基于改进贝叶斯的垃圾邮件过滤系统设计与实现
- 格式:pdf
- 大小:303.41 KB
- 文档页数:4
学位论文题目:基于贝叶斯算法分类的反垃圾系统的改进摘要电子成为一种快捷、经济的现代通信技术手段,极方便了人们的通信与交流。
然而,垃圾的产生,影响了正常的电子通信,占用了传输带宽,对系统安全造成了严重的威胁。
因此,研究反垃圾问题已经成为全球性的具有重大现实意义的课题。
目前,应对垃圾的主要方法和手段是通过反垃圾立法和使用过滤技术进行处理,现已相继出现了多种过滤技术。
常用的包括黑/白技术、基于容的分析方法以与基于规则的方法等。
基于容分析的技术正逐步进入过滤技术当中,并成为当前研究热点,其中,基于容分析的过滤方法中的典型方法是基于贝叶斯算法的垃圾过滤模型。
本论文对中文垃圾的特点进行了比较系统的分析和研究,结合贝叶斯(Bayes)理论,构造基于贝叶斯分类的垃圾过滤模型,在特征提取方面,采用互信息值的方法,在分类方法上,引入了适合本文的分类方法,并采用了一种更加适合于贝叶斯计算的表示方法;本文作者采用中国教育科研网(CERNET)收集并维护的大量中文垃圾和正常样本的标准数据集,对本文研究的方法进行了大量测试,准确率和误判率分别达到了 95.8%和 5.3%。
结果表明基于贝叶斯算法的垃圾过滤系统对拦截垃圾有很好的作用。
关键词:电子,垃圾,过滤,贝叶斯理论AbstractThe has become a quick and economical means of modern communication technology, which enormously facilitates people's communication and exchanges. However, the emergence of spam has affected the normal email correspondence, and taken the transmission band width, even posed the serious threat to the system safety. Therefore, the study of anti-spam has become a global problem of great practical significance of the topic.At present, the main ways and means of the response to spam are the anti-spam legislation and the use of mail filtering technology. But now a variety of mail filtering technologies have appeared in succession, which are usually used including black / white list technologies, content-based analysis methods, andrule-based methods. Content-based analysis techniques are gradually entering the mail filtering technology which has become hot spots of current research. The typical method of content-based analysis mail filtering methods is based on Bayesian algorithm for spam filtering model.In this paper, the Chinese characteristics of spam has been studied and analyzed systematically. Combining with Bayesian (Bayes) theory, this paper constructs the spam filtering model which is based on Bayesian classification. In feature extraction, mutual information values are used. In the classification method, a classification method is introduced which is suitable in this article, and a more suitable expression in the Bayesian calculation method is adopted; the standard sample data sets of a large number of Chinese spam and regular mail are collected and maintained by the Chinese Education and Research Net (CERNET). The author conducted