详细版svpwm空间矢量控制原理及详细计算.ppt
- 格式:ppt
- 大小:1014.00 KB
- 文档页数:12
空间电压矢量调制SVPWM 技术SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。
空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
下面将对该算法进行详细分析阐述。
1.1SVPWM基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。
两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。
逆变电路如图1-1 示。
设直流母线侧电压为U dc,逆变器输出的三相相电压为U A、U B、U C,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量U A(t)、U B(t)、U C(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。
假设U m 为相电压有效值,f 为电源频率,则有:()cos()()cos(2/3)()cos(2/3)A mB m Cm U t U U t U U t U θθπθπ=⎧⎪=-⎨⎪=+⎩ (1-1)其中,2ft θπ=,则三相电压空间矢量相加的合成空间矢量U(t)就可以表示为:2/34/33()()()()2j j j A B C m U t U t U t e U t e U e ππθ=++=(1-2)可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,U m 为相电压峰值,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a ,b ,c)上的投影就是对称的三相正弦量。
SVPWM的原理及法则推导和控制算法详解Space Vector Pulse Width Modulation(SVPWM)是一种用于交流电机驱动的调制技术。
它的原理是将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
SVPWM利用矢量图法将三相交流电源的空间矢量变换为两相旋转矢量,从而实现对交流电机驱动电压的控制。
1.假设存在一个以0为中心的静止坐标系,其中电源相电压为Va,Vb,Vc。
我们可以将这三个电压写成以时间为函数的形式,即Va(t),Vb(t),Vc(t)。
2.将Va,Vb,Vc投影到α-β坐标系,得到α轴上的电压Vaα(t),Vbα(t),Vcα(t)和β轴上的电压Vaβ(t),Vbβ(t),Vcβ(t)。
3. 将α-β坐标系反转回静止坐标系,得到参考电压Va_ref(t), Vb_ref(t), Vc_ref(t)。
4.将参考电压投影到空间矢量图上,从而得到交流电机的输入矢量。
5.根据参考电压和输入矢量之间的关系,推导出控制算法。
1.基于所需输出电压的矢量长度和角度,计算矢量图中的两个矢量的占空比,分别为d1和d22.根据矢量长度和角度,计算三个相电压的占空比,分别为d_a,d_b,d_c。
3.根据SVPWM的特性,当d1,d2为0时,输出电压为0;当d1,d2相等时,输出电压处于峰值;当d1和d2不相等时,输出电压的大小和方向都有所改变。
因此,通过改变d1和d2的数值,可以改变输出电压的大小和方向。
4.根据d_a,d_b,d_c和d1,d2的数值,计算出PWM控制信号。
5.将PWM控制信号施加到交流电机驱动电路中,从而实现对输出电压的控制。
总结起来,SVPWM通过将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。
通过合理推导和计算,可以得到控制算法,从而实现对输出电压的精确控制。
SVPWM是一种高效且精确的交流电机驱动技术,被广泛应用于工业控制中。
. . .一直以来对SVPWM 原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。
经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。
未敢私藏,故公之于众。
其中难免有误,请大家指正,!1 空间电压矢量调制 SVPWM 技术SVPWM 是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽 可能接近于理想的正弦波形。
空间电压矢量PWM 与传统的正弦PWM 不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。
SVPWM 技术与SPWM 相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
下面将对该算法进行详细分析阐述。
1.1 SVPWM 基本原理SVPWM 的理论基础是平均值等效原理,即在一个开关周期通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。
两个矢量的作用时间在一个采样周期分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。
逆变电路如图 2-8 示。
设直流母线侧电压为Udc ,逆变器输出的三相相电压为UA 、UB 、UC ,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。
假设Um 为相电压有效值,f 为电源频率,则有:⎪⎩⎪⎨⎧+=-==)3/2cos()()3/2cos()()cos()(πθπθθm Cm B m A U t U U t U U t U (2-27) 其中,ft πθ2=,则三相电压空间矢量相加的合成空间矢量 U(t)就可以表示为:θππj m j C j B A e U e t U e t U t U t U 23)()()()(3/43/2=++= (2-28)可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的1.5倍,Um 为相电压峰值,且以角频率ω=2πf 按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a ,b ,c )上的投影就是对称的三相正弦量。