一类定积分的计算
- 格式:pdf
- 大小:698.22 KB
- 文档页数:3
定积分求导法则定积分是微积分中的一个重要概念,它可以用来求解函数在某一区间上的面积或体积。
在定积分的计算中,我们经常需要用到求导法则,使得计算更加简便。
下面将分几个方面来介绍定积分的求导法则。
一、基本积分法求导法则基本积分法是指对于一些比较简单的函数,我们可以通过求反函数的导数来求得原函数的导数。
基本积分法求导法则包括:1. 常数倍法则:对于任意常数k,有$(k\int_a^bf(x)\mathrm{d}x)'=k\cdotf(x)\Big|_{a}^{b}$。
2. 同类项相加法则:对于两个函数$f(x),g(x)$,有$(\int_a^bf(x)\mathrm{d}x+\int_a^bg(x)\mathrm{d}x)'=f(x)+g(x)\Big|_{a}^{b}$。
3. 反函数法则:对于任意单调可导的函数$f(x)$和反函数$f^{-1}(x)$,有$(\int_{f(a)}^{f(b)}f^{-1}(x)\mathrm{d}x)'=\dfrac{1}{f'(f^{-1}(x))}\Big|_{f(a)}^{f(b)}$。
这些基本积分法求导法则对普通函数均适用。
二、换元法求导法则换元法是指通过代换$x=\varphi(t)$,将原积分中的自变量变成函数$t$,从而更容易进行积分。
换元法求导法则包括:1. 第一类换元法:对于函数$f(\varphi(t))$,有$(\int_{\varphi(a)}^{\varphi(b)}f(x)\mathrm{d}x)'=\int_a^bf'(\varphi(t))\cdot\varphi'(t)\mathrm{d}t$。
2. 第二类换元法:对于函数$\mathrm{e}^{f(x)}$,有$(\int_a^b\mathrm{e}^{f(x)}\mathrm{d}x)'=\int_a^bf'(x)\cdot\mathrm{e}^{f(x)}\mathrm{d}x$。
微积分中的定积分与反常积分——微积分知识要点微积分是数学中的一个重要分支,主要研究函数的变化率和积分。
定积分与反常积分是微积分中的两个重要概念,本文将重点介绍这两个概念及其在微积分中的应用。
一、定积分的概念与性质定积分是微积分中的一个重要概念,表示函数在一定区间上的累积变化量。
定积分的计算可以通过求导的逆运算——不定积分来实现。
定积分的计算公式为:∫(a到b) f(x)dx其中,f(x)为被积函数,a和b为积分区间的端点。
定积分的结果是一个数值。
定积分具有以下几个重要性质:1. 定积分的值与积分区间的选取无关,只与被积函数有关。
这是定积分在实际应用中的重要特性。
2. 定积分可以表示函数曲线与x轴之间的面积或有向面积。
当被积函数为正时,定积分表示曲线所围成的面积;当被积函数为负时,定积分表示曲线下方的有向面积。
3. 定积分具有线性性质,即对于两个函数f(x)和g(x),以及常数k,有以下公式成立:∫(a到b) [f(x) + g(x)]dx = ∫(a到b) f(x)dx + ∫(a到b) g(x)dx∫(a到b) k·f(x)dx = k·∫(a到b) f(x)dx这些性质使得定积分在微积分中具有广泛的应用。
二、反常积分的概念与分类反常积分是指在积分区间上,被积函数存在某些特殊点或者函数在无穷远处趋于无穷或趋于零的情况下,定积分的计算方法。
反常积分可分为以下两类:1. 第一类反常积分:积分区间的一个或两个端点为无穷大或无穷小。
对于这类反常积分,需要对积分区间进行适当的变换,将其转化为有限区间上的定积分。
2. 第二类反常积分:被积函数在积分区间上存在无界或间断点。
对于这类反常积分,需要分别讨论无界点和间断点的情况,进行特殊处理。
反常积分的计算需要注意收敛性与发散性的判断,只有在积分收敛的情况下才能得到具体的数值结果。
三、定积分与反常积分的应用定积分与反常积分在微积分中具有广泛的应用。
高数积分公式高数积分公式是许多学科的基础,包括数学、物理、化学和工程。
它是我们用来理解世界和解决实际问题的基本工具。
因此,了解和熟悉高数积分公式是一项重要的学习任务。
高数积分公式用来计算特定函数在某一特定区间的积分。
它的基本形式是:积分的结果=f(x)的积分下界(由a表示)到积分上界(由b表示)的和。
为了把它变成一个可以计算的问题,将f(x)分解为由x、x2和x3等项组成的各种多项式求和。
首先介绍一类积分叫第一类定积分。
它是在特定函数f(x)下,把定义域[a, b]上的函数积分并计算出其结果。
它的公式是:∫f(x)dx=F(b)-F(a)在第一类定积分中,F(x)是f(x)的另一函数,称为积分函数。
它也称为导数,表示积分的结果。