a lot of testing towards the methods which are studied by this paper. The accuracy and misjudgment rate reached 95.8% and 5.3% respectively. The results show that the spam filtering system based on algorithm Bayesian plays a very good role to block spam. Key Words: , spam, mail filtering, Bayesian theory学位论文原创性声明本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
基于贝叶斯算法在垃圾邮件过滤方法研究和改进摘要:本文在对贝叶斯公式更进一步的了解研究后,使用实验的方式进一步的了解到该方法的缺点并进行分析。
并在贝叶斯公式的基础上进行改进,使其更加准确的应用在垃圾邮件过滤方法中。
依据最小风险的传统方法进行的改进,用实验的方法进一步得到准确的结论。
改进的方法更加适用于现代邮件的需求,更加个性化。
关键词:贝叶斯定理;多项式事件模型;多变量贝努利事件模型;最小风险;垃圾邮件过滤1 引言在这个高速发展的时代,科技化已经大势所趋,消息的传播已经从之前的手写信件全面过渡到网络邮件,人们越来越习惯用邮件的方式来传递消息。
但是万物皆有双面性,邮件带给我们方便的同时也使得垃圾邮件越来越泛滥。
垃圾邮件不仅会占用人们的时间,里面的内容也会对人们造成一定的威胁,电子邮件所带来的负面影响是不可逆的。
电子邮件因其便捷、快速、传播性广,里面会夹杂着一些推销广告、不良信息、甚至一些病毒链接,给许多用户带来不便。
目前基于垃圾邮件的过滤方法主要有基于IP、行为、内容三种过滤技术,其中以基于内容的经常使用,文本本就是以词构成的一个整体,基于内容的过滤技术更加的准确。
基于内容的过滤技术中,朴素贝叶斯算法因其能够满足用户个性化的要求,在垃圾邮件的过滤方法中受到广泛应用。
本文在更加精确的了解贝叶斯算法在垃圾邮件过滤的应用效果后,更加有针对性的提出该方法的弊端并进行适当的分析和改进,并进行相应的实验,作出最后的结论。
2 贝叶斯过滤器2.1 贝叶斯定理贝叶斯定理最早是由英国数学家贝叶斯(1702-1761)提出的,最早收录于《机会学说中一个问题的解》。
该定理是贝叶斯用来解释两个随机条件概率之间的关系而提出的。
多变量贝努利事件模型由于并没有考虑词频问题,相对简化了过滤方法,提高了效率,在不同的文本中可以采用不同的方法。
2.3贝叶斯算法的缺陷分析贝叶斯算法起初应用于数学概论中,但随着数学的发展,这种方法越来越广泛的应用于文本分类领域,它的灵活性,简便性以及较高的精确度,使得它越来越不可或缺。
第33卷第1期燕山大学学报V ol.33No.12009年1月Journal of Yanshan University Jan.20090引言随着电子邮件的普及,垃圾邮件的泛滥也越来越多地受到人们的关注。
中国互联网协会反垃圾邮件中心在2008年1月28日发布的《2007年第四次中国反垃圾邮件状况调查报告》显示,中国互联网用户平均每周收到垃圾邮件16.71封,已经连续多次超过了正常邮件的数量。
大量的垃圾邮件不仅占用了网络传输带宽,影响正常网络通信,更浪费了人们的时间和精力。
垃圾邮件的检测和过滤已经迫在眉睫。
目前主要的垃圾邮件过滤技术有3类:1)基于IP 、域名和路由等的过滤技术:包括黑/白名单、实时黑名单、反向域名检测等技术;2)基于行为的过滤技术:包括过滤群发、流量监控、挑战-回应和蜜罐技术等;3)基于内容的过滤技术:包括规则(集)匹配、朴素贝叶斯(Naive Bayes )、支持向量机(SVM )、-NN )、最大熵值法等[1]。
基于内容的过滤技术是目前垃圾邮件过滤技术应用的主流,而在基于内容的垃圾邮件过滤方法中,朴素贝叶斯算法[2]因其既实现了自学习的功能,又满足了个性化的要求,故而在垃圾邮件过滤中得到广泛的应用。
本文在对贝叶斯过滤器分析的基础上,引入基于分级的最小风险算法,并提出了一种结合多重贝努利和多项式的混合估计模型。
在此基础上对贝叶斯过滤器进行了改进,并进行了实验对比。
1贝叶斯过滤器1.1贝叶斯定理贝叶斯定理是由托马斯・贝叶斯(1702-1761)提出的计算概率的一种方法。
它是通过对某一事件过去发生概率情况的考察,大体可以推断出当前这一事件发生的概率。
它的形式化表述为:设试验,的事件,2,µÄÒ»¸ö»®·Ö£¬ÇÒ>0,,则,,=1;2;;,或者2,,,是特征项,可以是文章编号:文献标识码:48燕山大学学报2009字、词、短语或者是某种概念。
基于改进贝叶斯的垃圾邮件过滤系统设计与实现
丁文斌;李斌;罗浩
【期刊名称】《计算机工程与应用》
【年(卷),期】2005(041)018
【摘要】该文设计并实现了一种基于改进贝叶斯的垃圾邮件过滤系统.传统的贝叶斯方法对邮件进行过滤时,将邮件视为一个无序关键词的向量空间,丢掉了词与词之间,句子之间的相互关系.该文则将邮件视为句间有序,句子内部关键词无序但是相关的部分有序的集合.减少传统方法处理时信息的丢失.得到的实验结果比传统方法更好.
