中考数学模拟试卷(四)含详细答案
- 格式:doc
- 大小:1.23 MB
- 文档页数:13
中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。
海南省中考数学仿真试卷(四)一、选择题(共14小题,每小题3分,满分42分)1.(3分)若a≠0,b≠0,则代数式的取值共有()A.2个 B.3个 C.4个 D.5个2.(3分)若x+3y=5,则代数式2x+6y﹣3的值是()A.9 B.10 C.7 D.153.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a34.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1085.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)若ab=a﹣b≠0,则分式与下面选项相等的是()A.B.a﹣b C.1 D.﹣17.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.8.(3分)若反比例函数的图象经过点(﹣5,2),则k的值为()A.10 B.﹣10 C.﹣7 D.79.(3分)估计2﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°11.(3分)AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()A.69°B.° C.° D.不能确定12.(3分)某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为()A.B.C.D.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,作DE∥AB交⊙O于E,连接AE,若∠C=40°,则∠E等于()A.40°B.50°C.20°D.25°14.(3分)如图,在矩形ABCD中,用直尺和圆规作BD的垂直平分线EF,交AB于点G,交DC于点H,若AB=4,BC=3,则AG的长为()A.B.C.D.二、填空题(共4小题,每小题4分,满分16分)15.(4分)分解因式:16m2﹣4=.16.(4分)若关于x的分式方程无解,则m=.17.(4分)如图,AB是⊙O的直径,AC是⊙O的弦,作OD⊥AC,垂足为点D,连接BD.若AB=5cm,AC=4cm,则BD的长为.18.(4分)如图,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),对角线PM与ON交于点B,则点B的坐标为.三、解答题(共6小题,满分62分)19.(10分)(1)计算:(﹣1)+18÷﹣×;(2)解不等式组:.20.(8分)某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?21.(8分)“天元数学”网络平台是学生自主学习的平台,某中学共有2400名学生,每人每周学习“天元数学”微课视频的数量都在5~17个(这里的5~17表示大于等于5同时小于17),为进一步了解该校学生每周学习“天元数学”微课的情况,学校将收集来的全校学生数据整理后绘制成如下的统计图.(1)根据图①中信息求出四个部分在总体中所占的比值;(2)在图②中制作相应的扇形统计图.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(14分)定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A 的平分线上时,直接写出t的值.24.(14分)如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)若a≠0,b≠0,则代数式的取值共有()A.2个 B.3个 C.4个 D.5个【解答】解:由分析知:可分4种情况:①a>0,b>0,此时ab>0所以=1+1+1=3;②a>0,b<0,此时ab<0所以=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0所以=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0所以=﹣1+1﹣1=﹣1;综合①②③④可知:代数式的值为3或﹣1.故选:A.2.(3分)若x+3y=5,则代数式2x+6y﹣3的值是()A.9 B.10 C.7 D.15【解答】解:∵x+3y=5,∴2x+6y﹣3,=2(x+3y)﹣3,=2×5﹣3,=7.故选:C.3.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3 D.a6÷a2=a3【解答】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选:A.4.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.5.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.98【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.(3分)若ab=a﹣b≠0,则分式与下面选项相等的是()A.B.a﹣b C.1 D.﹣1【解答】解:∵ab=a﹣b≠0∴﹣==﹣=﹣1,故选:D.7.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.8.(3分)若反比例函数的图象经过点(﹣5,2),则k的值为()A.10 B.﹣10 C.﹣7 D.7【解答】解:将点(﹣5,2)代入,得k=﹣5×2=﹣10,故选:B.9.(3分)估计2﹣1的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵2.22=4.84,2.32=5.29,∴4<2<5,∴3<2﹣1<4.故选:B.10.(3分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°【解答】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选:D.11.(3分)AD与BE是△ABC的角平分线,D,E分别在BC,AC上,若AD=AB,BE=BC,则∠C=()A.69°B.° C.° D.不能确定【解答】解:∵AD=AB,∴∠ADB=(180°﹣∠BAC)=90°﹣∠BAC,∴∠C=∠ADB﹣∠DAC=(180°﹣∠BAC)=90°﹣∠BAC﹣∠BAC=90°﹣∠BAC;∵BE=BC,∴∠C=∠BEC=∠BAC+∠ABE=∠BAC+(180°﹣∠BAC)=∠BAC+45°﹣∠BAC=45°+∠BAC,∴90°﹣∠BAC=45°+∠BAC,解得∠BAC=,∴∠C=90°﹣=.故选:C.12.(3分)某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为()A.B.C.D.【解答】解:画树状图为:共有9种等可能的结果数,其中两人同坐2号车的结果数为1,所以两人同坐2号车的概率=.故选:A.13.(3分)如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,作DE∥AB交⊙O于E,连接AE,若∠C=40°,则∠E等于()A.40°B.50°C.20°D.25°【解答】解:∵AC与圆O相切,∴AC⊥AB,在Rt△AOC中,∠C=40°,∴∠AOC=50°,∵∠AOC与∠AED都对,∴∠E=∠AOC=25°,故选:D.14.(3分)如图,在矩形ABCD中,用直尺和圆规作BD的垂直平分线EF,交AB于点G,交DC于点H,若AB=4,BC=3,则AG的长为()A.B.C.D.【解答】解:∵四边形ABCD是矩形,∴AD=BC=3,∠A=90°,∵EF是BD的垂直平分线,∴DG=BG,设AG=x,则DG=BG=4﹣x,在Rt△ADG中,由勾股定理得:AD2+AG2=DG2,即32+x2=(4﹣x)2,解得:x=;即AG的长为;故选:C.二、填空题(共4小题,每小题4分,满分16分)15.(4分)分解因式:16m2﹣4=4(2m+1)(2m﹣1).【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)16.(4分)若关于x的分式方程无解,则m=﹣4或6或1.【解答】解:(1)x=﹣2为原方程的增根,此时有2(x+2)+mx=3(x﹣2),即2×(﹣2+2)﹣2m=3×(﹣2﹣2),解得m=6.(2)x=2为原方程的增根,此时有2(x+2)+mx=3(x﹣2),即2×(2+2)+2m=3×(2﹣2),解得m=﹣4.(3)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2),化简得:(m﹣1)x=﹣10.当m=1时,整式方程无解.综上所述,当m=﹣4或m=6或m=1时,原方程无解.17.(4分)如图,AB是⊙O的直径,AC是⊙O的弦,作OD⊥AC,垂足为点D,连接BD.若AB=5cm,AC=4cm,则BD的长为.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵AB=5cm,AC=4cm,∴BC==3cm.∵0D⊥AC,∴CD=AC=2cm,∴BD===.故答案为:.18.(4分)如图,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),对角线PM与ON交于点B,则点B的坐标为(4,2).【解答】解:∵顶点P的坐标是(3,4),∴OP==5,∵四边形MNPO是菱形,∴OP=OM=5,∴点M坐标(5,0),∵PB=BM,∴点B的横坐标==4,纵坐标==2,∴点B(4,2).故答案为(4,2).三、解答题(共6小题,满分62分)19.(10分)(1)计算:(﹣1)+18÷﹣×;(2)解不等式组:.【解答】(1)解:原式=﹣1+18÷9﹣=﹣1+2﹣3=﹣2;(2)解:解不等式①得:x≥﹣2,解不等式②得:x<1,所以不等式组的解集为:﹣2≤x<1.20.(8分)某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?【解答】解:设碳酸饮料在调价前每瓶的价格为x元,果汁饮料调价前每瓶的价格为y元,根据题意得:,解得:.答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.21.(8分)“天元数学”网络平台是学生自主学习的平台,某中学共有2400名学生,每人每周学习“天元数学”微课视频的数量都在5~17个(这里的5~17表示大于等于5同时小于17),为进一步了解该校学生每周学习“天元数学”微课的情况,学校将收集来的全校学生数据整理后绘制成如下的统计图.(1)根据图①中信息求出四个部分在总体中所占的比值;(2)在图②中制作相应的扇形统计图.【解答】解:(1)5~8个视频组:900÷2400=;8~11个视频组:800÷2400=;11~14个视频组:400÷2400=;14~17个视频组:300÷3400=;(2)扇形统计图如图所示:22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.(14分)定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A 的平分线上时,直接写出t的值.【解答】解:(1)线段AB的“对角线正方形”如图所示:(2)如图1中,当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,设正方形的边长为x,∵PE∥AB,∴=,∴=,解得x=,∴PE=,CE=4﹣=,∴PC==,∴t==s;(3)①如图2中,当0≤t≤1时,作PH⊥BC于H.∵PC=5t,则HC=4t,PH=3t,在Rt△PHB中,PB2=PH2+BH2=(3t)2+(4﹣4t)2=25t2﹣32t+16.∴S=PB2=t2﹣16t+8.②如图3中,当1<t<时,∵PB=8﹣5t,∴S=PB2=t2﹣40t+32.综上所述,S=;(4)①如图4中,当D、E在∠BAC的平分线上时,易知AB=AP=3,PC=2,∴t=s.②当点P运动到点A时,满足条件,此时t=1s.③如图5中,当点E在∠BAC的角平分线上时,作EH⊥BC于H.易知EB平分∠ABC,∴点E是△ABC的内心,四边形EOBH是正方形,OB=EH=EO=BH==1(直角三角形内切圆半径公式),∴PB=2OB=2,∴AP=1,∴t=s,综上所述,在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠CAB的平分线上时,t的值为s 或1s或s;24.(14分)如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E 的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).21 / 21。
