高电压技术 电力系统防雷保护
- 格式:ppt
- 大小:617.50 KB
- 文档页数:33
考点5:电力系统防雷保护5.1 输电线路的感应雷过电压一、雷击线路附近大地时,线路上的感应雷过电压1、先导在导线轴线方向上的电场强度X E 将导线两端与雷云电荷异号的正电荷,吸引到最靠近先导通道的一段导线上,成为束缚电荷。
导线上的负电荷则被排斥而向两侧运动,经线路泄露电导和系统中性点进入大地。
导线上电流很小,忽略线路工作电压,导线电位仍保持的电位。
正束缚电荷产生的电场在导线高度处被电导中负电荷产生的电场所抵消。
2、主放电先导通道中的负电荷自下而上被迅速中和,相应的电场被迅速减弱,使导线上正束缚电荷迅速释放,形成电压波向两侧传播,形成的过电压称为感应过电压的静电分量。
与此同时,由于先导通道中雷电流所产生的磁场变化而引起的感应称为感应过电压的电磁分量。
(1)当雷击点离开线路的距离s>65m 时,)(25d L KV Sh I u g ⨯⨯≈ 其中L I :雷电流峰值(KA);d h :导线平均高度(m);S:为雷击点离线路的距离。
感应过电压峰值一般最大可达300~400KV,这会引起35KV 及以下钢筋混凝土杆线路绝缘闪络。
(2)加避雷线由于屏蔽作用,感应过电压下降,导线上的感应过电压为)k 1(U U gd ,gd -=因此,避雷线离导线越近,耦合系数k 越大,U 感应越小。
二、雷击线路杆塔时,导线上的感应过电压无避雷线d ah =gd U有避雷线)1(U gd ,k ah d -=与直击雷相比,感应过电压的特点:1、极性与雷云电荷相反,一般为正极性。
2、在三相导线上同时出现,不会直接产生相间过电压。
3、 波形较缓和,波前几微秒到几十微秒,波长可达数百微秒。
5.2 输电线路的直击雷过电压和耐雷水平一、雷击杆塔顶部1.塔顶电位塔顶电流i gt <雷电流L i ,即L i i β=gt 雷电流到达峰值时,塔顶电压有最大值6.2(ch L R U gt L td I +=β其中β为分流系数,设雷电流具有斜角波前,at i =,则t L R L L bib t ++=11β,t 取T/2,(T 1波前时间2.6us)2.导线电位和线路绝缘上的电位当塔顶电位为td U 时,在塔顶的避雷线也有同样的电位,导线上产生的耦合电压为td kU ,由于通道电磁场的作用,导线上有感应过电压)1(a k h d -, 此电压与塔顶电位极性相反,所以导线电位的幅值d U 为)1(a U U td k h k d d --=作用在线路绝缘上的总电压k)-)(1ah (U U U U d td j +=-=d td 对于斜角波前的雷电波6.2L 1LI I a T == )1)(6.26.2(ch L k h I d gt j L R U -++=ββ 3.耐雷水平的计算 耐雷水平:]6.2)6.2[)(1(ch %501d gt h k L R U I ++-=β提高耐雷水平:↓↑↓β,,R ch k ,加强线路绝缘。
电力系统高压电力装置的防雷技术电力系统中的高压电力装置,如变电站、输电线路等,对于防雷技术有着非常高的要求。
由于电力系统中工作的电压较高,一旦遭到雷击,不仅会对设备造成严重损坏,还有可能引发火灾、爆炸等灾难性后果。
因此,进行有效的防雷措施对于电力系统的安全运行至关重要。
一、防雷原理电力系统中的高压设备,如变电站、输电线路等,通常采用了外放避雷器以及接地系统等措施来防止雷击的发生。
其原理是通过将雷电的能量引入地下而分散,并保护设备不受雷击。
具体而言,主要有以下几种原理:1.接地原理:将设备通过接地装置与大地相连,形成一个低阻抗通路,使得雷电能够从设备通过接地装置引入地下,从而降低设备受到雷击的概率。
2.避雷器原理:外放避雷器是采用线圈和金属氧化物等材料制成的装置,在雷击时能够迅速启动,将雷电的能量引入地下,从而保护设备不受雷击。
二、防雷装置的分类根据不同的安装位置和作用原理,对于高压电力装置的防雷技术,可以分为以下几类:1.进线避雷器:安装在变电站的电流进线处,用于保护变电站设备免受雷击。
进线避雷器通常安装在变压器的高压侧、低压侧以及中性点等位置。
其主要作用是将进入变电站的雷电能量引入地下。
2.出线避雷器:安装在变电站的电流出线处,用于保护电力系统的用户免受雷击。
出线避雷器通常安装在变电站的瓷瓶或者绝缘子上,起到将雷电引入地下的作用。
3.绝缘子串避雷器:安装在电力系统输电线路的绝缘子串上,用于保护输电线路不受雷击。
绝缘子串避雷器通常采用金属氧化物避雷器,具有响应速度快、保护性能好的特点。