【总页数】4页(P127-130)
【作者】丁文斌;李斌;罗浩
【作者单位】哈尔滨工业大学国家网络信息安全重点实验室,哈尔滨,150001;哈尔滨工业大学国家网络信息安全重点实验室,哈尔滨,150001;哈尔滨工业大学国家网络信息安全重点实验室,哈尔滨,150001
【正文语种】中文
【中图分类】TP393.098
【相关文献】
1.朴素贝叶斯及其改进算法在垃圾邮件过滤中的应用 [J], 詹鹏伟;谢小姣
2.基于改进的贝叶斯中文垃圾邮件过滤方法研究 [J], 马威;褚红丹;高哲;董贯慧
3.改进的贝叶斯垃圾邮件过滤算法 [J], 赵敬慧;魏振钢
4.基于改进贝叶斯的垃圾邮件过滤算法综述 [J], 赵治国;谭敏生;李志敏
5.一种改进的基于贝叶斯的垃圾邮件过滤方法 [J], 王忠建;张树舰;李颖
因版权原因,仅展示原文概要,查看原文内容请购买。
朴素贝叶斯及其改进算法在垃圾邮件过滤中的应用朴素贝叶斯模型在文本分类领域应用广泛,但因为算法本身的缺陷,分类性能有待提高。
文章在传统的朴素贝叶斯模型的基础上,利用对数处理解决了算术下溢问题,使用拉普拉斯平滑解决了因训练集过小出现的零概率问题,并采用了系数加权的方法改善了朴素贝叶斯因假设所有条件都是独立的而导致的性能问题,进一步根据垃圾邮件过滤必须要有的查准率高的特点提出了阈值限定条件,最终训练的出的模型分类效果较传统的朴素贝叶斯模型有所提高,对垃圾邮件过滤模型的设计有一定的指导作用。
标签:朴素贝叶斯;系数加权;阈值限定Abstract:Naive Bayesian model is widely used in the field of text classification,but the classification performance needs to be improved because of the defects of the algorithm itself. Based on the traditional naive Bayesian model,the problem of arithmetic underflow is solved by logarithmic processing,and the zero probability problem due to the small training set is solved by Laplacian Smoothing. The method of coefficient weighting is used to improve the performance of naive Bayes,which is caused by the assumption that all the conditions are independent. Furthermore,the threshold limit condition is proposed according to the characteristic of the high precision rate necessary for spam filtering. The classification effect of the final training model is improved compared with the traditional naive Bayes model,which can guide the design of spam filtering model.Keywords:naive Bayes;coefficient weighting;threshold qualification引言随着互联网的发展,电子邮件的使用也越来越普及,但是电子邮件的安全性与可靠性却还有待提高。
基于贝叶斯的垃圾邮件过滤的设计与实现下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于贝叶斯的垃圾邮件过滤的设计与实现1. 引言随着互联网的普及和电子邮件的广泛应用,垃圾邮件成为了一个严重的问题。