【寒假特辑】人教版数学中考模拟试卷七套卷4(含解析)姓名:__________班级:__________学号:__________一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.125.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)38.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=103510.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是.年份200420052006200720082009167418432048256027672786人均食品消费支出15.计算:=.16.﹣=.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的%.21.(6分)解不等式组:,并把解集在数轴上表示出来.22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.答案与试题解析一、选择题(本大题12小题,每小题3分,共36分)1.已知|a﹣1|=2,则a的值是()A.3 B.﹣1 C.3或﹣1 D.不确定【分析】先根据题意求出(a﹣1)的值,从而不难求得a的值,注意绝对值等于正数的数有两个.解:∵|a﹣1|=2∴a﹣1=±2∴a=3或a=﹣1故选C.2.使代数式+有意义的整数x有()A.5个B.4个C.3个D.2个【分析】根据被开方数是非负数,分母不能为零,可得答案.解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5 500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解:5 500万千米,这个数据用科学记数法可表示为5.5×107千米,故选:B.4.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【分析】根据三角形内角和定理可求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.5.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有4种可能位置,分四种情况进行讨论,分别画出图形,依据平行线的性质以及三角形外角性质进行计算求解即可.解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.6.为了了解石家庄市八年级男生的身高,有关部门准备对200名八年级男生的身高作调查,以下调查方案中比较合理的是()A.查阅外地200名八年级男生的身高统计资料B.测量该市一所中学200名八年级男生的身高C.测量该市两所农村中学各100名八年级男生的身高D.在该市市区内任选一所中学,农村选三所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高【分析】样本的随机性和代表性很重要.解:A,外地学生身高不能准确反映本地学生的身高,调查方案不合理.B,C 单独去取城市或农村的学生都没有代表性.相对来说D比较合理.故选D7.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.8.如图,在四边形ABCD中,AB∥CD,要使四边形ABCD是平行四边形,下列添加的条件不正确的是()A.AB=CD B.BC=AD C.∠A=∠C D.BC∥AD【分析】根据平行四边形的判定方法,逐项判断即可.解:∵AB∥CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;当BC∥AD时,由两组对边分别的四边形为平行四边形可知该条件正确;故选B.9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.10.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2﹣4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()(根据2008武汉卷改编)A.①②B.①③C.②③D.①②③【分析】根据△与0的关系,即可求出答案.解:①若a+b+c=0,则b=﹣a﹣c,∴b2﹣4ac=(a﹣c)2≥0,正确;②若b=2a+3c则△=b2﹣4ac=4a2+9c2+12ac﹣4ac=4a2+9c2+8ac=(2a+2c)2+5c2,∵a≠0∴△恒大于0,∴有两个不相等的实数根,正确;③若b2﹣4ac>0,则二次函数的图象,一定与x轴有2个交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3,正确.故选D.11.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.12.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是()A.3 B.4 C.5 D.4【分析】设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,根据△ABO和△BED都是等腰直角三角形,得到EB=BD,OB=AB,再根据OB2﹣EB2=10,运用平方差公式即可得到(AO+DE)(AB﹣BD)=5,进而得到a•b=5,据此可得k=5.解:设E点坐标为(a,b),则AO+DE=a,AB﹣BD=b,∵△ABO和△BED都是等腰直角三角形,∴EB=BD,OB=AB,BD=DE,OA=AB,∵OB2﹣EB2=10,∴2AB2﹣2BD2=10,即AB2﹣BD2=5,∴(AB+BD)(AB﹣BD)=5,∴(AO+DE)(AB﹣BD)=5,∴a•b=5,∴k=5.故选:C.二、填空题(本大题6小题,每小题3分,共18分)13.若2(a+3)的值与4互为相反数,则a的值为﹣5.【分析】根据相反数的意义,可得答案.解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.14.改革开放后,我市农村居民人均消费水平大幅度提升,下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元),则这几年我市农村居民人均食品消费支出的中位数是2304元.年份200420052006200720082009167418432048256027672786人均食品消费支出【分析】原数据已经排序找到中间位置的数或中间两数的平均数即可求得中位数.解:共6个数,故中位数为:=2304元,故答案为:2304元.15.计算:=5﹣5.【分析】先把各根式化为最简二次根式,再合并同类项即可.解:原式=3﹣5+2=5﹣5.故答案为:5﹣5.16.﹣=﹣.【分析】首先将原式分解因式,进而找出最简公分母通分,进而化简求出即可.解:﹣=﹣=﹣==﹣.故答案为:﹣.17.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【分析】把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共9个小题,满分66分)19.(5分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合.解:所作图形如下所示:20.(5分)为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)抽取的学生数为300名;(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有1060名;(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.【分析】(1)男女生所有人数之和;(2)求出抽取的样本中收听品三国的学生所占的比例,乘3000即可求解;(3)听红楼梦的女生人数除以总人数.解:(1)20+10+30+15+30+38+64+42+6+45=300人;(2)×3000=1060人;(3)样本中校女学生喜欢收听刘心武评《红楼梦》的约占样本容量的百分比为45÷300=15%,故该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的15%.故答案为:300;1060;15.21.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.解:由①得x≥4,由②得x<1,∴原不等式组无解,22.(6分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.23.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【分析】首先由题意可得BE=,AE=,又由AE﹣BE=AB=m米,即可得﹣=m,继而可求得CE的长,又由测角仪的高度是n米,即可求得该建筑物的高度.解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.24.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.25.(8分)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O 于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【分析】(1)连接OD,只要证明OD⊥EF即可.(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.