九年级第一学期第一次月考数学试题(七份)
- 格式:doc
- 大小:4.85 MB
- 文档页数:47
人教版九年级上册数学第一次月考试题一、单选题1.方程2(2)10a x x -++=是关于x 的一元二次方程,则a 的取值范围是()A .0a ≠B .2a ≠C .2a =D .0a =2.一元二次方程2y 2﹣7=3y 的二次项系数、一次项系数、常数项分别是()A .2,﹣3,﹣7B .﹣2,﹣3,﹣7C .2,﹣7,3D .﹣2,﹣3,73.抛物线y =x 2+4x +7的对称轴是()A .直线x =4B .直线x =﹣4C .直线x =2D .直线x =﹣24.一元二次方程x 2+x ﹣14=0的根的情况是()A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.抛物线2245y x x a =+++(a 是常数)的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限6.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为().A .()51 1.57.8x x ++=B .()51 1.57.8x x +⨯=C .()()7.8111.55x x --=D .()()511 1.57.8x x ++=7.在同一坐标系中,二次函数2y ax b =+的图象与一次函数y bx a =+的图象可能是()A .B .C .D .8.若点()2,A m -,()3,B n 都在二次函数225y ax ax =-+(a 为常数,且0a >)的图象上,则m 和n 的大小关系是()A .m n>B .m n=C .m n<D .以上答案都不对9.如图是二次函数y =ax 2+bx+c 的部分图象,使y≥﹣1成立的x 的取值范围是()A .x≥﹣1B .x≤﹣1C .﹣1≤x≤3D .x≤﹣1或x≥310.二次函数y =ax 2+bx +c (a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示,则:①abc <0;②a +b +c <0;③3a +c <0;④当﹣1<x <3时,y >0;⑤4ac >b 2,其中判断正确的有()个.A .1B .2C .3D .4二、填空题11.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a =____12.若关于x 的方程2(2)430k x x --+=有两个不相等的实数根,则k 的取值范围是__________.13.将抛物线y =﹣3x 2﹣1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为_____.14.已知二次函数y =mx 2+(m 2﹣3)x+1,当x =﹣1时,y 取得最大值,则m =______.15.已知关于x 的方程()2650a x x a -++-=的两根都是整数,则整数a =________16.二次函数213y x =的图象如图所示,点A 0位于坐标原点O ,A 1,A 2,A 3…在y 轴的正半轴上,点B 1,B 2,B 3…在二次函数213y x =第一象限的图象上,若△A 0A 1B 1,△A 1A 2B 2,△A 2A 3B 3…,都为等边三角形,则点A 5的坐标为_____.17.如图所示的抛物线是二次函数y =(m ﹣2)x 2﹣3x +m 2+m ﹣6的图象,那么m 的值是_____.三、解答题18.解方程:(1)x 2﹣2x ﹣3=0;(2)2x 2+3x ﹣1=0.19.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.20.已知关于x 的方程2(2)(1)30k x k x ++--=.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根1x 和2x ,且221210x x +=,求k 的值.21.已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如表所示:x ...-3-2-101...y...-3-4-3...(1)求这个二次函数的表达式:(2)在给定的平面直角坐标系中画出这个二次函数的图象:(3)当40x -≤≤时,直接写出y 的取值范围.22.如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x=0的两个根是x 1=0,x 2=-1,则方程x 2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x 2-x-6=0;②2x 2x+1=0;(2)已知关于x 的方程x 2-(m-1)x-m=0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程ax 2+bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令t=12a-b 2,试求t 的最大值.23.已知,点P 为二次函数()²21y x m m =---+图象的顶点,直线2y kx =+分别交x 轴的负半轴和y 轴于点A ,点B .(1)若二次函数图象经过点B ,求二次函数的解析式.(2)如图,若点A 坐标为(40)-,,且点P 在AOB 内部(不包含边界).①求m 的取值范围;②若点16,5C y ⎛⎫-⎪⎝⎭,21,5D y ⎛⎫⎪⎝⎭都在二次函数图象上,试比较1y 与2y 的大小24.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P 分别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAPB 的周长与面积相等,则P 为“美好点”.(1)在点M (2,2),N (4,4),Q (﹣6,3)中,是“美好点”的有.(2)若“美好点”P (a ,﹣3)在直线y =x +b (b 为常数)上,求a 和b 的值;(3)若“美好点”P 恰好在抛物线y =112x 2第一象限的图象上,在x 轴上是否存在一点Q 使得△POQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(4)若平行于y 轴的直线l 分别与直线y =x ﹣(a ﹣1)和抛物线y =x 2﹣2ax 交于P 、Q 两点.若平移直线l 的过程中,可使P 、Q 都在x 轴的下方的情况存在,求a 的取值范围.25.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.参考答案1.B2.A3.D4.A5.B 6.D 7.C 8.A 9.C 10.B 11.112.k <103且k≠2.13.y =﹣3(x +2)2﹣414.﹣1.15.5或716.(0,30)17.﹣318.(1)x 1=3,x 2=﹣1;(2)x 1=3174-+,x 2=3174-19.(1)1,4a b ==-;(2)1m =-20.(1)证明见解析;(2)1-或3-.21.(1)y=x 2+2x-3;(2)见解析;(3)-4≤y≤522.(1)①不是;②是;(2)0或-2;(3)1623.(1)2(1)3y x =-++;(2)①205m -<<,②12y y <.24.(1)N 、Q ;(2)a =6,b =﹣9或a =﹣6,b =3;(3)存在,Q (12,0)或(154,0)或(0)或(﹣,0);(4)a <﹣1或a >125.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .(x+1)2=2(x+1)B .21120x x+-=C .ax 2+bx+c =0D .x 2+2x =x 2﹣12.下列一元二次方程中,有实数根的方程是()A .2x x 10-+=B .2x 2x 30-+=C .2x x 10+-=D .2x 40+=3.抛物线2y 3(x 1)1=-+的顶点坐标是()A .()1,1B .()1,1-C .()1,1--D .()1,1-4.一元二次方程2x 2﹣3x +1=0化为(x +a )2=b 的形式,正确的是()A .23x-=162⎛⎫⎪⎝⎭B .2312x-=416⎛⎫⎪⎝⎭C .231x-=416⎛⎫⎪⎝⎭D .