无线移动通信信道.
- 格式:ppt
- 大小:1.92 MB
- 文档页数:56
无线移动通信系统中的动态信道分配、功率控制北方交通大学现代通信研究所杨涛萧韦一、简介蜂窝移动通信网从开始使用到现在不过二十年左右的时间,但有着惊人的发展速度。
随着移动通信业务量的激增,模拟通信网面临着容量严重不足的压力。
另一方面,由于计算机和数据终端的广泛应用,非话音业务迅速增多,模拟蜂窝系统已经不能适应移动通信业务发展的需要。
现在,移动通信已从模拟网络发展到了第二代及第三代的数字通信网络。
要解决通信容量不足的问题,就需要找到一种高效合理使用有限的无线资源(主要指频率和功率)的方法。
在频分与时分多址(FDMA/TDMA)系统中,动态信道分配(DCA)已成为研究热点。
DCA不仅可以高效的利用频谱并可以减轻代价颇高的频率规划方面的负担。
另一方面,功率也是移动台的一种宝贵资源,并且也是限制系统容量的重要因素。
功率过大会引起共道干扰的增加,影响共道用户的通信质量。
功率过小,会使移动台的信噪比达不到要求的标准,同样也会对通信质量造成影响。
于是,提出了功率控制(PC),功率控制就是一种以最小功率来达到所需的信噪比,来使移动信道中的同道干扰降到最低的方法。
因为是移动信道,所以应充分考虑信道用户的移动性,这就需要充分利用用户的分布特性来进行资源的重组与分配,达到优化利用。
将DCA与PC相结合,综合考虑二者的作用及用户的移动性就产生了DCA与PC 的结合算法,这将作为本文的重点。
二、动态信道分配(DCA)早期的固定信道分配(FCA)方法是通过一个再用距离来建立再用方案。
FCA并未考虑用户的分布特性,信道是分配给小区而不是用户。
再用距离的选择就是要保证距离大于再用距离的共道用户的同频干扰足够小,以不至于对其他用户产生明显影响。
而对于DCA,所有的信道被集中在一起,根据某种规则动态的进行分配。
DCA算法是根据各小区的业务量来分配信道,这样可以减少业务的热点,并且DCA算法通过监测用户位置处的信号与干扰值来调整再用距离,这样可将系统容量进一步提升。
1.移动通信的信道是指基站天线,移动用户天线和两副天线之间的传播路径。
2 3G技术标准主要有3G WCDMA CDMA2000 TC-SCDMA.2.移动信道的基本特性是衰落特性。
3.移动信道是一种时变信道。
四种衰落特性:随信号传播距离变化而导致的传播损耗和弥散,由于传播坏境中的地形起伏,建筑物及其他障碍物对电磁波的遮蔽所引起的衰落,称为阴影衰落无线电波在传播路径上受到周围环境中地形地物的做用产生反射绕射和散射,使得其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播所引起的信号在接收端幅度,相位和到达时间的随机变化导致严重的衰落,是多径衰落大尺度衰落是由移动通信信道路径上的固定障碍物的阴影引起的,衰落特性一般服从d-n 律。
小尺度衰落由移动台运动和地点的变化而产生的,主要特征是多径。
4.一般认为,在移动通信系统中影响传播的3中基本机制为反射绕射和散射6.根据衰落与频率的关系,将衰落分为两种:频率选择性衰落和非频率选择性衰落。
频率选择性衰落是指传输信道对信号不同的频率成分有不同的随机响应,信号中不同频率的分量衰落不一致,引起信号波形失真。
非频率选择性衰落,指信号经过传输信道后,各频率分量的衰落是相关的具有一致性,衰落波形不失真。
7.微观分集的类型时间分集频率分集空间分集8.分集的合并方式选择合并,在所接受的多路信号中,合并器选择信噪比最高的一路输出,这相当于在M个系数ak(t),只有一个等于1.其余的为0最大比值合并,在选择合并中,只选择其中一个信号,其余信号被抛弃。
等增益合并,等增益合并器的各个加权系数均为19.为什么扩频信号能够有效抑制窄带干扰?扩频信号对窄带干扰的抑制作用在于接收机对信号的解扩的同时,对干扰信号的扩频,这降低了干扰信号的功率谱密度。
扩频后的干扰和载波相乘,积分(相当于低通滤波)大大地削弱了他对信号的干扰,因此在采样器的输出信号受干扰的影响就大为减少,输出的采样值比较稳定10跳频系统的抗干扰性能和在GSM系统的应用:跳频系统对抗单频或窄带干扰是很有特色的。
移动通信中无线信道特性的研究作者:胡博来源:《城市建设理论研究》2013年第25期【摘要】在无线通信中,无线信道对信号的影响是巨大的,因此,研究移动通信中的无限信道很有必要,这也是提高移动通信性能的一个很关键的环节。
本文将从以下几个方面来分析移动通信中无线信道特性。
【关键词】移动通信;无线信道;特性中图分类号:E965 文献标识码:A 文章编号:一、前言目前,在国内的移动通信中,相关人员对无限信道的研究还不够深入,不能够很好的掌握无线信道的规律,因此,研究移动通信中无线信道特性很有必要。