(1)证明:连接OD;∵AB是直径,∴∠ACB=90°;∵EF∥BC,∴∠AFE=∠ACB=90°,∵OA=OD,∴∠OAD=∠ODA;又∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AF,∴∠ODE=∠AFD=90°,即OD⊥EF;又∵EF过点D,∴EF是⊙O的切线.(2)解:连接BD,CD;∵AB是直径,∴∠ADB=90°,∴∠ADB=∠AFD;∵AD平分∠BAC,∴∠OAD=∠DAC,∴BD=CD;设BD=CD=a;又∵EF是⊙O的切线,∴∠CDF=∠DAC,∴∠CDF=∠OAD=∠DAC,∴△CDF∽△ABD∽△ADF,∴;∵sin∠ABC==,∴设AC=4x,AB=5x,∴a2=5x,∴在Rt△CDF中DF2=CD2﹣CF2=5x﹣1;又∵,∴5x﹣1=1×(1+4x),∴x=2,∴AB=5x=10,AC=4x=8;∵EF∥BC,∴△ABC∽△AEF,∴,,,∴在Rt△AEF中,.26.(10分)如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,与y轴交于点C.(1)求抛物线的解析式,并写出其对称轴;(2)把(1)中所求出的抛物线记为C1,将C1向右平移m个单位得到抛物线C2,C1与C2的在第一象限交点为M,过点M作MG⊥x轴于点G,交线段AC 于点H,连接CM,当△CMH为等腰三角形时,求抛物线向右平移的距离m和此时点M的坐标.【分析】(1)利用交点式求二次函数的解析式,并配方求对称轴;(2)先求直线AC的解析式,根据各自的解析式设出M(x,﹣x2++2),H (x,﹣x+2),由图得△CMH为等腰三角形时,①CM=CH,②当HC=HM时,③当CM=HM时,列式计算求出M的坐标,把M的坐标代入平移后的解析式可并得出m的值.解:(1)当x=0时,y=ax2+bx+2=2,∴抛物线经过(0,2),∵抛物线y=ax2+bx+2(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,设抛物线的解析式为:y=a(x﹣4)(x+1),把(0,2)代入得:2=a(0﹣4)(0+1),a=﹣,∴y=﹣(x﹣4)(x+1)=﹣x2++2=﹣(x﹣)2+,∴抛物线的解析式为:y=﹣x2++2,对称轴是:直线x=;(2)设直线AC的解析式为:y=kx+b,把A(4,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=﹣x+2,设M(x,﹣x2++2),H(x,﹣x+2),∵△CMH为等腰三角形,分三种情况:①当CM=CH时,∴C是MH垂直平分线上的点,∴GH+GM=4,则﹣x2++2+(﹣x+2)=4,解得:x1=0(舍),x2=2,∴M(2,3),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(2,3)代入得:m=1.②当HC=HM时,HM=﹣x2++2﹣(﹣x+2)=﹣x2+2x,CH2=,CH=,∴=﹣x2+2x,x1=0(舍),x2=4﹣,∴M(4﹣,﹣),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(4﹣,﹣),代入得:m1=0(舍),m2=5﹣2;③当CM=HM时,HM=﹣x2+2x,CM2=,则=,x=,∴M(,),设平移后的抛物线的解析式为:y=﹣(x﹣﹣m)2+,把M(,),代入得:m=0(舍);综上所述,当m=1时,M(2,3);当m=5﹣2时,M(4﹣,﹣).27.(12分)如图甲,在△ABC中.∠ACB=90°.AC=4.BC=3.如果点P由点B出发沿BA方向向点A匀速运动.同时点Q由点A出发沿AC方向向点C匀速运动.它们的速度均为每秒钟1个单位长度.连接PQ,设运动时间为t秒钟(0<t<4).2·1·c·n·j·y(1)设△APQ的面积为S,当实数t为何值时,S取得最大值?S的最大值是多少?(2)在(1)的前提下.当S取得最大值时.把此时的△APQ沿射线AC以每秒钟1个单位长度的速度平移,当点A平移至与点C重合时停止,写出平移过程中,△APQ与△ABC的重叠部分面积y与平移时间x的函数解析式,并写出对应的x的取值范围;(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求实数t的值.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t (3﹣t),最后进行整理即可得出答案;(2)需要分类讨论,当PQ在BC的左边时,△APQ与△ABC的重叠部分面积y=S△APQ,当PQ在BC的右边时,△APQ与△ABC的重叠部分面积y=S△A′P′C;(3)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可.解:(1)如答图1,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)①当0≤x<时,y=;②如答图2,当≤x≤4时,△A′P′C∽△A′PQ,则=,即=,解得P′C=(4﹣x),则y=(4﹣x)×(4﹣x)=(4﹣x)2,综上所述,y=;(3)如答图3,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s.21世纪教育网–中小学教育资源及组卷应用平台版权所有@21世纪教育网。
中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
山西省百校联考中考数学模拟试卷(四)一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a53.如图所示几何体的俯视图是()A.B. C.D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次5.不等式组的解集在数轴上表示为()A. B.C. D.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P47.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.259.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是______.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是______.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为______米(≈1.732)14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连接BF ,CE ,判断四边形BCEF 的形状并加以证明.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图; 分组 人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20 (2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目 成绩素描 色彩 速写 甲98 93 95 乙95 95 10020.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件.(1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.山西省百校联考中考数学模拟试卷(四)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A:根据同底数幂的乘法法则判断即可.B:根据同底数幂的除法法则判断即可.C:根据合并同类项的方法判断即可.D:根据幂的乘方的运算方法判断即可.【解答】解:∵a2•a3=a5,∴选项A不正确;∵a3÷a2=a,∴选项B正确;∵a2+a2=2a2,∴选项C不正确;∵(a2)3=a6,∴选项D不正确.故选:B.3.如图所示几何体的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中并且注意虚线和实线的不同.【解答】解:从上往下看,易得一个长方形,其中有两条实线和两条虚线虚线,如图所示:故选D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据随机事件、概率的意义以及全面调查与抽样调查的定义即可作出判断.【解答】解:A、“任意画出一个圆,它是中心对称图形”是必然事件,本选项错误;B、为了解我省中学生的体能情况,应采用抽查的方式,本选项错误;C、天气预报明天下雨的概率是99%,该事件不是必然事件,说明明天不一定会下雨,本选项错误;D、任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次,该事件是随机事件,本选项正确.故选D.5.不等式组的解集在数轴上表示为()A. B.C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,由x+2≤3得x≤1,由<3得x>﹣3,则不等式组的解集为﹣3<x≤1,在数轴上表示为:故选A.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P4【考点】位似变换.【分析】连接CA,DB,并延长,则交点即为它们的位似中心.继而求得答案.【解答】解:∵如图,连接CA,DB,并延长,则交点即为它们的位似中心.∴它们的位似中心是P3.故选C.7.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°【考点】平行线的性质.【分析】先根据等腰三角形的性质和三角形外角的性质求出∠3的度数,再根据平行线的性质求出∠4的度数,再由∠ACB=90°得出∠5的度数,根据平角的定义即可得出结论.【解答】解:如图,∵DB=DE,∠B=25°,∴∠2=25°,∴∠3=25°+25°=50°,∵m∥n,∴∠4=50°,∵∠C=90°,∴∠5=65°,∴∠1=180°﹣50°﹣65°=65°.故选:B.8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.25【考点】中位数.【分析】根据中位数的定义解答即可.【解答】解:10个数,最中间的数为第5个数和第6个数,它们都是22,所以这10户居民用水量的中位数为(22+22)÷2=22.故选C.9.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元【考点】一元一次方程的应用.【分析】设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据:标价×0.9﹣批发价=纯利润,列方程求得商品的批发价,继而可得该电器按照标价的八折销售可获纯利润.【解答】解:设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据题意,得:(1+50%)x•0.9﹣x=350,解得:x=1000,则其标价为(1+50%)×1000=1500元/件,∴该电器按照标价的八折销售,则可获纯利润为1500×0.8﹣1000=200元,故选:B.10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣【考点】扇形面积的计算;翻折变换(折叠问题).