以上都不对5.下列抛物线中,在开口向下的抛物线中开口最大的是()A .y=x2B .y=﹣23x 2C .y=13x 2D .y=x 26.抛物线y=-3(x+1)2不经过的象限是()A .第一、二象限B .第二、四象限C .第三、四象限D .第二、三象限7.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为()A .B .C .D .8.若α,β是方程x 2+2x ﹣2005=0的两个实数根,则α2+3α+β的值为()A .2005B .2003C .﹣2005D .40109.已知关于x 的方程x 2﹣(2k ﹣1)x+k 2=0有两个不相等的实数根,那么k 的最大整数值是()A .﹣2B .﹣1C .0D .110.如图,正方形ABCD 边长为4,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能是()A .B .C .D .二、填空题11.关于x 的方程()222510mm x x ----=是一元二次方程,那么m=_____.12.已知(x 2+y 2+1)(x 2+y 2-3)=5,则x 2+y 2的值等于_____.13.已知直角三角形的两条直角边的长恰好是方程2x 2-8x+7=0的两个根,则这个直角三角形的斜边长是______.14.已知,点A (﹣1,y 1)、B (﹣2,y 2)、C (3,y 3)分别是抛物线y =5(x ﹣2)2+k 的三个点,则y 1、y 2、y 3的大小关系为_____.(用“<”按从小到大的顺序排列)15.当x =__________时,二次函数226y x x =-+有最小值___________.16.如图,抛物线y 1=a (x+2)2+m 过原点,与抛物线y 2=12(x ﹣3)2+n 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .下列结论:①两条抛物线的对称轴距离为5;②x=0时,y 2=5;③当x >3时,y 1﹣y 2>0;④y 轴是线段BC 的中垂线.正确结论是________(填写正确结论的序号).三、解答题17.解方程:x 2+3x ﹣4=0(公式法)18.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.19.二次函数y =a(x -h)2的图象如图,已知a =12,OA =OC ,试求该抛物线的解析式.20.已知x 1,x 2是一元二次方程2x 2﹣2x+m+1=0的两个实数根.(1)求实数m 的取值范围;(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.21.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.22.把二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y=12(x+1)2-1的图象.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k的开口方向,对称轴和顶点坐标.23.如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n 的代数式表示)铺设地面所用瓷砖的总块数为(用含n的代数式表示,n表示第n个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.24.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x 轴的交点A 、B 的坐标;(2)在二次函数的图象上是否存在点P ,使S △PAB =54S △MAB ?若存在,求出点P 的坐标;若不存在,请说明理由.25.如图,(图1,图2),四边形ABCD 是边长为4的正方形,点E 在线段BC 上,∠AEF=90°,且EF 交正方形外角平分线CP 于点F ,交BC 的延长线于点N,FN ⊥BC .(1)若点E 是BC 的中点(如图1),AE 与EF 相等吗?(2)点E 在BC 间运动时(如图2),设BE=x ,△ECF 的面积为y .①求y 与x 的函数关系式;②当x 取何值时,y 有最大值,并求出这个最大值.参考答案1.A2.C3.A4.C5.B6.A7.B8.B9.C10.A11.-2 12.4.13.314.y3<y1<y2 15.15 16.①③④17.x1=﹣4,x2=118.(1)12,32-;(2)证明见解析.19.y=12(x-2)220.(1)m≤-12;(2)整数m的值为-2,-1.21.(1)20元;(2)每件衬衫应降价15元,商场盈利最多,共1250元.22.(1)1,1,52a h k===-(2)开口向下,对称轴是x=1的直线,顶点(1,-5)23.(1)n+3,n+2,n2+5n+6或(n+2)(n+3);(2)20;(3)不存在24.(1)A(﹣1,0),B(3,0);(2)存在合适的点P,坐标为(4,5)或(﹣2,5).25.(1)AE=EF;(2)①y=-12x2+2x(0<x<4),②当x=2,y最大值=2.。
人教版数学九年级上册第一次月考试题一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2 8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.17.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.18.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2+x﹣1的图象与x轴有两个交点,可得△=12﹣4m×(﹣1)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2+x﹣1的图象与x轴有两个交点,则△=b2﹣4ac>0,△=12﹣4m×(﹣1)>0,∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0,故选C.【点评】本题考查了抛物线与x轴的交点,关键是熟记当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.2.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴【考点】抛物线与x轴的交点.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1【考点】二次函数的性质.【分析】观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.【解答】解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.【点评】此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.4.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质结合二次函数的解析式即可得出y1>y3>y2,此题得解.【解答】解:二次函数y=x2﹣6x+c的对称轴为x=3,∵a=1>0,∴当x=3时,y值最小,即y2最小.∵|﹣1﹣3|=4,|3+﹣3|=,4>,∴点y1>y3.∴y1>y3>y2.故选B.【点评】本题考查了二次函数的性质,根据二次函数的性质确定A、B、C三点纵坐标的大小是解题的关键.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.6.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.【点评】主要考查了求抛物线的顶点坐标的方法.7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2【考点】二次函数图象与几何变换.【分析】直接利用平移规律(左加右减,上加下减)求新抛物线的解析式.【解答】解:抛物线y=2x2向上、向左平移2个单位后的解析式为:y=2(x+2)2+2.