二、无线信道对信号的影响信号在无线信道中传播一般可归结为反射、绕射和散射三种基本传播方式,无线信号无论是在前向链路还是在反向链路的传播,都会以多种方式受到物理信道的影响。
由于无线信道的复杂性和时变性,信号通过无线信道时会受到各个方面的衰减损耗。
总的说来,信道对无线信号的影响可归纳为自由空间路径损耗、阴影衰落和多径衰落三种。
在无线信道中,有三种最重要的多径衰落效应:信号强度在一段很小的传播距离或时间间隔内快速变化产生的多径衰落;不同路径信号的多普勒频移引起的随机频率变化以及多径传播时延扩展引起的多径衰落效应。
无线信道的多径衰落会导致信号在不同维(时间、频率、空间)的扩展,对无线通信信号具有明显的影响。
三、通信系统中信道模型的演变通过进行实地测量和分析,我们可以将各种无线信道抽象为模型,然后依据这些模型对无线通信系统进行设计和优化。
理论上来说,无线通信信道就是一个线性滤波器。
发射的信号通过这个滤波器后被接收,所以信号传输就是一个信号处理的过程。
信道模型给出了信道的基本统计信息,因此它是信道估计的基础。
我们这里要讨论的信道模型有以下几类:TU模型,ITU信道模型,LTE扩展信道模型。
在GSM网络投入运行之前,TU模型就已经被用来决定GSM中均衡器的需求和性能。
后来3GPP组织提出的一个新的TU模型,其与旧TU模型的最大区别在于新模型的最大时延只有旧模型的一半。
移动通信原理移动通信原理1. 引言2. 移动通信系统结构移动通信系统是由移动终端、基站和核心网组成的。
移动终端是用户使用的移动设备,例如方式、平板电脑等。
基站是无线信号的发射和接收站点,负责和移动终端进行无线通信。
核心网是移动通信系统的中心,负责管理和控制移动终端之间的通信。
3. 无线信道原理移动通信系统使用的是无线信道进行信息传输。
无线信道是指通过无线电波进行传输的信道。
无线信道的传播特性会受到多种因素的影响,例如距离、障碍物、多径等。
为了提高无线通信的质量,通信系统会采取多种技术来克服这些影响,例如信号编码、调制解调、多址接入等。
4. 调制解调技术调制解调技术是移动通信中非常重要的技术之一,它将数字信号转换成模拟信号进行传输。
常见的调制技术包括调频(FM)、调相(PM)和调幅(AM)。
调制技术可以将信号从低频信号转换为高频信号,以便在无线信道中传输。
解调技术则将接收到的信号转换为原始的数字信号。
5. 多址接入技术多址接入技术是移动通信中实现多用户访问无线信道的关键技术。
常见的多址接入技术包括时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)。
多址接入技术可以使多个用户共享同一个频率带宽的无线信道,提高了无线通信系统的容量和效率。
6. 移动通信网络移动通信网络是由多个基站和核心网组成的。
基站负责与移动终端进行通信,将用户的语音、数据和多媒体信息传输到核心网。
核心网负责管理和控制移动通信系统的各个部分,协调基站之间的通信和移动终端的切换。
7. 移动通信标准移动通信标准是制定移动通信系统中各种技术和规范的组织机构制定的。
常见的移动通信标准包括GSM、CDMA2000、WCDMA和LTE 等。
这些标准规定了移动通信系统的基本原理、技术和频谱分配,确保了不同厂商的设备之间的互通性。
8. 移动通信的发展趋势移动通信技术在不断地发展和演进。
移动通信系统将实现更高的数据传输速率、更低的时延和更大的网络容量。
无线移动通信信道无线移动通信信道1. 引言无线移动通信是一种通过无线信道传输信息的通信方式。
无线信道可以被视为信息传输的媒介,它承载着移动通信系统中的语音、数据、视频等信息。
2. 无线信道的特点与有线通信相比,无线通信具有以下特点:1. 无线信道具有广播性质,可以为多个用户提供服务。
2. 无线信道具有移动性,用户可以在无线通信系统覆盖范围内自由移动。
3. 无线信道具有多径传播效应,信号在传播过程中会经历多个传播路径,导致传输信号产生多种副本。
3. 无线移动通信信道分类无线移动通信信道可以根据不同的分类方式进行划分,常见的分类方式包括:1. 按照传输介质划分,可以将无线信道分为电磁波传播信道、声波传播信道等。
2. 按照传输距离划分,可以将无线信道分为近距离信道和远距离信道。
3. 按照传输方式划分,可以将无线信道分为广播信道、点对点信道等。
4. 无线移动通信信道的技术无线移动通信信道的传输技术主要包括以下几种:1. 调幅调制(AM):将信息信号嵌入到载波信号的幅度中,在接收端通过解调还原信息信号。
2. 调频调制(FM):将信息信号嵌入到载波信号的频率中,在接收端通过解调还原信息信号。
3. 调相调制(PM):将信息信号嵌入到载波信号的相位中,在接收端通过解调还原信息信号。