【分析】根据题意求得AC=OC=OD=DB=1,CD=2,EC==,进一步求得△EOF 是等边三角形,然后根据S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF )即可求得.【解答】解:∵AB 为直径,且AB=4,∴OA=OE=2,∵点A 和点B 落在点O 处,折痕分别为EC 和FD ,∴AC=OC=OD=DB=1,∴CD=2,EC==,∴△EOF 是等边三角形,∴∠EOF=60°,∴S 半圆=π×22=2π,S 长方形CDFE =2×=2, ∴S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF ) =4﹣2π+2(﹣×2×) =2﹣. 故选D .二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是 1 .【考点】实数的运算. 【分析】根据实数的运算顺序,首先计算开方和乘法,然后计算减法,求出算式×﹣的结果是多少即可.【解答】解:×﹣ =3×﹣2=3﹣2=1故答案为:1.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.【考点】列表法与树状图法.【分析】根据所抽取的数据拼成两位数,得出总数及能被3整除的数,求概率.【解答】解:如下表,∵任意抽取两个不同数字组成一个两位数,共6种情况,其中能被3整除的有57,75两种,∴组成两位数能被3整除的概率为=.故答案为:.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为21.96米(≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠ABD和∠C的度数,根据正切的定义计算即可.【解答】解:由题意得,∠ABD=∠EDB=60°,∠C=∠EDC=45°,∴AD=AB×tan∠ABD=30米,∴AC=AD=30米,∴BC=AC﹣AB=30﹣30≈21.96米,故答案为:21.96.14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有4种.【考点】轴对称图形.【分析】结合图象根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,一共有四种涂法,如下图所示:.故答案为:4.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为m.【考点】相似三角形的应用.【分析】直接利用勾股定理结合直角三角形的性质得出BN的长,再利用相似三角形的判定与性质表示出AD的长,进而得出答案.【解答】解:过点B作BN⊥AC于点N,∵面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,∴BC=2cm,∴AC==2.5(m),∴2.5BN=1.5×2,解得:BN=1.2,∵∠A=∠A,∠AED=∠ABC,∴△AED∽△ABC,∴=,设DE=x,则=,解得:AD=x,∵DG∥AC,∴△GBD∽△CBA,∴=∴=解得:x=.故该正方形木板的边长为m.故答案为:.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.【考点】分式的加减法;实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,即可得到结果.【解答】解:(1)原式=8﹣9+1=0;(2)原式=﹣==.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.【考点】完全平方公式.【分析】(1)从每行的数字个数和数字之和可得规律;(2)根据图中第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数即可求得;(3)根据(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和即可得出.【解答】解:(1)∵第1行有1个数字,数字之和为1=20,第2行有2个数字,数字之和为2=21,第3行有3个数字,数字之和为4=22,第4行有4个数字,数字之和为8=23,…第n行有n个数字,数字之和为2n﹣1;(2)993+3×992+3×99+1=(99+1)3=1003=106;(3)(a+b)4=a4+4a3b+6a2b2+4ab3+b4.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O的内接正六边形ABCDEF;(2)连接BF,CE,判断四边形BCEF的形状并加以证明.【考点】正多边形和圆;作图—复杂作图.【分析】(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)首先连接OE,由六边形ABCDEF是正六边形,易得EF=BC,=,则可得BF=CE,证得四边形BCEF是平行四边形,然后由∠EDC=∠DEF=120°,∠DEC=30°,求得∠CEF=90°,则可证得结论.【解答】解:(1)如图1,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O于点B,F,C,E,连接AB,BC,CD,DE,EF,AF,则正六边形ABCDEF即为⊙O所求;(2)四边形BCEF是矩形.理由:如图2,连接OE,∵六边形ABCDEF是正六边形,∴AB=AF=DE=DC,FE=BC,∴===,∴=,∴BF=CE,∴四边形BCEF是平行四边形,∵∠EOD==60°,OE=OD,∴△EOD是等边三角形,∴∠OED=∠ODE=60°,∴∠EDC=∠FED=2∠ODE=120°,∵DE=DC,∴∠DEC=∠DCE=30°,∴∠CEF=∠DEF﹣∠CED=90°,∴四边形BCEF是矩形.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图;分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20(2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目素描色彩速写成绩甲98 93 95乙95 95 100【考点】频数(率)分布直方图;频数(率)分布表;加权平均数.【分析】(1)根据考生的素描成绩可得70﹣80的人数(频数),90﹣100的人数(频数),进一步补全频数分布直方图;(2)根据加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,求出甲、乙两名选手比赛成绩,再比较大小即可求解.【解答】解:(1)填表如下:分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20如图所示:(2)4+4+2=10,4÷10=0.4,2÷10=0.2,=98×0.4+95×0.4+95×0.2=96.2,=98×0.4+95×0.4+100×0.2=96,∵96.2>96,∴甲最终被录取.20.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A 坐标代入反比例函数解析式中求出k 2的值,即可确定出反比例函数解析式;将B 坐标代入反比例解析式中求出m 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式中求出k 1与b 的值,即可确定出一次函数解析式;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,求得D 的横坐标为2,根据已知条件得到PE=OD=2,求得P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,于是得到结论;同理可得当点P 在第四象限时,求得P (2,﹣3).【解答】解:∵A (﹣1,6)在y=上得k 2=﹣6.∴y=﹣,∵B (3,m )反比例函数y=﹣的图象上,∴m=﹣2,因为y=k 1x +b 过A (﹣1,6)、B (3,﹣2)两点, ∴, 解得:,∴一次函数的表达式是y=﹣2x +4;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,把y=0代入y=﹣2k +4中得x=2,∴D 的横坐标为2,∵S △PCD =S △DOE , ∴CO •PE=CO •OD ,∴PE=OD=2,∴P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,∴此时点P 的坐标为(﹣2,3),同理可得当点P 在第四象限时,P (2,﹣3),∴点P 的坐标是(﹣2,3),(2,﹣3).21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件. (1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用每件商品利润×销量=总利润4000,得出关系式求出即可;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:(1)设应将单价降低x 元,则商店每天的销售量为(50+5x )件,由题意得(50﹣x )(50+5x )=4000,解得:x 1=10,x 2=30.答:如果要使该企业每天的销售利润为4000元,应将销售单价应定为70元或90元; (2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值即销售单价为80元时,每天的销售利润最大,最大利润是4500元.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.【考点】几何变换综合题.【分析】(1)四边形EFDG是平行四边形,理由为:如图1,连接AM,由E、F、G、H分别为中点,利用利用中位线定理得到两组对边相等,即可得证;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,根据内错角相等,两直线平行,得到AC与BM平行,由三角形ACB与三角形MBN都为等腰直角三角形,由BC求出AB 的长,进而求出BH的长,由AB+BH求出AH的长,在直角三角形AMH中,利用勾股定理求出AM的长,利用中位线定理求出FD的长即可;(3)四边形EFDG为正方形,理由为:如图2,连接CN,AM,分别交EF、CN于点L与K,由CB﹣BM求出CM的长,得到CM=BN,再由一对直角相等,AC=BC,利用SAS得到三角形ACM与三角形CBN全等,利用全等三角形对应边、对应角相等得到AM=CN,∠CAM=∠BCN,利用同角的余角相等,求出∠AKC为直角,利用两组对边平行的四边形为平行四边形得到四边形EFDG为平行四边形,再由一个内角为直角,且邻边相等即可得证.