给出基于朴素贝叶斯算法的垃圾邮件过滤原理垃圾邮件过滤是电子邮件系统中的一项重要功能,它能够识别并阻止大量的垃圾邮件进入用户的收件箱。
朴素贝叶斯算法是一种基于概率的机器学习算法,它在垃圾邮件过滤中发挥着至关重要的作用。
本篇文章将详细介绍基于朴素贝叶斯算法的垃圾邮件过滤原理。
一、朴素贝叶斯算法简介朴素贝叶斯算法是一种基于贝叶斯定理的分类算法。
它假定每个类别中的数据之间是独立的,而与其他类别无关。
这种简单但实用的假设使得朴素贝叶斯算法在许多领域中得到了广泛应用,尤其是在文本分类和垃圾邮件过滤等领域。
二、垃圾邮件的特征垃圾邮件通常具有一些共同的特征,如包含特定词汇、格式、主题或附件等。
通过对这些特征进行分析,我们可以利用朴素贝叶斯算法对邮件进行分类。
一般来说,垃圾邮件往往包含诸如推销、广告、威胁、色情等不良信息。
三、算法原理1.特征提取:首先,从每封邮件中提取与垃圾邮件相关的特征,如词频、词性、主题、附件类型等。
这些特征可以用于构建分类模型。
2.训练模型:将正常邮件和垃圾邮件分别作为训练数据集,利用朴素贝叶斯算法对模型进行训练。
通过学习正常邮件和垃圾邮件的特征,建立分类模型。
3.预测分类:对新收到的邮件,利用训练好的模型进行预测,并根据预测结果将其分类到正常邮件或垃圾邮件中。
4.更新模型:根据预测结果,不断更新模型参数,以提高分类准确率。
四、优势与改进朴素贝叶斯算法在垃圾邮件过滤中具有以下优势:1.无需对特征进行手工设计,能够自动提取有用的特征。
2.分类速度快,适用于实时过滤。
3.对噪声和异常值不敏感,具有较好的鲁棒性。
为了进一步提高垃圾邮件过滤的准确率,我们可以采用以下方法进行改进:1.多模型联合过滤:将多种分类算法(如朴素贝叶斯、支持向量机、深度学习等)组合起来,取长补短,提高整体准确率。
2.结合其他信息:将用户反馈、黑名单、白名单等其他信息与算法相结合,进一步提高过滤效果。
3.实时更新:定期收集新的邮件数据,及时更新模型,保持过滤效果的稳定性。
基于朴素贝叶斯算法的垃圾邮件过滤系统的研究与实现垃圾邮件过滤系统是我们日常生活中非常重要的一项技术,它可以帮助我们过滤掉那些繁杂的垃圾邮件,提高我们的工作效率。
基于朴素贝叶斯算法的垃圾邮件过滤系统能够对邮件进行自动分类,判断出是否为垃圾邮件,是一种简单、高效的算法。
本文将对基于朴素贝叶斯算法的垃圾邮件过滤系统进行研究与实现。
首先,我们需要清楚朴素贝叶斯算法的基本原理。
朴素贝叶斯算法是一种基于条件概率的分类算法,它假设不同特征之间是相互独立的。
在垃圾邮件过滤系统中,邮件中的每个词汇可以作为一个特征,我们需要计算每个特征对于判断邮件是否为垃圾邮件的条件概率。
具体而言,我们需要计算出对于每个特征,它出现在垃圾邮件中的概率和它出现在非垃圾邮件中的概率。
根据贝叶斯定理,我们可以通过这些概率来计算出给定特征的条件下,邮件是垃圾邮件的概率。
其次,我们需要构建垃圾邮件过滤系统的训练集和测试集。
训练集是用来训练分类器的数据集,我们需要选择一些已知是否为垃圾邮件的邮件,并提取出邮件中的特征词汇。
通过统计这些特征词汇在垃圾邮件和非垃圾邮件中的出现次数,我们可以计算出对应的条件概率。
测试集是用来测试分类器的数据集,我们需要选择一些未知是否为垃圾邮件的邮件,并提取出邮件中的特征词汇。
通过利用训练好的分类器,我们可以计算出这些邮件是垃圾邮件的概率,并做出判断。
接下来,我们需要实现基于朴素贝叶斯算法的垃圾邮件过滤系统。
首先,我们需要建立一个词汇表,包含所有的特征词汇。
然后,我们需要分别统计训练集中特征词汇在垃圾邮件和非垃圾邮件中的出现次数,并计算出对应的条件概率。
在测试集中,对于每封邮件,我们需要提取出特征词汇,并利用条件概率计算出邮件是垃圾邮件的概率。
根据这个概率,我们可以设置一个阈值,如果概率大于阈值,则判断为垃圾邮件,否则判断为非垃圾邮件。
最后,我们需要评估基于朴素贝叶斯算法的垃圾邮件过滤系统的性能。
我们可以使用准确率、召回率等指标来评估系统在测试集上的表现。
基于贝叶斯算法的垃圾邮件过滤系统的分析与实现的开题报告一、选题背景及意义随着网络技术的不断发展,人们在工作和生活中越来越依赖电子邮件进行沟通。
但同时,垃圾邮件也随之蔓延,带来了很多麻烦和影响。