5. 无线移动通信信道的技术挑战无线移动通信信道面临着以下几个技术挑战:1. 多径传播效应:移动通信信号在传播过程中会经历多个传播路径,导致信号叠加和信号衰落。
2. 多用户干扰:在同一个频段上进行的通信会相互干扰,影响通信质量。
3. 频谱资源受限:无线通信频谱资源有限,需要进行合理的频谱管理。
6. 无线移动通信信道的发展趋势随着移动通信技术的不断发展,无线移动通信信道也在不断演进。
的发展趋势包括:1. 多天线技术:利用多天线的技术可以提高信号的传输效率和抗干扰能力。
2. 毫米波通信:毫米波通信具有大带宽和高传输速率的特点,将成为无线通信的重要技术之一。
移动通信网络中的信道模型建立在移动通信网络中,无线信道是连接移动用户设备与基站之间的重要媒介,它的好坏程度直接影响着通信质量、用户体验以及网络容量等方面。
作为无线通信领域的重要问题之一,“信道建模”在无线通信的研究中也显得格外重要。
本文将深入探讨移动通信网络中的信道模型建立,包括基本概念、分类、常用模型以及建立方法等方面。
一、基本概念1. 信道信道是指无线通信中传递信息的物理链路,它包括了传播介质、传播方式、利用频段以及信号传输方法等几个方面。
比如说,无线电波穿过空气传递到地面上的基站接收机,实现了信息的传递。
2. 信噪比信噪比是指有用信号和干扰和噪声信号的比值,也就是传输信号中有用信号的功率与噪声功率之比。
在无线通信中,信号的传输受到各种噪声和干扰的干扰,信号强度和噪声强度之间的比值越大,表明信号的质量越好。
3. 衰落衰落是指无线信号在传输过程中衰减失真的现象,也称为衰减。
衰落的原因是由于信号受到多径信号干扰、空气介质介电常数和导电率的波动、障碍物阻碍以及信号频率等因素所引起的。
二、分类移动通信网络中的信道模型可分为以下几类:1. 静态信道模型静态信道模型是指信道特性变化缓慢,信道状态可以假设不随时间变化或者随时间变化缓慢的信道模型。
静态信道模型最常用的就是大尺度衰落模型,通常可以用标准的理论模型进行描述。
这种信道模型适用于城市和农村等人口密度较低的区域。
2. 动态信道模型动态信道模型是指信道特性变化快,信道状态需要随时间变化而变化的信道模型。
动态信道模型适合于城市中的通信环境,尤其是在高速移动环境下。
三、常用模型1. 经典模型经典信道模型是根据充分的场强测量数据进行建模,通常需要进行大量的实地数据采集和处理。
在实际应用中,常用如大尺度衰落模型、多径衰落模型、特定场合衰落模型、生产无回波地形衰落模型等经典模型。
2. 统计模型统计信道模型是用概率统计方法处理信道随机性的模型。
常见的统计模型包括如Rayleigh分布模型和Rice分布模型等。
5g中的信道和信号-回复5G中的信道和信号作为下一代移动通信技术的代表,5G通信系统在无线通信领域带来了巨大的革新。
在5G中,信道和信号是关键要素之一,它们在实现高速、高质量的无线通信中发挥着重要作用。
本文将一步一步回答有关5G中的信道和信号的问题。
1. 什么是信道?信道是指无线通信中的信息传输介质,包括空气介质和传输设备。
在5G中,信道是无线通信系统中传输数据的媒介,负责将发送方发送的信号传输给接收方。
2. 5G中有哪些常见的信道类型?5G中常见的信道类型包括下行信道和上行信道。
下行信道是从基站发送到终端设备的信道,用于传输各种数据和媒体内容。
上行信道是从终端设备发送到基站的信道,用于上传用户数据和进行反馈。
3. 5G信道中的多天线技术有何作用?多天线技术是5G中的重要技术之一,它通过在发送和接收设备上使用多个天线来增强无线信号的传输效果。
多天线技术可以提高无线传输速率、信号覆盖范围和抗干扰能力,从而提升用户的通信体验。
4. 5G信号中的毫米波是什么?在5G中,毫米波是一种高频段的无线信号,其频率通常在30 GHz 到300 GHz之间。
相比传统的微波信号,毫米波信号具有更高的频率和更宽的频谱,可以支持更高的数据传输速率。
然而,毫米波信号的传输距离相对较短,容易受到障碍物的阻挡。
5. 5G中的波束赋形技术有何意义?波束赋形技术是5G中的一项关键技术,它通过对信号进行定向发射和接收,将无线能量集中在用户所在的方向上。
这种技术可以提高传输速率和信号质量,并减少与其他用户之间的干扰,从而为用户提供更稳定、更高效的网络连接。
6. 5G信号中的大规模天线阵列有何优势?大规模天线阵列是5G中的另一项重要技术,它通过在基站和终端设备上使用大量的天线来实现多天线通信。
大规模天线阵列可以实现更精确的波束赋形和更高的信号增益,提供更广阔的信号覆盖范围和更高的数据传输速率。
7. 5G中的小区间干扰如何解决?在5G中,小区间干扰是一个较为普遍的问题,指不同小区之间的频率相互干扰的现象。