【解答】解:(1)四边形EFDG是平行四边形,证明:如图1,连接AM,∵E、F、D、G分别为AC、AN、MN、CM的中点,∴FD=EG=AM,EF=GD=CN,∴四边形EFDG是平行四边形;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,∵∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,∴AC∥BM,∴∠MBH=∠CAB=45°,∴AB==4,∴BH=MH=MBsin45°=,∴AH=AB+BH=4+=5,在Rt△AMH中,由勾股定理得:AM===2,则FD=AM=;(3)四边形EFDG是正方形,证明:如图2,连接CN,AM,分别交EF、CN于点L与K,由已知得:点M和点D分别落在BC与AB边上,∴CM=CB﹣BM=4﹣2=2,∴CM=BN,∵∠ACM=∠CBN=90°,AC=BC,∴△ACM≌△CBN(SAS),∴AM=CN,∠CAM=∠BCN,∵∠ACK+∠KCM=90°,∴∠ACK+∠CAK=90°,在△ACK中,∠AKC=180°﹣(∠ACK+∠CAK)=180°﹣90°=90°,由(1)可得EG∥AM∥FD,EF∥CN∥GD,∴四边形EFDG是平行四边形,∴∠GEL=∠ELA=∠AKC=90°,∴四边形EFDG是矩形,∵EG=AM=CN=EF,∴四边形EFDG是正方形.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.【考点】二次函数综合题.【分析】(1)通过解方程,﹣x2+x+6=0可得A点和B点坐标,再计算自变量为0时的函数值可得到C点坐标;(2)根据勾股定理求得BC=10,即可证得AB=BC,根据AC∥FD,得出=,求得BE=BD,即可证得四边形EB′DB是菱形,得出B′D∥BC,然后过点B′作B′H⊥AB与H,证得△B′HD∽△COB,即可求得B′H=﹣m+6,HD=﹣m+8,进一步求得OH,得出B′的坐标;(3)根据菱形的性质得出BM=B′M,由平移的定义可知DE∥AC,根据平行线分线段成比例定理证得BD=AD=AB=5,求得D的坐标,根据勾股定理求得AC的解析式,进而求得DF的解析式,然后联立方程,即可求得F的坐标.【解答】解:(1)将y=0代入y=﹣x2+x+6得,﹣x2+x+6=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0);将x=0代入y=﹣x2+x+6得y=6,∴点C的坐标为(0,6);(2)在RT△COB中,由勾股定理得BC===10,∵AB=AO+OB=2+8=10,∴AB=BC,∵AD=m,∴DB=AB﹣AD=10﹣m,∵AC∥FD,∴=,∴BE=BD=B′E=B′D=10﹣m,∴四边形EB′DB是菱形,∴B′D∥BC,过点B′作B′H⊥AB与H,∴∠B′DH=∠CBO,∠B′HD=∠COB=90°,∴△B′HD∽△COB,∴==,即==,∴B′H=﹣m+6,HD=﹣m+8,当点B′在y轴的右侧时,OH=OB﹣HD﹣DB=8﹣(﹣m+8)﹣(10﹣m)=m﹣10,当点B′在y轴的左侧时,OH=HD+DB﹣OB=(﹣m+8)+(10﹣m)﹣8=10﹣m,∴点B′的坐标为(m﹣10,﹣m+6);(3)∵四边形EB′DB是菱形,∴BM=B′M,由平移的定义可知DE∥AC,∴==1,∴BD=AD=AB=5,∵OA=2,∴OD=3,∴D的坐标为(3,0),设直线AC的解析式为y=kx+b,代入A(﹣2,0),C(0,6)得:,解得,∵DF∥AC,设直线DF的解析式为y=3x+b,代入D(3,0)得9+b=0,解得b=﹣9,∴直线DF为y=3x﹣9,解得或,∴F的坐标为(﹣1,3﹣12).9月28日。
2020年长沙市教科院中考数学模拟试卷(四)一、选择题1.下列实数中,最小的是()A.3B.C.D.02.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x104.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.1310.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤1612.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0二、填空题(本大捱共6个小®,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是.14.分解因式:x2y+2xy+y=.15.不等式组的解集是.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.参考答案一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.下列实数中,最小的是()A.3B.C.D.0【分析】先比较各个数的大小,再得出选项即可.解:∵3>,∴最小的数是0,故选:D.2.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:8000000000000=8×1012,故选:B.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x10【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、单项式乘以单项式运算法则分别判断得出答案.解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.4.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】直接利用概率公式计算可得.解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故选:C.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°【分析】根据平行线的性质可得∠AED,结合对顶角可求得∠CEF,可得出答案.解:∵AB∥CD,∴∠AED=180°﹣∠A=135°,又∵∠CEF和∠AED为对顶角,∴∠CEF=135°.故选:A.6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:B.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米【分析】首先求得半径的长,然后利用扇形面积公式S=lr求解即可.解:∵径长(两段半径的和)为16米,∴半径长为8米,∵下周长(弧长)为30米,∴S═lr=×30×8=120平方米,故选:A.9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.13【分析】由尺规作图可知,MN是线段AB的垂直平分线,即可得出DA=DB=5,依据CD的长即可得到BC=CD+BD=8.解:由尺规作图可知,MN是线段AB的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.11.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.12.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0【分析】当点M在AB上运动时,MN⊥MC交y轴于点N,此时点N在y轴的负半轴移动,定有△AMC∽△NBM;只要求出ON的最小值,也就是BN最大值时,就能确定点N的坐标,而直线y=kx+b与y轴交于点N(0,b),此时b的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.二、填空题(本大捱共6个小®,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.14.分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.15.不等式组的解集是x≤﹣2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为11.【分析】根据平均数的计算公式先求出m、n的值,再根据极差的定义即可得出答案.解:∵两组数据m,6,n与1,m,2n,7的平均数都是8,∴,解得:,故将这两组数据合并成一组数据为:12,6,6,1,12,12,7,则极差为:12﹣1=11.故答案为:11.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为16.【分析】首先证明OE=BC,再由AE+EO=4,推出AB+BC=8即可解决问题.解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故答案为:16.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有①②③.【分析】①由抛物线的开口方向确定a的正负号,再由对称轴的位置,确定b的正负号,由抛物线与y轴的交点位置,确定c的正负号;②根据抛物线的顶点坐标公式用a表示b和c,再代入5a﹣b+c中,便可得由a的取值范围确定代数5a﹣b+c的正负;③把y=ax2+bx+c=0中,b、c换成a,再解方程便可得判断正误;④分别求出方程ax2+bx+c=1和ax2+bx+c=﹣1的两根和,便可求得原方程四根之和.解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,∴abc<0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②结论正确;∵抛物线y=ax2+bx+c=ax2+4ax﹣5a,当y=0时,ax2+4ax﹣5a=0,即a(x+5)(x﹣1)=0,∴x=﹣5或1,∴方程ax2+bx+c=0的两个根x1=﹣5,x2=1,故结论③正确;若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣1的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④错误,故答案为①②③.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°【分析】首先计算乘方,然后计算加减,即可.解:原式=3﹣(2﹣)+4﹣2×=3﹣2++4﹣=5.20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.【分析】直接利用分式的加减运算法则将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.解:原式=,=,=∵从﹣2≤a<2的范围内选取一个合适的整数,∴当a=﹣2时,原式=.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a ≥7500×1.26,而解得.解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是①②④(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?【分析】(1)根据定义添加一组邻边相等即可;(2)先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;(3)由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC =3,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论.