故选:A.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1【考点】二次函数图象与几何变换.【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.【点评】根据画图可得到抛物线关于x轴对称的特点:二次项系数,一次项系数,常数项均互为相反数.二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】二次函数的三种形式.【分析】利用配方法操作整理,然后根据对应系数相等求出m、k,再相加即可.【解答】解:y=x2﹣2x﹣3,=(x2﹣2x+1)﹣1﹣3,=(x﹣1)2﹣4,所以,m=1,k=﹣4,所以,m+k=1+(﹣4)=﹣3.故答案为:﹣3.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为(0,1),与x轴的交点的坐标为(,0),(1,0).【考点】抛物线与x轴的交点.【分析】函数y=2x2﹣3x+1与y轴的交点坐标,即为x=0时,y的值.当x=0,y=1.故与y 轴的交点坐标为(0,1);x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根为x1=,x2=1,与x轴的交点的坐标为(,0),(1,0).【解答】解:把x=0代入函数可得y=1,故y轴的交点坐标为(0,1),把y=0代入函数可得x=或1,故与x轴的交点的坐标为(,0),(1,0).【点评】解答此题要明白函数y=2x2﹣3x+1与y轴的交点坐标即为x=0时y的值;x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根.13.请写出符合以下三个条件的一个函数的解析式y=﹣x+2,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.【考点】二次函数的性质;一次函数的性质.【分析】由题意设出函数的一般解析式,再根据①②③的条件确定函数的解析式.【解答】解:设函数的解析式为:y=kx+b,∵函数过点(3,1),∴3k+b=1…①∵当x>0时,y随x的增大而减小,∴k<0…②,又∵当自变量的值为2时,函数值小于2,当x=2时,函数y=2k+b<2…③由①②③知可以令b=2,可得k=﹣,此时2k+b=﹣+2<2,∴函数的解析式为:y=﹣x+2.答案为y=﹣x+2.【点评】此题是一道开放性题,主要考查一次函数的基本性质,函数的增减性及用待定系数法来确定函数的解析式.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.【解答】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是(﹣3,0),(1,0),∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.【点评】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题16.(12分)(2016秋•南昌校级月考)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】①因式分解法求解可得;②整理成一般式后,因式分解法求解可得;③因式分解法求解可得;④公式法求解可得.【解答】解:①(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;②原方程整理可得:x2﹣2x+1=0,∴(x﹣1)2=0,解得:x=1;③x(5﹣2x)=0,∴x=0或5﹣2x=0,解得x=0或x=;④∵a=1,b=6,c=﹣1,∴△=36+4=40>0,∴x==﹣3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.【考点】二次函数的三种形式.【分析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:①y=2x2+6x﹣12=2(x+)2﹣,则该抛物线的顶点坐标是(﹣,﹣),对称轴是x=﹣;②y=﹣0.5x2﹣3x+3=﹣(x+3)2+,则该抛物线的顶点坐标是(﹣3,),对称轴是x=﹣3.【点评】此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.18.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)直接利用配方法得出函数顶点式即可;(2)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(3)利用函数顶点式得出对称轴进而得出答案;(4)利用函数图象得出答案即可;(5)利用x=1以及x=4是求出函数值进而得出答案;(6)利用函数图象得出三角形面积即可.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8;(2)当y=0,则0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,故图象与x轴交点坐标为:(﹣1,0),(3,0),当x=0,y=﹣6,故图象与y轴交点坐标为:(0,﹣6),如图所示:;(3)当x<1时,y随x的增大而减少;(4)当x=1或﹣3时,y=0,当x<﹣1或x>3时,y>0,当﹣1<x<3时;y<0;(5)当0<x<4时,x=1时,y=﹣8,x=4时,y=10,故y的取值范围是:﹣8≤y<10;(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:×4×6=12.【点评】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.19.二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.【考点】二次函数综合题;解三元一次方程组;待定系数法求二次函数解析式.【分析】(1)根据开口方向可确定a的符号,由对称轴的符号,a的符号,结合起来可确定b的符号,看抛物线与y轴的交点可确定c的符号;(2)已知OA=3,解直角△OAB、△OAC可得B、C的坐标,设抛物线解析式的交点式,把A、B、C代入即可求解析式.【解答】解:(1)∵抛物线开口向上∴a>0又∵对称轴在y轴的左侧∴<0,∴b>0又∵抛物线交y轴的负半轴∴c<0(2)连接AB,AC∵在Rt△AOB中,∠ABO=45°∴∠OAB=45°,∴OB=OA∴B(﹣3,0)又∵在Rt△ACO中,∠ACO=60°∴OC=OAcot=60°=∴C(,0)设二次函数的解析式为y=ax2+bx+c(a≠0)由题意:∴所求二次函数的解析式为y=x2+(﹣1)x﹣3.【点评】本题考查了点的坐标求法,正确设抛物线解析式,求二次函数解析式的方法,需要学生熟练掌握.20.已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.【考点】抛物线与x轴的交点.【分析】(1)根据顶点A到y轴的距离为3,说明顶点A的横坐标为3或﹣3,根据公式﹣代入列式,求出m的值,分别代入解析式中,求出对应的顶点坐标A;也可以直接配方求得;(2)先计算抛物线与x轴的交点坐标,发现当m=﹣5时不符合题意,因此根据m=1时,对应的抛物线计算CD的长,求出点B的坐标.【解答】解:(1)由题意得:﹣=3或﹣3,∴m+2=3或m+2=﹣3,∴m=1或﹣5,当m=1时,抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18,∴顶点A的坐标为(3,﹣18);当m=﹣5时,抛物线C1:y=x2+6x+15=(x+3)2+6,∴顶点A的坐标为(﹣3,6);(2)设B(a,b),当抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18时,当y=0时,(x﹣3)2﹣18=0,x1=3+3,x2=3﹣3,∴CD=3+3+3﹣3=6,=6,∵S△BCD∴CD•|b|=6,∴×6•|b|=6,∴b=±2,当b=2时,x2﹣6x﹣9=2,解得:x=3±2,当b=﹣2时,x2﹣6x﹣9=﹣2,解得:x=7或﹣1,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2),当抛物线C1:y=x2+6x+15=(x+3)2+6时,当y=0时,(x+3)2+6=0,此方程无实数解,所以此时抛物线与x轴无交点,不符合题意,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2).