振幅为 ()01,,jkr aU x y z e r=220121exp 12a x y jkz r z ⎡⎤⎛⎫+=+⎢⎥ ⎪⎝⎭⎣⎦ ()⎪⎫ ⎛+⋅≈220exp exp y x jk jkz a4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?1、 相干照明设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),,exp 2xyxyxyf x y F f f j f x f y d f dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同方向不同的平面波相干迭加而成。