解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①②④;(3)∵∠ABC=90°,AB=4,BC=3,∴AC=5,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,(I)如图1,当AA′=AB时,BB′=AA′=AB=4;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=52,解得:x1=3,x2=﹣4(不合题意,舍去),∴BB′=x=3(Ⅳ)当BC′=AB=4时,如图4,与(Ⅲ)方法一同理可得:BD2+C′D2=BC′2,设B′D=BD=x,则x2+(x+1)2=32,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;综上所述,要使平移后的四边形ABC′A′是“等邻边四边形”应平移3或.25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y =0,解方程求得x1=m﹣1,x2=m﹣2,代入=+,求得M==,根据3≤m≤6即可求得M的取值.【解答】(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)解:∵抛物线解析式为y=x2+3x+2=(x+)2﹣∴抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y=0,则(x+﹣m)2﹣=0,解得x1=m﹣1,x2=m﹣2,∵=+,∴M==,∵3≤m≤6,∴≤M≤.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)求出点A、B的坐标,利用O′为AB的中点,即可求解;(2)证明∠O′DB=90°,即O′D⊥AB,即可求解;(3)分点P在直线BD下方、P在BD的上方两种情况,分别求解即可.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BEC的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).。
2020年山西省百校大联考中考数学模拟试卷(四)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b73.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.(3分)下列分式运算正确的是()A.=B.C.D.7.(3分)方程组的解是()A.B.C.D.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜个.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是棵,众数是棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.2020年山西省百校大联考中考数学模拟试卷(四)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)计算(﹣1)×(﹣2)的结果是()A.﹣2B.2C.1D.【分析】根据有理数的乘法法则计算即可.【解答】解:(﹣1)×(﹣2)=1×2=2.故选:B.2.(3分)下列计算正确的是()A.(﹣3a3)2=9a9B.(4a4b2﹣6a3b+2ab)÷2ab=2a3b﹣3a2C.(2x3y2)2×(﹣3x)=﹣12x6y4D.(﹣3a3b2)3×(﹣b)=9a9b7【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a6,不符合题意;B、原式=2a3b﹣3a2+1,不符合题意;C、原式=(4x6y4)×(﹣3x)=﹣12x7y4,不符合题意;D、原式=(﹣27a9b6)×(﹣b)=9a9b7,符合题意.故选:D.3.(3分)在《九章算术注》中首创的“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元:首先确定圆内接正多边形的面积小于圆的面积,将正多边形的边数屡次加倍,边数越多则正多边形的面积越接近圆的面积.这位数学家是()A.杨辉B.秦九韶C.刘徽D.祖暅【分析】根据公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.解答即可.【解答】解:公元263年左右,我国魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率近似值的方法.故选:C.4.(3分)央行3月11日公布的2月金融数据和社融数据显示,当月新增人民币贷款9057亿元,社融增量为8554亿元.把数据9057亿元用科学记数法表示为()A.9.057×1011元B.90.57×1011元C.0.9057×1012元D.9.057×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9057亿元=905700000000=9.057×1011元,故选:A.5.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.6.(3分)下列分式运算正确的是()A.=B.C.D.【分析】利用最简分式的定义对A、D进行判断;利用通分可对B进行判断;利用约分可对C进行判断.【解答】解:A、不能化简,所以A选项错误;B、原式==,所以B选项错误;C、原式==,所以C选项正确;D、不能化简,所以D选项错误.故选:C.7.(3分)方程组的解是()A.B.C.D.【分析】①×3+②×2,消去未知数y,求出未知数x,再把x的值代入①求出y的值即可.【解答】解:,①×3+②×2,得25x=50,解得x=2,把x=2代入①,得6+2y=8,解得y=1,所以方程组的解为.故选:B.8.(3分)小明用若干个相同的小正方体搭成的一个几何体的三视图如图所示,由此可知,搭成这个几何体的小正方体最多有()A.13个B.12个C.11个D.10个【分析】在俯视图对应的位置上,标出该位置上最多可摆放小正方体的个数,进而得出答案.【解答】解:在俯视图上标出的各个位置上最多可摆放的小正方体的个数,如图所示因此最多摆放的小正方体的个数为3+2+3+2+2+1=13个,故选:A.9.(3分)如图,把一个含45°角的直角三角板OAB的斜边OA放在x轴的正半轴上,点O与坐标原点重合,OA=6,把三角板OAB绕坐标原点O按顺时针方向旋转75°,使点B的对应点B'恰好落在反比例函数y=(k≠0)的图象上,由此可知,k的值为()A.﹣9B.﹣3C.﹣D.﹣【分析】在Rt△AOB中,斜边OA=6,可求出直角边OB,由旋转可得OB′的长,由旋转角为75°,可求出∠AOB′=30°,在Rt△B′OC中,通过解直角三角形可求出点B′的坐标,进而得出k的值.【解答】解:过点B′作B′C⊥OA,垂足为C,在Rt△AOB中,OA=6,∴OB=AB=OA=3=OB′,∵∠AOA′=75°,∠A′OB′=45°,∴∠B′OC=75°﹣45°=30°,在Rt△B′OC中,∴B′C=OB′=,OC=OB′=,∴点B′(,﹣),∴k=﹣×=﹣,故选:D.10.(3分)如图,扇形OAB的半径为4,折叠扇形OAB使点O落在上的点O'处,展开后延长折痕交OB的延长线于点C,且BC=OB,过点C作扇形OAB的切线,切点为D,连接AO',则图中阴影部分的面积是()A.4B.4﹣πC.π+3D.6﹣π【分析】连接OO′,OD,根据折叠的性质得到OA=AO,推出△AOO′是等边三角形,得到∠AOO′=60°,根据切线的性质得到∠ODC=90°,求得∠DOB=60°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OO′,OD,∵折叠扇形OAB使点O落在上的点O'处,∴OA=AO,∵AO=OO′,∴△AOO′是等边三角形,∴∠AOO′=60°,∵CD是⊙O的切线,∴∠ODC=90°,∵BC=OB=OD,∴OD=OC,∴∠OCD=30°,∴∠DOB=60°,∵OD=OA=4,∴DC=4,∴图中阴影部分的面积=S扇形AOO′﹣S△AOO′+S△OCD﹣S扇形BOD=﹣+﹣=4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(2﹣3)(2+3)的结果是11.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=20﹣9=11,故答案为:11.12.(3分)在一个不透明的袋子里装有2个红球、1个白球和1个绿球,这些球除颜色外,其余完全相同,把球摇匀后,从中随机一次摸出两个球,则摸出的两球颜色不同的概率为.【分析】画树状图展示所有12种等可能的结果,找出摸出的两球颜色不同的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中摸出的两球颜色不同的结果数为10,所以摸出的两球颜色不同的概率==.故答案为.13.(3分)如图是两个一次函数y1=mx+n和y2=kx+b在同一平面直角坐标系中的图象,则关于x的不等式kx+b>mx+n的解集是x<1.【分析】直接利用函数图象,结合kx+b≥mx+n,得出x的取值范围.【解答】解:如图所示:不等式kx+b>mx+n的解集为:x<1.故答案为:x<1.14.(3分)某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%,第三周比前两周生产的总数少20%.用含a的代数式表示该公司这三周共生产医用护目镜 3.78a个.【分析】根据题意列代数式,并进行化简即可.【解答】解:根据题意可得列式为:a+(1+10%)a+(1﹣20%)[a+(1+10%)a]=a+1.1a+0.8a+0.8×1.1a=2.9a+0.88a=3.78a.故答案为:3.78a.15.(3分)如图,在△ABC中,∠BAC=90°,AB=8,AC=15,AD平分∠BAC,交BC 于点D.以点C为圆心,以任意长为半径作弧,分别与边CA和CB相交,然后再分别以这两个交点为圆心,大于交点间距离的一半为半径作弧,两弧交于点F,连接CF并延长交AD于点O,过点O作AC的平行线交BC于点E,则OE的长为.【分析】过点D作DJ⊥AB于J,DK⊥AC于K.解直角三角形求出BC,CD,再证明OE=EC,求出EC即可解决问题.【解答】解:过点D作DJ⊥AB于J,DK⊥AC于K.在Rt△ACB中,∵∠BAC=90°,AB=8,AC=15,∴BC===17,∵AD平分∠BAC,DJ⊥AB,DK⊥AC,∴DJ=DK,∴====,∴CD=×17=,∵OC平分∠ACD,∴===,∵OE∥AC,∴∠EOC=∠AOC=∠ECO,∴OE=EC,∵OD:OA=DE:EO=17:23,∴EC=×=.故答案为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)计算:(﹣)﹣2+|3﹣|﹣4cos30°﹣(π﹣3.14)0;(2)解不等式组,并把解集在数轴上表示出来.【分析】(1)根据负整数指数幂和零指数幂的规定、绝对值的性质及特殊锐角的三角函数值计算可得;(2)先求出不等式的解集,再求出不等式组的解集,【解答】解:(1)原式=9+(﹣3+2)﹣4×﹣1=9﹣3+2﹣1=5.(2),解不等式①得:x≤4,解不等式②得:x>﹣1,∴不等式组的解集为:﹣1<x≤4.将不等式的解集表示在数轴上如下:17.(7分)如图,在线段AD上有两点E,F,且AE=DF,过点E,F分别作AD的垂线BE和CF,连接AB,CD,BF,CE,且AB∥CD.求证:四边形BECF是平行四边形.