【点评】本题是二次函数性质的应用,考查了抛物线与x轴的交点及顶点坐标,对于利用三角形面积求点的坐标问题,解题思路为:设出该点的坐标,根据面积列方程,求出未知数的值,再代入解析式中求另一坐标即可;同时要注意数形结合的思想的应用.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,元,∴当x=60时,P最大值=8000即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,﹣20×58+1600=440,∴当x=58时,y最小值=即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.22.已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?【考点】二次函数的应用.【分析】(1)根据二次函数性质可知该抛物线的对称轴x=﹣≤20,得出关于a的不等式,解之即可;(2)根据对称轴求出a,即可得二次函数解析式,将其配方成顶点式,根据函数取得最大值时即飞机滑行停止滑行,据此解答即可.【解答】解:(1)∵函数y=ax2+60x,在x>20时,y随x增大而减小,∴a<0且﹣≤20,解得:a≤﹣;(2)根据题意得:﹣=20,解得a=﹣,∴y=﹣x2+60x=﹣(x﹣20)2+600,则自变量x的范围为0≤x≤20,且飞机着陆后需滑行600米才能停下来.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质及顶点在具体问题中的实际意义是解题的关键.23.(14分)(2016秋•南昌校级月考)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,列出a和b 的二元一次方程组,求出a和b的值,进而求出点B的坐标,即可求出直线BC的解析式;(2)过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);=PQ•OB列出S关于x的二次函数,利用函数的性质求出面积求出PQ的长,利用S△PCB的最大值,进而求出点P的坐标;(3)首先求出EF的长,设N(x,﹣x2+3x+4),则M(x,﹣x+4),利用平行四边形对边平行且相等列出x的一元二次方程,解方程求出x的值即可.【解答】解:(1)由题意得,解得.∴抛物线的解析式:y=﹣x2+3x+4.(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,∴N3(,),综上所述,点N坐标为(,)或(,)或(,).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式,二次函数的性质、三角形面积的计算、平行四边形的判定等知识,解答(2)问关键是用x表示出PQ 的长,解答(3)问关键是求出EF的长,利用平行四边形对边平行且相等进行解答,此题有一定的难度.。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
人教版九年级上册数学第一次月考试卷一、选择题。
(每小题只有一个正确答案)1.下列是二次函数的是()A .22y x =+B .21y x =+C .11y x=-+D .220(0)ax a -=≠2.若关于x 的一元二次方程20x x m -+=的一个根是1x =,则m 的值是()A .1B .0C .-1D .23.关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是()A .2b a ±B .2b a -C .2b -D .2b a-±4.下列一元二次方程没有实数根的是()A .2210x x ++=B .220x x ++=C .210x -=D .2210x x --=5.用配方法解方程2640x x +-=时,配方结果正确的是()A .()235x +=B .()265x +=C .()2313x +=D .()2613x +=6.对于二次函数()212y x =--+的图象与性质,下列说法正确的是()A .对称轴是直线1x =,最大值是2B .对称轴是直线1x =,最小值是2C .对称轴是直线1x =-,最大值是2D .对称轴是直线1x =-,最小值是27.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是()A .a <-2B .a >-2C .-2<a <0D .-2≤a <08.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则()A .b=(1+22.1%×2)aB .b=(1+22.1%)2aC .b=(1+22.1%)×2aD .b=22.1%×2a9.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为()A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位10.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .4二、填空题11.方程x 2=9的解为_____.12.把一元二次方程2346x x =-化成一般式是__________.13.已知函数24y x x m =-+的图象与x 轴只有一个交点,则m 的值为_______.14.已知二次函数2y x =,在14x -≤≤内,函数的最小值为______________.15.抛物线y =(x -h )2-k 的顶点坐标为(-3,1),则h -k=______________16.已知关于x 的方程2x mx 60+-=的一个根为2,则这个方程的另一个根是__.17.二次函数y =ax 2+bx +c (a ≠0)的部分对应值如下表:则二次函数y =ax 2+bx +c 在x =2时,y =_________.X …-3-20135…y…7-8-9-57…三、解答题18.解方程,2230x x +-=.19.已知抛物线的顶点为(1,4),与y 轴交点为(0,3),求该抛物线的解析式.20.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.21.关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.22.己知:二次函数y =ax 2+bx +6(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),点A ,点B 的横坐标是一元二次方程x 2﹣4x ﹣12=0的两个根.(1)求出点A ,点B 的坐标.(2)求出该二次函数的解析式.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系y=﹣5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?25.如图,已知抛物线y=-x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于点C.(1)求抛物线的解析式;(2)若P为对称轴上一点,要使PA+PC最小,求点P的坐标.参考答案1.A【分析】直接利用二次函数以及一次函数的定义分别判断得出答案.【详解】A、y=x2+2,是二次函数,故此选项正确;B、y=-2x+1,是一次函数,故此选项错误;C 、y=1x-+1,不是二次函数,故此选项错误;D 、()2200x a -=≠,是一次二次方程,故此选项错误;故选A .【点睛】此题主要考查了二次函数与一次函数定义,正确把握相关定义是解题关键.2.B 【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m 的一元一次方程,然后解一元一次方程即可.