第一类定积分的公式可以进一步抽象,它可以表示为下面的形式:∫af(x)dx=F(b)-F(a)其中a是一个常数,在特定的函数f(x)下,它的值可能是正数,负数或者零。
此外,还有一类特殊的定积分,称为第二类定积分。
它的公式是:∫bf(x)dx=F(b)-F(a)第二类定积分也称为无穷定积分。
它用来计算某函数在某一区间上的积分。
它的特殊之处在于它的积分结果会随着它的定义域发生变化,而不是按照固定的公式来计算。
另外,还有一类积分叫做变量积分。
它的公式是:∫f(x,t)dt=F(t,b)-F(t,a)其中,F(t,x)是函数f(t,x)的另一函数,也称为导数。
变量积分的特点是,它的积分结果在变量t上不断变化,而在变量x上保持不变。
此外,还有一类叫做单变量积分。
它的公式是:∫f(t,x)dt=T(x,b)-T(x,a)单变量积分的特点是,积分结果只随变量x的变化而变化,变量t保持不变。
最后,介绍一类叫做双变量积分的积分方法。
它的公式是:∫∫f(x,y)dxdy=G(x,y,b)-G(x,y,a)双变量积分的特点是,它的积分结果同时取决于变量x和变量y 的变化。
以上是高数积分公式的基本内容。
摘要定积分是数学分析中的一个基本问题,而计算定积分是最基本最重要的问题.它在许多实际问题有着广泛的应用.下面针对定积分的计算方法做一个比较详细的总结,常见的包括分项积分、分段积分法、换元积分法、分部积分法.但对于不能直接找出原函数的定积分,或者被积函数比较复杂时,往往是比较难求出原函数的,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,本文总结用欧拉积分求解定积分、留数在定积分上的运用、巧用二重积分求解定积分、反函数求解定积分以及带积分型余项的泰勒公式在定积分上的应用,并列举相应的例子进行说明.关键词: 定积分; 被积函数; 原函数; 牛顿-莱布尼兹公式目录1 引言2 定计算的计算方法2.1 分项积分法 (1)2.2 分段积分法 (2)2.3 换元积分法 (3)2.4 分部积分法 (5)2.5 欧拉积分在定积分计算中的应用 (9)2.6 留数在定积分计算上的应用 (10)2.7 巧用二重积分求解定积分 (10)2.8 反函数法求解定积分 (10)2.9 带积分型余项的泰勒公式在定积分上的应用 (11)3 总结 (12)浅谈定积分的计算1.引言定积分的计算是微积分学的重要内容,其应用十分广泛,它是包括数学及其其他学科的基础.本文归纳总结了常见的定积分计算方法(如[1-4]),其中包括分项积分法、分段积分法、换元积分法以及分部积分法.另外对于找不出原函数的定积分,或者被积函数十分复杂时,往往是很难求出其原函数,从而无法用牛顿-莱布尼兹公式求解.针对这样的情形,我们有必要在此基础上研究出新的计算方法.对此本文总结了一些另外的方法(如[5-9]),其中包括欧拉积分求解定积分、运用留数计算定积分、巧用二重积分求解定积分、反函数法求解定积分以及带积分型余项的泰勒公式在定积分上的应用,进行了一一列举,并通过例子加以说明.2.定积分的计算方法2.1 分项积分法我们常把一个复杂的函数分解成几个简单的函数之和:1122()()f x k g x k g x ()+,若右端的积分会求,则应用法则1122()()b b baaaf x dx kg x dx k g x dx =⎰⎰⎰()+,其中1k ,2k 是不全为零的任意常数,就可求出积分()baf x dx ⎰,这就是分项积分法.例2-1[1]计算定积分414221(1)dxx x π+⎰.解 利用加减一项进行拆项得414221(1)dx x x π+⎰=2241422(1)(1)x x dx x x π+-+⎰=41421dx x π⎰-2241222(1)(1)x x dx x x π+-+⎰ =41421dx x π⎰-41221dx x π⎰+412211dx x π+⎰=-313x 412π+4121xπ+arctan x412π.=364415arctan 323ππ-+-+. 例2-2计算定积分21⎰.解 记J=21⎰=1⎰=3221x dx ⎰+21⎰再将第二项拆开得 J=3221x dx ⎰+3221(1)x dx -⎰+1221(1)x dx -⎰=522125x +52212(1)5x -+32212(1)3x -=52225+23. 2.2 分段积分法分段函数的定积分要分段进行计算,这里重要的是搞清楚积分限与分段函数的分界点之间的位置关系,以便对定积分进行正确的分段.被积函数中含有绝对值时,也可以看成分段函数,这是因为正数与负数的绝对值是以不同的方式定义的,0就是其分界点.例2-3[2]计算定积分221(1)min ,cos 2x x dx ππ-⎧⎫+⎨⎬⎩⎭⎰.