【分析】先证明BE∥CF,证明△AEB≌△DFC,可得BE=CF,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠BEF=∠CFE=∠CFD=90°,∴BE∥CF,∵AB∥CD,∴∠A=∠D,在△AEB和△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF,∵BE∥CF,∴四边形BECF是平行四边形.18.(9分)“同享一片蓝天,共建美好家园”,每年的3月12日是我国的义务植树节,受疫情的影响,今年不能去植树,某校政教处鼓励学生们“网上植树”(活动时间为3月12日~3月15日).学校调查发现,有90%的学生参与了此次活动.从参与活动的学生中随机调查30名,所植的棵数情况如下:(单位:棵)1 12 4 23 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6对以上数据进行整理、描述和分析,并绘制出如下条形统计图(不完整).(1)请补全条形统计图;(2)这30名学生网上植树数量的中位数是3棵,众数是3棵;(3)统计显示,这30名学生中有18名是在3月12日当天参与了“网上植树”,若该校有3000名学生,由此估计该校有多少名学生在3月12日当天参与了“网上植树”?活动期间全校学生“网上植树”共多少棵?【分析】(1)统计出植树三棵和植树四棵的人数,即可补全条形统计图;(2)根据中位数、众数的意义,即可求出答案;(3)样本估计总体,利用样本中“3月12日当天参与了网上植树”的比例估计总体的比例,通过计算可得出答案.【解答】解:(1)统计得出有11人植树三棵,有9人植树四棵,补全条形统计图如图所示:(2)将这30名学生的植树的棵数从小到大排列后,处在中间位置的两个数都是13棵,因此中位数是13,植树棵数出现次数最多的3棵,共用11人,因此植树的众数是3棵,故答案为诶;3,3;(3)3000×90%×=1620(名),3000×90%×=9270(棵),答:估计该校有1620名学生在3月12日当天参与了“网上植树”,活动期间全校学生“网上植树”共9270棵.19.(7分)请阅读下列材料,并完成相应的任务.小明想在平面直角坐标系中画一个边长为2的正六边形ABCDEF,他采用了如下的操作步骤:①点A与坐标原点重合,点B在x轴的正半轴上且坐标为(2,0);②分别以点A,B为圆心,AB长为半径作弧,两弧交于点M;③以点M为圆心,MA长为半径作圆;④以AB的长为半径,在⊙M上顺次截取====;⑤顺次连接BC,CD,DE,EF,F A,得到正六边形ABCDEF.任务一:(1)请依据上述作法证明六边形ABCDEF是正六边形;任务二:(2)请你把小明作出的正六边形ABCDEF沿x轴的正半轴无滑动地转动,当相邻的顶点落在x轴上时,记为转动1次,直接写出转动10次时,点B所在位置的坐标.【分析】(1)如图,连接AM,BM,CM,DM,EM,FM.证明AB=BC=CD=DEF=OF,∠ABC=∠BCD=∠CDE=∠DEF=∠EFO=∠FOB=120°即可.(2)转动10次时,点F在x轴上,点B在点F的正上方,由此即可解决问题.【解答】(1)证明:如图,连接AM,BM,CM,DM,EM,FM.∵====,∴BC=CD=DE=EF=AB,∵OM=BM=AB,∴△ABM是等边三角形,∴∠AMB=60°,∴∠BMC=∠CMD=∠∠EMF=∠AMB=60°,∴∠AMF=360°﹣5×60°=60°,∴=,∴BC=CD=DE=EF=AF=AB,∴MB=MC=CB,∴△MBC是等边三角形,∴∠ABM=∠MBC=60°,∴∠ABC=120°,同理可证∠BCD=∠CDE=∠DEF=∠EF A=∠F AB=120°,∴六边形ABCDEF是正六边形.(2)解:转动10次时,点F在x轴上,点B在点F的正上方,B(22,2).故答案为(22,2).20.(7分)迎宾桥是太原市第十座横跨汾河的大桥,这座大桥整体桥型以“龙腾云霄”为设计主题,诠释龙城太原几千年的历史文化,彰显太原近年来经济腾飞的时代特点.某数学兴趣小组的同学利用双休日测量迎宾桥桥塔高出桥面的高度.如图2,在桥面上选取两点A和B,已知点A,B及桥塔CD(垂直于桥面)在同一平面内,且AB=16.98m,在点A和点B处测得桥塔最高点C的仰角分别为45°和50°.根据测量小组提供的数据,求CD的高度.(结果精确到1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)【分析】设CD=xm,根据等腰直角三角形的性质得到AD=CD=x,根据正切的定义用x表示出BD,根据题意列出方程,解方程得到答案.【解答】解:设CD=xm,在Rt△ADC中,∠CAD=45°,∴AD=CD=x,在Rt△CBD中,tan∠CBD=,∴BD=≈=x,∵AD﹣BD=AB,∴x﹣x=16.98,解得,x=101.88≈102(m),答:CD的高度约为102m.21.(10分)今年春节期间,我国人民万众一心,共同抗击疫情.某蔬菜基地要把一定量的蔬菜租车送往疫情严重的某地,这些蔬菜中1.4吨已经打包好,其余需要立即打包.工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨,恰好3小时完成打包任务.在运送蔬菜时,有两种车型选择,甲种车可装6吨蔬菜,乙种车可装5吨蔬菜.(1)求工作人员平均每小时打包速度的增长率和共运送的蔬菜是多少吨;(2)该基地所租车辆不超过10辆,则至少需要租甲种车多少辆?【分析】(1)设工作人员平均每小时打包速度的增长率是x,根据“工作人员第1小时打包15吨,技术熟练后平均每小时打包速度的增长率相同,第3小时打包21.6吨”列出方程并解答;求得第2小时打包18吨,然后求三个小时的总的打包数量;(2)设需要租甲种车y辆,根据“该基地所租车辆不超过10辆”列出不等式并解答.【解答】解:(1)设工作人员平均每小时打包速度的增长率是x,根据题意,得15(1+x)2=21.6.解这个方程,得x1=0.2=20%,x2=﹣2.2(舍去).第2小时打包的数量为:15(1+20)=18(吨).共运送的蔬菜为:1.4+15+18+21.6=56(吨).答:工作人员平均每小时打包速度的增长率是20%,共运送的蔬菜是56吨;(2)设需要租甲种车y辆,依题意得:y+≤10.解得y≥6.所以y的最小值是6.答:至少需要租甲种车6辆.22.(13分)综合与探究问题情境在综合与实践课上,老师让同学们利用含30°角的直角三角板和一张正方形纸片进行探究活动.如图1,把正方形ABCD的顶点A放在Rt△EFG斜边EG的中点处,正方形的边AB经过直角顶点F,正方形的边AD与直角边FG交于点Q.探究发现(1)创新小组发现线段EF,GQ及FQ之间的数量关系为EF2+GQ2=FQ2.请加以证明;引申探究(2)如图2,勤奋小组把正方形ABCD绕点A逆时针旋转,边AB与边EF交于点P且不与点E,F重合,把直角三角形的两直角边分成四条线段EP,PF,FQ,GQ,发现这四条线段之间的数量关系是EP2+GQ2=FQ2+FP2,请加以证明;探究拓广(3)奇艺小组的同学受勤奋小组同学的启发继续把正方形ABCD绕着点A逆时针旋转,边BA和DA的延长线与两直角边仍交于点P,Q两点,按题意完善图3,并直接写出EP,PF,FQ,GQ之间的数量关系.【分析】(1)证明△AFE为等边三角形,故EF=AF,同理可得QA=QG,在Rt△AQF 中,FQ2=AF2+AQ2=EF2+GQ2;(2)证明△GAQ≌△EAH(SAS),可得P A是QH的中垂线,故PH=PQ,进而求解;(3)完善后的图形如图2,同理可得:EP2+GQ2=FQ2+FP2.【解答】(1)如题干图1,∵AF是Rt△GFE的中线,故AF=AE,∵∠E=90°﹣∠G=60°,∴△AFE为等边三角形,故EF=AF,同理可得,△AGF为等腰三角形,故∠QF A=∠G=30°,在Rt△QAF中,∠AQF=90°﹣∠QF A=60°=∠G+∠GAQ,∴QA=QG,在Rt△AQF中,FQ2=AF2+AQ2=EF2+GQ2;(2)如图1,延长QA到H使AH=AQ,连接EH、PQ、PH,∵点A是GE的中点,故AG=AE,而AH=AQ,∠GAQ=∠EAH,∴△GAQ≌△EAH(SAS),∴GQ=HE,∠AEH=∠G,而∠G+∠GEF=90°,∴∠HEP=∠HEA+∠GEP=∠EGF+∠GEF=90°,∵∠DAB=90°,即AP⊥QH,而AQ=AH,∴P A是QH的中垂线,∴PH=PQ,在Rt△PHE中,PH2=PE2+HE2=PE2+GQ2,在Rt△PQF中,PQ2=FQ2+FP2,故PE2+GQ2=FQ2+FP2;(3)完善后的图形如图2,在AD上取点H,使AH=AQ,连接HE、PH、PQ,同理可得,∠HEP=90°,PH=PQ,则PH2=PE2+GQ2,PQ2=FQ2+FP2,故EP2+GQ2=FQ2+FP2.23.(12分)综合与实践如图,抛物线y=与x轴交于点A,B(点A在点B的左侧),交y轴于点C.点D从点A出发以每秒1个单位长度的速度向点B运动,点E同时从点B出发以相同的速度向点C运动,设运动的时间为t秒.(1)求点A,B,C的坐标;(2)求t为何值时,△BDE是等腰三角形;(3)在点D和点E的运动过程中,是否存在直线DE将△BOC的面积分成1:4两份,若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)令x=0和y=0,可得方程,解得可求点A,B,C的坐标;(2)分三种情况讨论,利用等腰三角形的性质和锐角三角函数可求解;(3)分两种情况讨论,利用锐角三角函数和三角形面积公式可求解.【解答】解:(1)令y=0,可得0=x2﹣x﹣3,解得:x1=﹣1,x2=4,∴点A(﹣1,0),点B(4,0),令x=0,可得y=﹣3,∴点C(0,﹣3);(2)∵点A(﹣1,0),点B(4,0),点C(0,﹣3),∴AB=5,OB=4,OC=3,∴BC===5,当BD=BE时,则5﹣t=t,∴t=,当BE=DE时,如图1,过点E作EH⊥BD于H,∴DH=BH=BD=,∵cos∠DBC=,∴,∴t=,当BD=DE时,如图2,过点D作DF⊥BE于F,∴EF=BF=BE=t,∵cos∠DBC=,∴,∴t=,综上所述:t的值为,和;(3)∵S△BOC=BO×CO=6,∴S△BOC=,S△BOC=,如图1,过点E作EH⊥BD于H,∵sin∠DBC=,∴,∴HE=t,当S△BDE=S△BOC=时,则(5﹣t)×t=,∴t1=1,t2=4,当S△BDE=S△BOC=,时,则(5﹣t)×t=,∴t2﹣5t+16=0,∴方程无解,综上所述:t的值为1或4.。