【详解】把x=1代入x 2-x+m=0得1-1+m=0,解得m=0.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.D 【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x =2b b ac a-.故选D.4.B 【分析】通过计算方程根的判别式,满足0 即可得到结论.【详解】解:A 、2=2411=0-⨯⨯ ,方程有两个相等的实数根,故本选项错误;B 、2=1421=-70-⨯⨯ ,方程没有实数根,故本选项正确;C 、2=04(1)=40-⨯- ,方程有两个不相等的实数根,故本选项错误;D 、2=(-2)41(1)=80-⨯⨯- ,方程有两个不相等的实数根,故本选项错误;故答案为B.【点睛】本题考查了根的判别式,熟练掌握一元二次方程的根与判别式的关系是解题的关键.(1)当0 ,方程有两个不相等的两个实数根;(2)当=0 ,方程有两个相等的两个实数根;(3)当0 时,方程无实数根.5.C 【分析】将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】∵x 2+6x=4,∴x 2+6x+9=4+9,即(x+3)2=13,故选C .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.6.A 【分析】根据抛物线的图象与性质即可判断.【详解】解:由抛物线的解析式:y=-(x-1)2+2,可知:对称轴x=1,开口方向向下,所以有最大值y=2,故选:A .【点睛】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.7.C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围.【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.8.B 【详解】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.C 【解析】根据二次函数图象的平移规律“上加下减,左加右减”,将原抛物线以各个选项描述的平移方式进行平移可以获得不同的解析式,与题目中给出的解析式一致的选项即为正确选项.A 选项:将原抛物线向左平移1个单位,平移后的抛物线应为y =2(x +1)2,故A 选项错误;B 选项:将原抛物线向右平移1个单位,平移后的抛物线应为y =2(x -1)2,故B 选项错误;C 选项:将原抛物线向上平移1个单位,平移后的抛物线应为y =2x 2+1,故C 选项正确;D 选项:将原抛物线向下平移1个单位,平移后的抛物线应为y =2x 2-1,故D 选项错误.因此,本题应选C.点睛:本题考查了二次函数图象平移的相关知识.二次函数图象向上或向下平移时,应将平移量以“上加下减”的方式作为常数项添加到原解析式中;二次函数图象向左或向右平移时,应先以“左加右减”的方式将自变量x 和平移量组成一个代数式,再用该代数式替换原解析式中的自变量x .要特别注意理解和记忆二次函数图象左右平移时其解析式的相关变化.10.B 【详解】(1)由图可知,0 0a c ><,,∴0ac <,故①错;(2)由图可知,当1≥x 时,y 随x 的增大而增大,故②错;(3)由图可知,抛物线的对称轴为直线:12bx a=-=,∴2b a =-,即20a b +=,故③正确;(4)由图可知,抛物线和x 轴有两个不同的交点,∴240b ac ->,故④错;(5)由图可知,当2x =-时,图象在x 轴上方,即当2x =-时,420y a b c =-+>,故⑤正确;∴有2个结论正确,故选B.11.x=±3【分析】直接用开平方法求解即可.【详解】解:∵29x =,∴x=±3.故答案为:x=±3.【点睛】本题考查了解一元二次方程-直接开平方法,解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.23460x x -+=【分析】方程整理为一般形式即可.【详解】方程整理得:3x 2-4x+6=0,故答案为3x 2-4x+6=0.【点睛】此题考查了一元二次方程的一般形式,其一般形式为ax 2+bx+c=0(a≠0).13.4【分析】由抛物线与x 轴只有一个交点,得到根的判别式等于0,即可求出m 的值.【详解】∵函数y=x 2-4x+m 的图象与x 轴只有一个交点,∴b 2-4ac=(-4)2-4×1×m=0,解得:m=4,故答案为4【点睛】此题考查了抛物线与x 轴的交点,熟练掌握二次函数的性质是解本题的关键.14.0【分析】根据二次函数的性质即可判断出函数的最小值.【详解】∵a=1>0,∴二次函数2y x =的图象开口向上,∴二次函数2y x =的图象在14x -≤≤内有最低点,为原点(0,0),故二次函数2y x =,在14x -≤≤内,函数的最小值为0,故答案为0.【点睛】本题主要考查了二次函数的图象与性质.熟记二次函数的图象与性质是解题关键.15.-2【分析】根据二次函数的顶点式可直接进行求解.【详解】解:由题意得:h=-3,k=-1,∴()312h k -=---=-;故答案为-2.【点睛】本题主要考查二次函数的顶点式,熟练掌握二次函数的性质是解题的关键.16.-3.【解析】∵方程2x mx 60+-=的一个根为2,设另一个为a ,∴2a=-6,解得:a=-3.17.-8【分析】观察表中的对应值得到x =−3和x =5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x =1,所以x =0和x =2时的函数值相等.【详解】解:∵x =−3时,y =7;x =5时,y =7,∴二次函数图象的对称轴为直线x =1,∴x =0和x =2时的函数值相等,∴x =2时,y =−8.故答案为:−8.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.18.1231x x ,=-=【分析】利用因式分解法求一元二次方程的解即可.【详解】原方程因式分解得:(3)(1)0x x +-=∴1231x x ,=-=【点睛】本题考查利用因式分解法求一元二次方程的解.熟练掌握因式分解法是解答本题的关键.19.y=-(x-1)2+4.【分析】根据顶点坐标设其顶点式,再将(0,3)代入求解可得.【详解】设抛物线的解析式为y=a (x-1)2+4,将点(0,3)代入,得a+4=3.解得a=-1,抛物线的解析式为y=-(x-1)2+4.【点睛】解题的关键是熟练掌握待定系数法求函数解析式.20.4【解析】试题分析:根据方程中常数项为0,求出m 的值,检验即可.试题解析:解:∵关于x 的二次方程(m+1)x 2+5x+m 2﹣3m ﹣4=0的常数项为0,∴m 2﹣3m ﹣4=0,即(m ﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m 的值为4.考点:一元二次方程的一般形式.21.(1)m >-54;(2)x 1=0,x 2=-3.【详解】试题分析:(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.试题解析:(1)∵关于x 的一元二次方程2x +(2m+1)x+2m ﹣1=0有两个不相等的实数根,∴△=()()2221411m m +-⨯⨯-=4m+5>0,解得:m >54-;(2)m=1,此时原方程为2x +3x=0,即x (x+3)=0,解得:1x =0,2x =﹣3.考点:根的判别式;解一元二次方程——因式分解法;解一元一次不等式.22.(1)A (-2,0),B (6,0),(2)y=-12x 2+2x+6.【分析】(1)利用因式分解法解方程x 2-4x-12=0即可得到A 点和B 点坐标;(2)设交点式y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以抛物线解析式为y=-12x 2+2x+6.【详解】(1)解方程x 2-4x-12=0得x 1=-2,x 2=6,所以A (-2,0),B (6,0),(2)因为抛物线与x 轴交于点A (2,0),B (6,0),则抛物线解析式为y=a (x+2)(x-6)=ax 2-4ax-12a ,则-12a=6,解得a=-12,所以y=-12x 2+2x+6.