解 由于1min ,cos 2x ⎧⎫⎨⎬⎩⎭为偶函数,在0,2π⎡⎤⎢⎥⎣⎦上的分界点为3π,所以221(1)min ,cos 2x x dx ππ-⎧⎫+⎨⎬⎩⎭⎰=221min ,cos 2x x dx ππ-⎧⎫⎨⎬⎩⎭⎰+2012min ,cos 2x dx π⎧⎫⎨⎬⎩⎭⎰ =0+320312(cos )2dx xdx πππ+⎰⎰=23π+.例2-4 计算定积分2(1)f x dx -⎰,其中1,011,01()xx x x e f x ≥+<+⎧⎪=⎨⎪⎩.解 由于函数()f x 的分界点为0,所以,令1t x =-后,有2(1)f x dx -⎰=11()f t dt -⎰=0111x dx e -+⎰+1011dx x +⎰ =011x xe dx e ---+⎰+10ln(1)x +=01ln(1)xe ---++ln 2=ln(1)e +.2.3 换元积分法(变量替换法) 换元积分法可以分为两种类型:2.3.1 第一类换元积分法(也被俗称为“凑微分法”) 例2-5[3]计算定积分21sin tan dxx xπ+⎰.解21sin tan dxx x π+⎰=21cos sin (1cos )xdx x x π+⎰=22213cos sin 224sin cos 22x x dx x x π-⎰ =2211tan 2tan 22tan2xx d x π-⎰ =2111(tan )tan 222tan 2x x d x π-⎰ =2221111ln tan tan 2242x xππ-=21111ln tan tan 2424-+-.例2-6计算定积分241x dx x-+.解241x dx x -+=222111x dx xx -+=02211()1d x x x x -++=0211()1()2d x x x x-++-= 0011()()11()()d x d x x x x x x x ⎡⎤++⎢⎥-⎢⎢+-++⎣=15.2.3.2 第二换元积分法常用的变量替换有:①三角替换;②幂函数替换;③指数函数替换④倒替换. 下面具体介绍这些方法. ① 三角替换例2-7[4] 计算定积分31240(1)x x dx -⎰.解 由于31240(1)x x dx -⎰=3124201(1)2x dx -⎰,故可令2sin x t =,于是 31240(1)x x dx -⎰=arcsin1401cos 2tdt ⎰=2arcsin101(1cos 2)8t dt +⎰=arcsin101(12cos 28t ++⎰1cos 4)2t dt + =arcsin1011(32sin 2sin 4)164t t t ++=1(34sin 16t +2arcsin10sin sin ))t -=224101(3arcsin 4(1216x x x x +-=2101(3arcsin 5216x x x +=3arcsin116.②幂函数替换例2-8 计算定积分220sin sin cos xdx x xπ+⎰. 解 作变量代换2x t π=-,得到220sin sin cos x dx x xπ+⎰=220cos sin cos t dt t t π+⎰,因此220sin sin cos x dx x x π+⎰=2222001sin cos ()2sin cos sin cos x t dx dt x x t t ππ+++⎰⎰= 20112sin cos dx x x π+⎰201sin()4dx x ππ+⎰3441sin dx x ππ⎰= 3441cos )sin x x ππ-. ③倒替换例2-9计算定积分1解11令1t x=得1=11-=1arcsin-=6π. 2.4 分部积分法定理 3-1[5]若()x μ',()x ν'在[],a b 上连续,则bb b a aauv dx uv u vdx ''=-⎰⎰或b bba aaudv uv vdu =-⎰⎰.利用分部积分求()baf x dx ⎰的解题方法(1)首先要将它写成b audv ⎰()bauv dx '⎰或得形式.选择,u v ,使用分布积分法的常见题型: 表一(2)多次应用分部积分法,每分部积分一次得以简化,直至最后求出. (3)用分部积分法有时可导出()ba f x dx ⎰的方程,然后解出.(4)有时用分部积分法可导出递推公式. 例2-10[6]计算定积分2220sin x xdx π⎰.解 于21sin (1cos 2)2x x =-,所以2220sin x xdx π⎰=2201(1cos 2)2x x dx π-⎰=322211sin 264x x d x ππ-⎰ 连续使用分部积分得222sin x xdx π⎰=3222111(sin 2)sin 2642x x x x xdx ππ-+⎰ =3222111(sin 2)cos 2644x x x xd x ππ--⎰ =32201111(sin 2cos 2sin 2)6448x x x x x x π--+=3488ππ+.