如何做好钢结构设计之节点设计

  • 格式:docx
  • 大小:81.61 KB
  • 文档页数:6

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何做好钢结构设计——节点设计

七.节点设计

节点的设计应该遵循简洁,可靠,便于施工的原则,并且要考虑当前的施工水平。发达国家的钢结构节点多考虑尽量用高强度螺栓,少用焊接,因为他们的人工费用很高,工厂加工的机械化程度和精度较高。而目前我们还达不到这一点,还是安装螺栓加焊接用得多。这是中国的特色。因此很多情况不能照搬国外。下面介绍的是笔者在工作中经常遇到的节点问题,力求对新手有所启发和帮助,偏重于构造,具体计算,都有章可循,就不赘述了。

7.1 柱脚

柱脚有多种形式,一般考虑与基础嵌固比较合适,近几年的实践证明,插入式的柱脚是一种比较好的形式。无论是设计,还是施工,都很简单。尽管有时材料会稍多一些,但如考虑加工及安装费用的节省,可能总的造价还低一些。另外还可以免去交叉施工时对地脚螺栓防护的烦恼。有一些参考图集中,柱脚要求预先焊上抗剪栓钉,笔者认为大可不必,除非是柱子受到极大的拉力。但柱脚下部加焊一块底板是必要的,一是便于找平,二是可以增加嵌固的能力,二次浇灌层的厚度宜>100mm,便于找平。按抗震规范的要求,凡是考虑抗震设防,柱脚插入深度应是两倍柱高。

7.2 操作平台

小尺寸的操作平台(如长向尺寸<5米),应按一个构件整体考虑为好,在现场地面上将整个平台焊好,然后再安装到支乘构件上,不必将平台中的每一个小梁都考虑为一个构件在高空进行现场拼装。

梁与梁的连接最常用到的是铰接。一角一板几乎是中国的经典连接方式,见图10中的(a),角钢是在工厂焊在主梁上的,它除了起连接作用外,还有定位的作用。板是用安装螺栓临时固定在次梁上,在现场用三道焊缝将次梁连接于主梁上,因此,有两条工厂焊缝,有三条工地焊缝,不可混淆。在次梁与主梁为斜交的情况,角钢的一个肢要弯折,不如改成两个板的连接,此时,位于主梁上的定位板还可以兼作加劲肋,如(b)所示。这个节点要注意,如果是用高强度螺栓连接,次梁与主梁腹板的间隙s不小于20mm即可,但是如果采用焊接,考虑施焊的可行,s则必须大于70mm,再加上螺栓的孔距80mm,因此梁要160mm以上才行。如果次梁不是太大的话,不如采用如(d)所示的节点,更为简单。许多设计手册更喜欢如(c)所示的节点,理由是次梁传来的剪力的作用点离腹板近,因此附加弯矩小一些,其实除非是主梁位于边跨,如果是中间,再考虑有铺板的情况,这一附加弯矩是很小的。如(d)所示的节点可以节省次梁材料,且加工,安装都很方便。

事实上,上面的连接都不是真正的铰接,两条垂直焊缝可以传递不小的弯矩,因此考虑次梁的剪力所产生的附加弯矩可能在大多数情况下没有什么实际意义。工程中经常遇到弯矩不大的悬臂梁,如休息平台梁,习惯的做法是在两个梁的上部加焊一条钢板,这样做铺设平台钢板的时候,要切口,而且如果是上翼缘宽度较小小型槽钢梁,钢条的尺寸会很小,此时可以用(e)的做法,简单省事。

梁与柱的连接通常有刚性连接和半刚性连接,如图11中(a)是刚性连接,(b)、(c)是半刚性连接,其中(b)是接近于铰接的半刚性连接,(c)是接近于刚接的半刚性连接。有的书中称(b)为柔性连接,其实所谓的半刚性连接(Semi-Rigid)就是指能抵抗弯矩的同时又产生不可忽视的节点相对转角的连接节点,所以没必要再增加一个柔性连接的称呼。有不少资料和手册将(b)称之为铰接,显然是不妥当的,正如我们在上面讲梁与梁的连接时所提到的:两条垂直焊缝或两排螺栓都可以传递不小的弯矩,因此不可能是铰接节点。只有象(d)所表示的置于牛腿上的连接(类似吊车梁)才接近于铰接。半刚性连接节点的研究是目前的一个热门,尤其是在结构抗震研究方面,一些地震灾害的调查显示,在抗震性能方面半刚性连接较比刚性连接有很多优点。

图中梁腹板与柱的连接是用安装螺栓,一些资料中是用高强度螺栓摩擦型连接,两种形式都是可以的。

对于刚性连接,这次新规范规定的比较细致(见GB50017的7.4节)这一节是老规范没有的,基本上参考国外的居多。尤其是柱腹板节点域规定的比较严格,对于轻型钢结构,此处柱的腹板厚度往往不够,需要局部加厚。

7.5 吊车梁

带有制动板吊车梁,以往制动板与吊车梁上翼缘的连接无论吨位大小和工作制的级别的等级如何,都采用高强度螺栓摩擦型连接,而且螺栓的排列较密,现在正在使用的钢吊车梁的标准图集(00G514-)也是如此处理的。这实在是费工费料。本次新规范有大的改动,在规范8.5.8条和此条的条文说明中都明确地指出,制动板与吊车梁上翼缘的连接可以采用普通螺栓和焊缝连接。小的吊车梁甚至可以只用单面焊缝连接。

当遇到抽柱子的情况,对于跨度的吊车梁,有时是刚度控制断面,就得增加梁的高度,但支座处高度要保持一致,就要采用变断面的吊车梁。这种吊车梁的端部通常有三种形式。如图12所示的(a)、(b)、(c)。(a)是过去常用的一种处理方法,采用逐步变化高度,但下翼缘弯折处加工和焊接比较困难,容易开裂,现在已很少用。近来国内外趋向采用突变式。(b)是日本人通常采用的形式。根据我国的实际经验和实验研究[3]发现这种端部形式的抗疲劳性不太理想,在圆弧段容易出现疲劳裂缝,圆弧的半径愈小主拉应力愈大,某炼钢车间在用这种形式的吊车梁十余年后即出现疲劳裂缝,修复后继续开裂,最后只好更换。

(c)是我国和德国常用的直角变化端部构造,端部的下翼缘板切口插入腹板后焊接,梁下部加封头板。这种节点施工方便,受力性能比较好。显而易见,变截面的凹角处是应力集中的地方,试验研究也证明了应力高峰部位就是插入板附近的腹板。该区域的应力分布非常复杂,如用普通材料力学的方法计算出该处腹板下端点a点的主拉应力,再与用有限元法计算的该点和附近的主拉应力结果相比较,发现应力集中系数与变截面的几何参数有关,其应力集中系数K=1.37~4.6,如果按附表1的几何参数进行设计的话,K=1.37~2.32,平均为1.74,简单起见,可以取K=2。因此可以用普通材料力学的方法计算出a点的主拉应力,再乘以2就可以得到突变点的实际主拉应力的近似值。

试验的结果表明该种节点有如下的特点:

1. 凡是h/a≥2的支座都没有发生过破坏。

2. 裂纹的起点都在端封板与插入板相连的角焊缝上,然后裂缝沿插入板扩展,到插入板端点后再向上450扩展。