【点睛】本题考查了抛物线与x 轴的交点问题:从二次函数的交点式y=a (x-x 1)(x-x 2)(a ,b ,c 是常数,a≠0)中可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).也考查了二次函数的性质.23.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用24.(1)在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)在飞行过程中,小球从飞出到落地所用时间是4s ;(3)在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x 2+20x ,解得,x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15m 时,飞行时间是1s 或3s ;(2)当y=0时,0═﹣5x 2+20x ,解得,x 3=0,x 2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s ;(3)y=﹣5x 2+20x=﹣5(x ﹣2)2+20,∴当x=2时,y 取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s 时最大,最大高度是20m .点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.25.(1)243y x x =-+-;(2)P 点坐标为(2,-1)【分析】(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,然后根据AB=2及抛物线的对称轴可求解A 、B 的坐标,进而抛物线解析式可求;(2)连接BC ,交直线x =2于点P ,则PA =PB ,则有PA +PC =PB +PC =BC ,所以此时PA +PC 最小,然后求出直线BC 的解析式,进而问题可求.【详解】解:(1)设点A 的坐标为()1,0x ,点B 的坐标为()2,0x ,2121222x x x x +⎧=⎪⎨⎪-=⎩,∴1213x x =⎧⎨=⎩,把点A 的坐标(1,0)代入24y x x m =-++得3m =-,所以抛物线的解析式为243y x x =-+-;(2)解:连接BC ,交直线x =2于点P ,则PA =PB,如图所示:∴PA +PC =PB +PC =BC ,∴此时PA +PC 最小,设直线BC 的解析式为y =kx +b ,把C (0,-3),B (3,0)代入得330b k b =-⎧⎨+=⎩,解得31b k =-⎧⎨=⎩,∴直线BC 的解析式为y =x -3,当x =2时,y =x -3=2-3=-1,∴P 点坐标为(2,-1).【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.。
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.抛物线265y x x =-+的顶点坐标为()A .(3,4-)B .(3,4)C .(3-,4-)D .(3-,4)2.下列说法错误的是()A .成中心对称的两个图形的对称点到对称中心的距离相等B .在成中心对称的两个图形中,连接对称点的线段都经过对称中心C .如果两个图形的对应点连成的线段都经过某一点,那么两个图形一定关于这个一点成中心对称D .成中心对称的两个图形中的对应线段平行(或在同一条直线上)且相等,对应角也相等3.一元二次方程221x x -=的一次项系数和常数项依次是()A .1-和1B .1-和1-C .2和1-D .1-和34.二次函数()20y ax bx c a =++≠图象如图所示,则下列结论中错误的是()A .当1m ≠时,2a b am bm+>+B .若221122ax bx ax bx +=+,且12x x ≠,则122x x +=C .0a b c -+>D .0abc <5.设m 、n 是方程220120x x +-=的两个实数根,则22m m n ++的值为()A .2008B .2009C .2010D .20116.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax 2+bx+c 经过点(﹣1,﹣4),则下列结论中错误的是()A .b 2>4acB .ax 2+bx+c≥﹣6C .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >n D .关于x 的一元二次方程ax 2+bx+c=﹣4的两根为﹣5和﹣17.已知二次函数2y ax bx c =++同时满足下列条件:对称轴是1x =;最值是15;二次函数的图象与x 轴有两个交点,其横坐标的平方和为15a -,则b 的值是()A .4或30-B .30-C .4D .6或20-8.函数()2156y m x x =---是关于x 的二次函数,则m ()A .等于1B .不等于1C .等于1-D .不等于1-9.一元二次方程2310x x +-=,通过配方后变形正确的是()A .25(3)2x +=B .2313()24x +=C .25(3)4x -=D .2313()22x +=10.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A .22(1)8y x =++B .218(1)8y x =+-C .22(1)89y x =-+D .22(1)8y x =--二、填空题11.请将函数21212y x x =++写成2()y a x h k =-+的形式为________.12.在我们刚刚学过的九年级数学下册课本第11页,用“描点法”画某个二次函数图象时,列了如下表格:x (3456)78…y…7.55 3.53 3.55…根据表格上的信息回答问题:该二次函数在9x =时,y =________.13.如图,抛物线28y x bx =++与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第二象限),抛物线的顶点C 在直线OB 上,且点C 为OB 的中点,对称轴与x 轴相交于点D ,平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为________.14.二次函数y =ax 2+bx+c 的部分对应值如下表:x …﹣3﹣20135…y…7﹣8﹣9﹣57…①抛物线的顶点坐标为(1,﹣9);②与y 轴的交点坐标为(0,﹣8);③与x 轴的交点坐标为(﹣2,0)和(2,0);④当x =﹣1时,对应的函数值y 为﹣5.以上结论正确的是______.15.若关于x 的一元二次方程(m ﹣1)x 2﹣2mx+(m+2)=0有实数根,则m 取值范围是____.16.已知正方形的周长是c cm ,面积为S cm 2,则S 与c 之间的函数关系式为_____.17.已知1x =是方程20x mx -=的解,则方程的另一根为________.18.请你写出一个二次项系数是1,两个实根之和为5的一元二次方程___________.19.若方程2(3)0x a ++=有解,则a 的取值范围是________.20.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒),满足关系:h=20t-5t 2,当小球达到最高点时,小球的运动时间为第_________秒时.三、解答题21.解下列方程:(1)2410x x -+=22323x x +=+()()()22.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为315m 的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,求该长方体的底面宽,若该长方体的底面宽为x 米:(1)用含x 的代数式分别表示出该长方体的底面长和容积.(2)请列出关于x 的方程.23.