例2-11[7]计算定积分220sin x x e xdx π⎰.解 因为20sin x e xdx π⎰=20sin xxde π⎰=2sin xe xπ-20cos x xde π⎰=20(sin cos )xe x x π-20sin x e xdx π-⎰ 所以2sin xe xdx π⎰=1220(sin cos )xe x x π- =21(1)2e π+ 于是 20cos x e xdx π⎰=cos xe x20π+20sin x e xdx π⎰=201(sin cos )2x e x x π+=21(1)2e π- 从而220s i n xx e x d x π⎰=2201(sin cos )2x x d e x x π⎡⎤-⎢⎥⎣⎦⎰=2201(sin cos )2x x e x x π-20(sin cos )x xe x x dx π--⎰=2201(sin cos )2x x e x x π-201(sin cos )2x xd e x x π⎡⎤--⎢⎥⎣⎦⎰201(sin cos )2x xd e x x π⎡⎤++⎢⎥⎣⎦⎰=2201(sin cos )2x x e x x π-201(sin cos )2x xe x x π--201(sin cos )2x e x x dx π+-⎰ 201(sin cos )2x xe x x π++201(sin cos )2x e x x dx π-+⎰ =2201(sin cos )2x x e x x π-20cos xxe xπ+20cos x e xdx π-⎰=2201(sin cos )2x x e x x π-20cos xxe xπ+-201(sin cos )2x e x x π+=2221(1)sin (1)cos 2x e x x x x π⎡⎤---⎣⎦=221(1)242e ππ-+. 例2-12[8]计算定积分0sin n x x dx π⎰,其中n 为正整数.解(21)2s i n k k x x d x ππ+⎰=(21)2sin k k x xdx ππ+⎰作变量替换2t x k π=-得(21)2sin k k x xdx ππ+⎰=0(2)sin t k tdt ππ+⎰=0sin 2sin t tdt k tdt πππ+⎰⎰=0cos cos 2cos t ttdt k tππππ-+-⎰=(41)k π+(22)(21)sin k k x xdx ππ++⎰=(22)(21)sin k k x xdx ππ++-⎰作变量替换2t x k π=-得(22)(21)sin k k x xdx ππ++-⎰=2(2)sin t k tdt πππ-+⎰=-22sin 2sin t tdt k tdt πππππ--⎰⎰=222cos cos 2cos t tdttdt k tπππππππ-+⎰=(43)k π+ 当n 为偶数时,sin n x x dx π⎰=12(21)(22)2(21)0(sin sin )nk k k k k x xdx x xdx ππππ-+++=+∑⎰⎰=[]12(41)(43)n k k k ππ-=+++∑(1)224222n n n π⎡⎤-⎢⎥=⋅+⎢⎥⎢⎥⎣⎦=2n π 当n 为奇数时,sin n x x dx π⎰=32(21)(22)2(21)(1)0(sin sin )sin n k k n k k n k x xdx x xdx x x dx ππππππ-+++-=++∑⎰⎰⎰=[]321(41)(43)(41)2n k n k k πππ-=-++++⋅+∑ =324(21)(21)n k k n ππ-=++-∑=31()()12242(21)22n n n n ππ--⎡⎤⋅⎢⎥-⋅++-⎢⎥⎢⎥⎣⎦=2n π.2.5 欧拉积分在定积分计算中的应用定义 2-1[4]形如(,)p q B =1110(1)p q x x dx ---⎰的含参变量积分称为Beta 函数,或第一类Euler 积分。
几种定积分的数值计算方法摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明.关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods.Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid1. 引言在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况:(1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ⎰-102, ⎰10sin dx xx等,从而无法用牛顿-莱布尼茨公式计算出积分。