垃圾邮件不仅会占据用户的宝贵时间和网络带宽,更会岂止诈骗、病毒等恶意信息,给人们带来安全隐患。
因此,过滤垃圾邮件,成了尤为紧迫的问题。
目前,普遍采用的谷歌、微软等知名企业提供的垃圾邮件过滤器,虽然效果已经有了很大的提升,但仍然存在一定的误判率,且存在一定的局限性,无法适应各类电子邮件的过滤需求。
此外,企业或组织可能因为数据隐私或安全等原因,不愿意将邮件流量托管给第三方服务商,导致公司自身的用户无法享受到服务商的垃圾邮件过滤服务。
因此,研发一套高效率、低误判率、易扩展的垃圾邮件过滤算法,是具有重要意义的。
贝叶斯算法作为一种常见的朴素贝叶斯分类算法,已经被广泛应用于垃圾邮件过滤、情感分析等领域,并取得了不错的效果。
本文拟利用贝叶斯算法,研究垃圾邮件过滤的原理、方法及实现,并通过实验验证其实用性。
二、研究内容该研究将从以下几个方面展开:1. 垃圾邮件的基本分类及特征提取:对垃圾邮件的基本分类进行介绍,并提取其重要特征,如发件人、主题、正文等。
2. 贝叶斯算法理论基础及其在垃圾邮件过滤中的应用:详细介绍贝叶斯算法的基本原理;分别从训练集、概率计算等角度,通过实例介绍朴素贝叶斯算法在垃圾邮件过滤中的应用。
3. 垃圾邮件分类实现:通过实验,使用Python等编程语言实现垃圾邮件过滤器,并通过参数调整等方式优化算法,提高垃圾邮件过滤的准确率。
四、预期成果1. 掌握贝叶斯算法在垃圾邮件过滤中的基本原理;2. 实现一个高效、准确率高的垃圾邮件过滤器;3. 通过实验,对垃圾邮件过滤器的效果进行验证,并进行性能优化。
五、研究方法和进度安排本论文采用文献资料法、理论研究、实验方法相结合的研究方法进行探究。
计划安排研究进度如下:第一阶段: 2021.10 至 2021.121.查阅相关文献,深入了解贝叶斯算法及其在垃圾邮件过滤中的应用;2.探讨垃圾邮件特征提取,建立垃圾邮件的特征库。
基于贝叶斯的中文垃圾邮件过滤系统的设计与实现的开题报告一、选题背景随着互联网的普及,垃圾邮件(Spam)的数量越来越多,给人们的日常工作和生活带来了很大的麻烦。
在此背景下,垃圾邮件过滤成为了一个重要的研究方向。
目前,国内外已经提出了许多不同的垃圾邮件过滤方法,其中基于贝叶斯的方法因其在过滤效果上表现良好、易于实现等优点而受到了广泛关注。
二、选题意义垃圾邮件过滤对于保护用户的个人隐私、提高工作和生活效率具有重要的意义。
本课题旨在利用贝叶斯的方法,设计和实现一个中文垃圾邮件过滤系统,为用户提供一个高效、准确的过滤方式。
三、研究内容和研究方法本课题主要研究内容包括:1、中文垃圾邮件的识别和分类技术研究;2、贝叶斯分类算法的原理和实现方法研究;3、中文垃圾邮件过滤系统的设计和实现。
本课题的研究方法主要包括:1、文献调研与综述:对垃圾邮件过滤技术的现有研究成果进行综述,并对相关算法和系统进行分析和比较;2、数据预处理和建模:对垃圾邮件和正常邮件进行数据预处理,提取特征,并建立相应的贝叶斯分类器;3、系统实现和评测:基于实现贝叶斯分类算法的开源软件,设计和实现中文垃圾邮件过滤系统,并进行实验评测和性能分析。
四、预期成果和研究目标预期成果包括:1、中文垃圾邮件过滤系统的设计和实现;2、实现的类库源码和文档;3、系统的性能评测和分析报告。
研究目标是:1、掌握贝叶斯分类算法的基本原理及其实现方法;2、了解中文垃圾邮件的特点和识别技术;3、熟悉开源软件在实际系统中的应用和使用。
五、研究难点和解决方案本课题的研究难点是:1、数据集的获取和预处理,包括对邮件的特征提取和处理;2、分类器的优化和调整,提高分类器的精度和效率;3、系统的快速识别和更新,避免被新型垃圾邮件攻击。
解决方案:1、利用现有的开源数据集,并对其进行预处理;2、使用交叉验证等方法对分类器进行优化和调整;3、在系统中集成快速识别和更新的功能。
六、研究计划和进度安排2021年10月-11月:文献调研、选题和开题报告撰写;2021年12月-2022年1月:数据集获取、预处理和建模;2022年2月-2022年4月:系统设计和实现;2022年5月-2022年6月:系统测试和性能评测;2022年7月-2022年8月:论文撰写和答辩准备;2022年9月-2022年10月:毕业论文修改和提交。