第1章 线性规划-应用举例
- 格式:ppt
- 大小:510.00 KB
- 文档页数:28
线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。
1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。
问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。
那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。
从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。
作出以上不等式组所表示的平面区域(图1),即可行域。
令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。
答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。
2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。
每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。
可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。
问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于各个领域,如经济学、管理学、工程学等。
本文将介绍线性规划的基本概念、模型建立以及应用案例。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式,用于限制决策变量的取值范围。
约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为系数,b为常数。
3. 决策变量:线性规划中的决策变量是需要确定的变量,其取值决定了目标函数的取值。
决策变量通常表示为非负数,即x₁, x₂, ..., xₙ ≥ 0。
三、线性规划模型建立线性规划的模型建立包括确定目标函数、约束条件以及决策变量的取值范围。
下面以一个生产计划问题为例,详细说明线性规划模型的建立过程。
假设某工厂生产两种产品A和B,每天可用的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
产品A每小时需要2人工时,产品B每小时需要3人工时。
工厂每天可用的人工时为20小时。
现在需要确定每天生产的产品数量,以最大化利润。
1. 确定目标函数:由于目标是最大化利润,因此目标函数为z = 100A + 150B,其中A为产品A的数量,B为产品B的数量。
2. 确定约束条件:根据生产时间和人工时的限制,可以得到以下约束条件:- 2A + 3B ≤ 20(人工时限制)- A, B ≥ 0(非负数限制)3. 确定决策变量的取值范围:由于产品数量不能为负数,因此决策变量的取值范围为A, B ≥ 0。
四、线性规划的应用案例线性规划在实际应用中有广泛的应用,下面以物流配送问题为例,介绍线性规划的应用案例。
某物流公司需要将货物从仓库分配到不同的配送中心,以满足客户的需求。
线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
线性规划的应用一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍线性规划的基本概念和应用实例。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为变量。
2. 约束条件:线性规划的变量需要满足一系列线性约束条件,通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,a21x1 + a22x2 + ... + a2nxn ≤ b2,...,am1x1 +am2x2 + ... + amnxn ≤ bm,其中aij为系数,bi为常数。
3. 变量的非负性:线性规划的变量通常要求非负,即xi ≥ 0。
三、线性规划的应用实例1. 生产计划问题假设一个工厂生产两种产品A和B,每单位产品A需要2小时的生产时间,每单位产品B需要3小时的生产时间。
工厂每天有10小时的生产时间可用。
产品A的利润为100元,产品B的利润为150元。
工厂的目标是最大化利润。
根据以上信息,我们可以建立线性规划模型:目标函数:Z = 100x1 + 150x2约束条件:2x1 + 3x2 ≤ 10变量的非负性:x1, x2 ≥ 0通过求解该线性规划模型,可以得到最优解,即生产产品A和产品B的数量,以达到最大利润。
2. 资源分配问题假设一个公司有两个项目,每个项目需要不同数量的人力资源和资金。
项目1需要3人力资源和5000元资金,项目2需要5人力资源和8000元资金。
公司的目标是最大化项目的总利润。
项目1的利润为20000元,项目2的利润为30000元。
公司的人力资源和资金有限,分别为10人和20000元。
根据以上信息,我们可以建立线性规划模型:目标函数:Z = 20000x1 + 30000x2约束条件:3x1 + 5x2 ≤ 105000x1 + 8000x2 ≤ 20000变量的非负性:x1, x2 ≥ 0通过求解该线性规划模型,可以得到最优解,即分配给项目1和项目2的人力资源和资金数量,以达到最大利润。