4.避雷器接地系统:用于将避雷器与大地相连接,形成一个低阻抗通路,使得雷电能够顺利引入地下,保护设备免受雷击。
接地系统通常由接地网和接地装置组成,接地网是一种用于分散雷电能量的大面积铜排,而接地装置是一种用于引导雷电能量的金属波纹管。
三、防雷装置的设计与选型高压电力装置的防雷装置设计与选型,需要综合考虑多种因素,包括设备的电压等级、运行条件、周围环境以及预防雷击的要求等。
电力系统高压电力装置的防雷技术一、引言随着电力系统的发展,高压电力装置在电力生产和传输中起着至关重要的作用。
然而,由于自然界中存在大量的雷电活动,高压电力装置常常成为雷击的目标。
雷击不仅会对电力系统造成直接的损坏,还会引发连锁反应,导致更大范围的停电和损失。
因此,为了保障电力系统的稳定运行,高压电力装置的防雷技术变得尤为重要。
二、高压电力装置的防雷原理高压电力装置的防雷主要是通过引导和分散雷电来保护设备和系统。
具体来说,它包括三个主要原理:接地原理、导引原理和降压原理。
1. 接地原理接地是高压电力装置防雷的基础。
通过良好的接地系统,将雷电及时引入大地并迅速分散,有效地保护了设备和系统免受雷击的侵害。
接地系统应具备低电阻、大面积、深埋等特点,以确保雷电能够快速导入地下。
2. 导引原理导引是指将雷电沿特定导体导入地下,以分散其能量和电荷。
导体通常采用金属材料,可以是电杆、避雷针、避雷网等。
导引系统的布置应根据设备和场地的特点进行合理规划,以确保雷电能够有效地被引导分散。
3. 降压原理降压是指通过合理的保护措施,降低雷电对设备和系统的冲击。
主要包括安装避雷器、隔离开关等,以抵御雷电的高电压冲击。
降压措施的选择应根据设备和系统的特点进行合理安排,以提高系统的耐雷能力。
三、高压电力装置的防雷技术措施为了保护高压电力装置免受雷击的侵害,可以采取以下技术措施:1. 合理规划和设计在设计高压电力装置时,应充分考虑雷电活动的影响,并在设备和系统的布置中合理规划雷电防护措施。
例如,将接地装置和避雷装置布置在高压设备周围,并采用合适的导电材料进行导引。
2. 选用合适的避雷装置避雷装置是防雷的关键设备,它能有效地降低雷电对设备和系统的影响。
在选择避雷装置时,应根据设备和系统的电压等级、雷电活动情况等因素进行合理选择。
3. 加强接地系统接地系统是高压电力装置防雷的基础,必须确保接地系统的可靠性和有效性。
首先,接地电阻应尽量小,通常应控制在几十欧姆以下;其次,接地系统应具备良好的导电性和导热性,以快速引导和分散雷电;最后,接地系统应经过合理的规划和设计,确保全面接地。
电力系统高压电力装置的防雷技术一、前言在电力系统中,高压电力装置是非常重要的组成部分,其作用是将电压从变电站或发电厂传递到负载终端。
然而,由于高压电力装置所在地区通常是暴风雨、雷雨等极端天气的易发区,因此需要采取一系列的防雷技术,保证高压电力装置的安全稳定运行。
本文将介绍电力系统中常用的高压电力装置防雷技术及其原理。
二、主要防雷技术及原理1. 物理接地技术物理接地技术是最基本的地埋式防雷技术。
将设备的金属外壳和导线用导体连接到地下,以减小设备受到雷击时的冲击。
物理接地技术的原理是通过将设备的金属外壳和导线与地面相连,避免了设备内部的电荷积累,将雷电通过地面形成的电场进行接地,从而减小电容、电感等物理量的影响,并降低设备遭受雷击的可能性。
2. 屏蔽技术屏蔽技术是采用导电材料将电器设备或元件包围起来,从而达到隔离外界电场的目的。
屏蔽技术在高压电力装置中的应用主要包括两种形式:2.1 电缆屏蔽高压电缆屏蔽是将金属网覆盖状的导体材料(包括金属箔、金属丝网)覆盖在电缆绝缘外表面上,以减小电缆受到雷击的可能性。
电缆屏蔽的原理是通过屏蔽层将绝缘材料与机身内部隔绝,避免电缆绕组中因电磁感应产生的涡流和所谓的电缆指标根因。
屏蔽层与地面连接亦可支持屏蔽作用。
2.2 电磁屏蔽型变压器电磁屏蔽型变压器是采用磁屏蔽、电屏蔽或四盒式电磁屏蔽的技术,将电力装置与外部环境隔离,以减小电力装置受到雷击的可能性。
电磁屏蔽型变压器的原理是通过将内部的高压和低压部分分开隔离,各部分通过磁屏蔽、电屏蔽和四盒式电磁屏蔽完成隔离。
磁屏蔽通过非垂直向的磁场生成的磁通量来避免隔间间隔区域内产生涡流,电屏蔽则通过金属外壳和防雷标准来进行隔离。
3. 避雷采取避雷是一种通过建立雷电防护装置来保护高压电力装置不受雷击的防雷技术。
常用的避雷装置有特高压电气避雷针和雷电监测系统。
特高压电气避雷针是将针状的导体设置在高压电力装置的一定高度处,它可以通过自身火花放电来引导雷电,保护设备不受雷击。