如图,A 、B 、C 、D 为矩形的四个顶点,16AB cm =,6AD cm =,动点P 、Q 分别从点A 、C 同时出发,点P 以3/cm s 的速度向点B 移动,一直到达B 为止,点Q 以2/cm s 的速度向D 移动.()1P 、Q 两点从出发开始到几秒?四边形PBCQ 的面积为233cm ;()2P 、Q 两点从出发开始到几秒时?点P 和点Q 的距离是10cm .24.已知抛物线2y x bx c =++,经过点()0,5A 和点()3,2B .()1求抛物线的解析式;()2指出它的开口方向,对称轴和顶点坐标.()3若()()12,1,A m y B m y +都在函数图象上,比较1y 与2y 的大小.25.某水果店销售一种水果的成本价是5元/千克.在销售过程中发现,当这种水果的价格定在7元/千克时,每天可以卖出160千克.在此基础上,这种水果的单价每提高1元/千克,该水果店每天就会少卖出20千克.()1若该水果店每天销售这种水果所获得的利润是420元,则单价应定为多少?()2在利润不变的情况下,为了让利于顾客,单价应定为多少?26.已知如图1,在以O 为原点的平面直角坐标系中,抛物线214y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点()0,1C -,连接AC ,2AO CO =,直线l 过点()0,G t 且平行于x轴,1t <-,()1求抛物线对应的二次函数的解析式;()2若D 为抛物线214y x bx c =++上一动点,是否存在直线l 使得点D 到直线l 的距离与OD 的长恒相等?若存在,求出此时t 的值;()3如图2,若E 、F 为上述抛物线上的两个动点,且8EF =,线段EF 的中点为M ,求点M 纵坐标的最小值.参考答案【答案】A【解析】22265(3)4(3)43-4y x x x x y =-+=--⇒-=+故定点坐标为(,)2.C【解析】【分析】利用中心对称图形的性质进行分析即可.【详解】解:A、成中心对称的两个图形的对称点到对称中心的距离相等,此选项正确,不合题意;B、在成中心对称的两个图形中,连接对称点的线段都经过对称中心,正确,不合题意;C、如果两个图形的对应点连成的线段都经过某一点,那么两个图形一定关于这个一点成中心对称,错误,有可能是位似,故此选项正确;D、成中心对称的两个图形中的对应线段平行(或在同一条直线上)且相等,对应角也相等,正确,不合题意;故选:C.【点睛】此题主要考查了中心对称图形的性质,正确把握其性质是解题关键.3.B【解析】【分析】根据一元二次方程的一般形式进行选择.【详解】解:2x2-x=1,移项得:2x2-x-1=0,一次项系数是-1,常数项是-1.故选:B.【点睛】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b 分别叫二次项系数,一次项系数.4.C 【解析】【分析】利用x=1时函数最大值对A 进行判断;利用对称性对B 进行判断;利用对称性判断抛物线与x 轴的一个交点在点(-1,0)与原点之间,从而得到x=-1时函数值为负数,从而可对C 进行判断.抛物线的最大值用抛物线开口方向、抛物线的对称轴位置和抛物线与y 轴的交点位置可判断a 、b 、c 的符号,则可对D 进行判断.【详解】解:A 、因为抛物线的对称轴为直线x=1,则当x=1时函数值最大,最大值为a+b+c ,则当m≠1时,a+b+c >am 2+bm+c ,所以A 选项的结论正确;B 、因为221122ax bx ax bx +=+,则若221122ax bx c ax bx c ++=++,且x 1≠x 2,所以x 1,x 2关于对称轴对称,则x 1+x 2=2,所以B 选项的结论正确;C 、由于抛物线的对称轴为直线x=1,则x=-1与x=3时的函数值y 相等,因为当x=3时,y <0,则当x=-1时,y <0,即a-b+c <0,所以C 选项的结论错误;D 、由抛物线开口向下得a <0,由对称轴在y 轴右侧得b >0,由抛物线与y 轴的交点在x 轴上方得c >0,所以abc <0,所以D 选项的结论正确.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点.注意抛物线是轴对称图形在解题中的应用.5.D 【分析】由于m 、n 是方程x 2+x-2012=0的两个实数根,根据根与系数的关系可以得到m+n=-1,并且m 2+m-2012=0,然后把m 2+2m+n 可以变为m 2+m+m+n ,把前面的值代入即可求出结果.【详解】解:∵m 、n 是方程x 2+x-2012=0的两个实数根,∴m+n=-1,并且m2+m-2012=0,∴m2+m=2012,∴m2+2m+n=m2+m+m+n=2012-1=2011.故选D.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.C【分析】根据二次函数图像与系数的关系,二次函数和一元二次方程的关系进行判断.【详解】A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.【点睛】本题考查了二次函数图象与系数的关系,二次函数与一元二次方程的关系,熟练运用数形结合是解题的关键.7.C【解析】【分析】由在x=1时取得最大值15,可设解析式为:y=a(x-1)2+15,只需求出a即可,又与x轴交点横坐标的平方和为15-a,可求出a,所以可求出解析式得到b的值.【详解】解:解法一:∵x轴上点的纵坐标是0,∴由题可设抛物线与x轴的交点为(1-t,0),(1+t,0),其中t>0,∵两个交点的横坐标的平方和等于15-a即:(1-t)2+(1+t)2=15-a,可得,由顶点为(1,15),可设解析式为:y=a(x-1)2+15,将(,0)代入解析式,得a=-2或a=15(不合题意,舍去)∴y=-2(x-1)2+15=-2x2+4x+13,∴b=4;解法二:∵对称轴是x=1,最值是15,∴设y=ax2+bx+c=a(x-1)2+15,∴y=ax2-2ax+15+a,设方程ax2-2ax+15+a=0的两个根是x1,x2,则x1+x2=2aa--=2,x1•x2=15aa+,∵二次函数的图象与x轴有两个交点,其横坐标的平方和为15-a,(x1)2+(x2)2=(x1+x2)2-2x1x2=15-a,∴()22152aa+-=15-a,a2-13a-30=0,a1=15(不合题意,舍去),a2=-2,∴y=-2(x-1)2+15=-2x2+4x+13;∴b=4.故选:C.【点睛】本题考查了二次函数的最值及待定系数法求解析式,灵活运用相关知识是解题关键.8.B【解析】【分析】根据二次函数的定义得到m-1≠0,然后解不等式即可.【详解】解:∵函数y=(m-1)x 2-5x-6是关于x 的二次函数,∴m-1≠0,∴m≠1.故选:B .【点睛】本题考查了二次函数的定义:函数y=ax 2+bx+c (a≠0,a 、b 、c 为常数)叫二次函数.9.B 【解析】【分析】先把-1移到方程右边,再把方程两边加上3的一半的平方即可得到2313()24x +=【详解】解:移项得x 2+3x=1,方程两边都加上232⎛⎫ ⎪⎝⎭得,x 2+3x+232⎛⎫ ⎪⎝⎭=1+232⎛⎫ ⎪⎝⎭,∴2313(24x +=故选:B .【点睛】本题考查了解一元二次方程-配方法:先把常数项移到方程右边,再把二次项的系数化为1,然后两边加上一次项系数的一半的平方,使方程左边变形为完全平方式.10.D 【分析】顶点式:y=a (x-h )2+k (a ,h ,k 是常数,a≠0),其中(h ,k )为顶点坐标.【详解】解:由图知道,抛物线的顶点坐标是(1,-8)故二次函数的解析式为y=2(x-1)2-8故选D .【点睛】本题考查由顶点坐标式看出抛物线的顶点坐标,y=a (x-h )2+k 的顶点坐标是(h ,k ).11.21(2)12y x =+-【解析】【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】解:y=21212x x ++=12(x 2+4x+4)-2+1=12(x+2)2-1,即y=21(2)12x +-.故答案为:21(2) 1.2x +-【点睛】二次函数的一般式和顶点式,掌握配方法是解题关键.12.7.5【解析】【分析】根据二次函数的图象关于对称轴对称并观察表格知当x=3和当x=9时的函数值相等,据此可以求得当x=9时的函数值.