中考数学模拟试卷(四)(注:满分150分 考试时间:120分钟)卷I一,选择题(每小题3分,共45分)1. 计算2(3)-的结果等于( )A .5B .5-C .9D .9-2.单项式31y x m -与n xy 4的和是单项式,则m n 的值是( )A.3B.6C.8D.93. 如果分式13-x 有意义,则x 的取值范围是( ) A.全体实数 B.x ≠1 C.x=1 D.x ﹥14.已知点A ()1,2y ,B ()2,4y 都在反比例函数xk y =(k ﹤0)的图象上,则21,y y 的大小关系为( ) A.1y ﹥2y B.1y ﹤2y C.1y =2y D.无法确定 5. cos 30︒的值等于( )A .22 B .32C .1D .3 6. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( )A .50.77810⨯B .47.7810⨯C .377.810⨯D . 277810⨯7.下列图形中,可以看作是中心对称图形的是( ) A . B . C. D .8.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B . C. D .9.估计65的值在( )A .5和6之间B .6和7之间 C. 7和8之间 D .8和9之间10.计算23211x x x x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++ 11.方程组10216x y x y +=⎧⎨+=⎩的解是( ) A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩12.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x << D .321x x x <<13.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AC = C.ED EB DB += D .AE CB AB +=14.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .AB B .DE C.BD D .AF15.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(1,0)-,(0,3),其对称轴在y 轴右侧,有下列结论:①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根;③33a b -<+<. 其中,正确结论的个数为( )A .0B .1 C.2 D .3卷II二,填空题(每小题5分,共25分)16.计算432x x ⋅的结果等于 .17.计算(63)(63)+-的结果等于 .18.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .19.如图,在边长为4的等边ABC △中,D ,E 分别为AB ,BC 的中点,EF AC ⊥于点F ,G 为EF 的中点, 连接DG ,则DG 的长为 .20. 如右图,在每个小正方形的边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度);(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为'P ,当'CP 最短时,请用无刻度...的直尺,画出点'P ,并简要说明 点'P 的位置是如何找到的(不要求证明) . 三,解答题 (7小题,共80分.解答应写出文字说明,演算步骤或推理过程)21. (本题8分)解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答.(1)解不等式(1),得 .(2)解不等式(2),得 .(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为 .22.(本题8分) 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m 的值为 ; (第19题图)(第20题图)(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?23. (本题12分)已知AB是O的直径,弦CD与AB相交,38BAC∠=︒.求:(1)如图①,若D为AB的中点,求ABC∠的大小;∠和ABDDP AC,(2)如图②,过点D作O的切线,与AB的延长线交于点P,若//求OCD∠的大小.24.(本题12分)如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48︒,测得底部C处的俯角为58︒,求甲、乙建筑物的高度AB和DC (结果取整数).(参考数据:tan48 1.11︒≈)︒≈,tan58 1.6025.(本题12分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用150 175 …(元)90 135 …方式二的总费用(元)(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当20x>时,小明选择哪种付费方式更合算?并说明理由.26.(本题12分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H :○1 求证ADB AOB △△≌;○2求点H 的坐标. (3)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).27.(本题16分)在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22y x mx m =+-(m是常数),定点为P .(1)当抛物线经过点A 时,求定点P 的坐标;(2)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(3) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.答案一,选择题1-5:CDBBB 6-10:BAADC 11-15:ABDDC 二,填空题16.72x 17. 3 18.61119.19220. (1)90︒;(2)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P,则点'P即为所求.三,解答题21. 解:(1)2x≥-;(2)1x≤;(3)(4)21x-≤≤.22. 解:(1)28;(2)观察条形统计图,则有∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(3)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
23.解:(1)∵AB 是O 的直径∴90ACB ︒∠=∴90BAC ABC ︒∠+∠=又∴38BAC ︒∠=∴903852ABC ︒︒︒∠=-=由D 为AB 的中点,得AD BD = ∴1452ACD BCD ACB ︒∠=∠=∠= ∴45ABD ACD ︒∠=∠=(3)如图,连接OD ,则有∵DP 切O 于点D∴OD DP ⊥,即90ODP ︒∠=由//DP AC ,又38BAC ︒∠=∴AOD ∠是ODP 的外角∴128AOD ODP P ︒∠=∠+∠= ∴1642ACD AOD ︒∠=∠=. 又OA OC =,得38ACO A ︒∠=∠=∴643826OCD ACD ACO ︒︒︒∠=∠-∠=-=.24.解:如图,过点D 作DE AB ⊥,垂足为E则90AED BED ∠=∠=︒由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒, 90ABC ∠=︒,90DCB ∠=︒可得四边形BCDE 为矩形.∴78ED BC ==,DC EB = 在Rt ABC △中,tan AB ACB BC∠=, ∴tan 5878 1.60125AB BC =⋅︒≈⨯≈ 在Rt AED △中,tan AE ADE ED ∠=∴tan 48AE ED =⋅︒∴tan 58EB AB AE BC =-=⋅︒78 1.6078 1.1138≈⨯-⨯≈ ∴38DC EB =≈.故甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .25. 解:(1)200,5100x +,180,9x .(2)方式一:5100270x +=,解得34x =.方式二:9270x =,解得30x =.∵3430>, ∴小明选择方式一游泳次数比较多.(3)设方式一与方式二的总费用的方差为y 元,则有(5100)9y x x =+-即4100y x =-+当0y =时,即41000x -+=,得25x =. ∴当25x =时,小明选择这两种方式一样合算 ∵40-<∴y 随x 的增大而减小.∴当2025x <<时,有0y >,小明选择方式二更合算; 故当25x >时,有0y <,小明选择方式一更合算.26. 解:(1)∵点(5,0)A ,点(0,3)B∴5OA =,3OB =∵四边形AOBC 是矩形∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒ ∵矩形ADEF 是由矩形AOBC 旋转得到的∴5AD AO ==.在Rt ADC △中,有222AD AC DC =+ ∴22DC AD AC =-22534=-=.∴1BD BC DC =-=∴点D 的坐标为(1,3).(2)①∵由四边形ADEF 是矩形∴90ADE ∠=︒又点D 在线段BE 上∴90ADB ∠=︒.由(1)知,AD AO =又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB △△≌.②∵ADB AOB △△≌∴BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC∴CBA OAB ∠=∠∴BAD CBA ∠=∠∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-在Rt AHC △中,有222AH AC HC =+,∴2223(5)t t =+-.解得175t = ∴175BH =∴点H 的坐标为17(,3)5. (3)303343033444S -+≤≤. 27.解: (1)∵抛物线22y x mx m =+-经过点(1,0)A∴012m m =+-,解得1m =∴抛物线的解析式为22y x x =+-∵22y x x =+-219()24x =+- ∴顶点P 的坐标为19(,)24-. (2)∵抛物线22y x mx m =+-的顶点P 的坐标为28(,)24m m m +--. 又点(1,0)A 在x 轴正半轴上,点P 在x 轴下方,45AOP ∠=︒ ∴点P 在第四象限.过点P 作PQ x ⊥轴于点Q ,则45POQ OPQ ∠=∠=︒∴PQ OQ =,即2842m m m +=- ∴10m =,210m =-∴当0m =时,点P 不在第四象限,舍去∴10m =-∴抛物线解析式为21020y x x =-+.(3)∵22y x mx m =+-∴2x =时,无论m 取何值,y 都等于4∴点H 的坐标为(2,4)过点A 作AD AH ⊥,交射线HP 于点D分别过点D ,H 作x 轴的垂线,垂足分别为E ,G ,则90DEA AGH ∠=∠=︒ ∵90DAH ∠=︒,45AHD ∠=︒∴45ADH ∠=︒∴AH AD =∵DAE HAG∠+∠=90AHG HAG∠+∠=︒∴DAE AHG∠=∠∴ADE HAG△△≌∴1DE AG==,4AE HG==∴点D的坐标为(3,1)-或(5,1)-,有如下两种情况:第一种:当点D的坐标为(3,1)-时,可得直线DH的解析式为31455 y x=+∵点28(,)24m m mP+--在直线31455y x=+上∴28314()4525 m m m+-=⨯-+∴14m=-,214 5m=-∵4m=-时,点P与点H重合,不符合题意,舍去∴145m=-.第二种:当点D的坐标为(5,1)-时,可得直线DH的解析式为52233 y x=-+∵点28(,)24m m mP+--在直线52233y x=-+上,∴284m m+-=522()323m-⨯-+∴14m=-(舍),222 3m=-∴223 m=-综上所述可知,145m=-或223m=-故抛物线解析式为21428 55y x x=-+或22244 33y x x=-+.。