【详解】解:∵二次函数的图象关于对称轴对称,且观察表格知当x=4和当x=8时的函数值相等,∴当x=3和当x=9时的函数值相等,∵当x=3时y=7.5,∴当x=9时y=7.5.故答案为7.5.【点睛】本题考查了二次函数的图象,解题的关键是通过观察表格找到规律,也可以用待定系数法求得函数的解析式后再求函数值.13.268y x x =++【分析】先确定A (0,8),则表示出B 点坐标(-b ,8)(b >0),利用点C 为OB 的中点可得到C(-12b ,4),根据抛物线的顶点坐标公式得到248b 4⨯-=4,解得b=4或b=-4(舍去),所以抛物线解析式为y=x 2+4x+8=(x+2)2+4,则D (-2,0),然后设平移后的抛物线解析式为y=x 2+mx+n ,再把A 点和D 点坐标代入得到m 、n 的方程组,接着解方程组求出m 、n 即可.【详解】解:当x=0时,y=x 2+bx+8=8,则A (0,8),∵AB ∥x 轴,∴B 点的纵坐标为8,当y=8时,x 2+bx+8=8,解得x 1=0,x 2=-b ,∴B (-b ,8)(b >0),∵点C 为OB 的中点,∴C (-12b ,4),∵C 点为抛物线的顶点,∴248b 4⨯-=4,解得b=4或b=-4(舍去),∴抛物线解析式为y=x 2+4x+8=(x+2)2+4,∴抛物线的对称轴为直线x=-2,∴D (-2,0),设平移后的抛物线解析式为y=x 2+mx+n ,把A (0,8),D (-2,0)代入得,8420n m n =⎧⎨-+=⎩,解得m 68n =⎧⎨=⎩,所以平移后的抛物线解析式为y=x 2+6x+8.故答案为y=x 2+6x+8.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了抛物线的几何变换.14.①②④【分析】由上表得与y 轴的交点坐标为(0,-8);与x 轴的一个交点坐标为(-2,0);函数图象有最低点(1,-9);有抛物线的对称性可得出与x 轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y 为-5.从而可得出答案.【详解】由上表得与y 轴的交点坐标为(0,-8);函数图象有最低点(1,-9);由列表可得:与x 轴的一个交点坐标为(-2,0),由有抛物线的对称性可得出与x 轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y 为-5,所以:①抛物线的顶点坐标为(1,-9);②与y 轴的交点坐标为(0,-8);③与x 轴的交点坐标为(-2,0)和(4,0);④当x=-1时,对应的函数值y 为-5.故答案是:①②④.【点睛】考查了用函数图象法求一元二次方程的近似根,体现了数形结合的思想方法.15.m≤2且m≠1【解析】∵关于x 的一元二次方程(m ﹣1)x 2﹣2mx+(m+2)=0有实数根,∴2)210(4(1)(2)0m m m m --≠⎧⎨∆=--+≥⎩,解得m≤2且m≠1.故答案为m≤2且m≠1.16.S=1 16c2【详解】试题分析:先根据正方形的周长得到正方形的边长,再根据正方形的面积公式即可得到结果.由题意得考点:正方形的周长和面积公式点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.17.0【分析】把x=1代入方程,可求m,再把m的值代入方程,可得x2-x=0,利用因式分解法可解方程,从而可求另一根.【详解】解:∵x=1是方程x2-mx=0的解,∴1-m=0,∴m=1,∴x2-x=0,解得x1=0,x2=1.故答案为0.【点睛】本题考查了一元二次方程的解.方程的解是使等式成立的未知数的值,直接代入方程,求出m即可.18.(答案不唯一).【详解】试题分析:一个二次项系数是1,两个实根之和为5的一元二次方程可以为:()()x1 x 40--=,即(答案不唯一).试题解析:考点:1.开放型;2.一元二次方程定义.19.0a ≤【分析】这个式子先移项,变成(x+3)2=-a ,再根据方程(x+3)2+a=0有解,则-a 是非负数,从而求出a 的取值范围.【详解】解:∵方程(x+3)2+a=0有解,∴-a≥0,则a≤0.【点睛】本题考查了解一元二次方程,一个数的平方一定是非负数.20.2【解析】h=20t-5t 2=-5(t-2)2+20,∵-5<0,∴函数有最大值,则当t=2时,球的高度最高.故答案为2.21.(1)12x =+,22x =()123x =-,21x =-.【解析】【分析】(1)找出a ,b ,c 的值,计算出根的判别式大于0,代入求根公式即可求出解;(2)方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:(1)这里a=1,b=-4,c=1,∵△=16-4=12,∴2b b ac x a-±==2±;()()2 2(3)230x x +-+=,()()3320x x ++-=,30x +=或320x +-=,所以13x =-,21x =-.【点睛】此题考查了一元二次方程的解法,熟练掌握各种解法是解本题的关键.22.(1)x 2+2x ;(2)x 2+2x=15.【分析】(1)长方体运输箱底面的宽为x m ,则长为(x +2)m ;容积=长×宽×高;(2)令(1)代数式表示出的容积=15即可.【详解】(1)长方体运输箱底面的宽为x m ,则长为(x+2)m .容积为x (x+2)×1=x 2+2x ;(2)x 2+2x=15.【点睛】本题考查了一元二次方程的应用---几何问题,仔细审题,找出题目中的等量关系是解答本题的关键.23.()1P 、Q 两点从出发开始到5秒时四边形PBCQ 的面积为233cm ;()2从出发到1.6秒或4.8秒时,点P 和点Q 的距离是10cm .【分析】(1)设P 、Q 两点从出发开始到x 秒时四边形PBCQ 的面积为33cm 2,则PB=(16-3x )cm ,QC=2xcm ,根据梯形的面积公式可列方程:12(16-3x+2x )×6=33,解方程可得解;(2)作QE ⊥AB ,垂足为E ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解.【详解】(1)设P 、Q 两点从出发开始到x 秒时四边形PBCQ 的面积为33cm 2,则PB=(16-3x )cm ,QC=2xcm ,根据梯形的面积公式得12(16-3x+2x )×6=33,解之得x=5,(2)设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,作QE ⊥AB ,垂足为E ,则QE=AD=6,PQ=10,∵PA=3t ,CQ=BE=2t ,∴PE=AB-AP-BE=|16-5t|,由勾股定理,得(16-5t )2+62=102,解得t 1=4.8,t 2=1.6.答:(1)P 、Q 两点从出发开始到5秒时四边形PBCQ 的面积为33cm 2;(2)从出发到1.6秒或4.8秒时,点P 和点Q 的距离是10cm .【点睛】(1)主要用到了梯形的面积公式:S=12(上底+下底)×高;(2)作辅助线是关键,构成直角三角形后,用了勾股定理.24.()1245y x x =-+.(2)抛物线开口向上,对称轴为直线2x =,顶点坐标为()2,1;()312y y <.【分析】(1)把点A 、B 的坐标代入函数解析式,根据待定系数法列式求解即可.(2)配成顶点式,再根据二次函数的性质求解.(3)根据函数的增减性进行解答即可.【详解】解:()1∵抛物线2y x bx c =++经过点()0,5A 和()3,2B 点,∴5932c b c =⎧⎨++=⎩,解得:45b c =-⎧⎨=⎩,∴抛物线的解析式是:245y x x =-+.(2)2245(2)1y x x x =-+=-+,∵10a =>,∴抛物线开口向上,对称轴为直线2x =,顶点坐标为()2,1.()3∵()1,A m y 比()21,B m y +离对称轴2x =近,∴12y y <.【点睛】主要考查了用待定系数法求二次函数的解析式、二次函数的性质,熟练掌握相关性质是解题的关键.25.(1)若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.()2因为让利于顾客,所以定价定为8元.【分析】(1)根据等量关系:每千克水果的利润×每天的销售量=每天的总利润420元,可列出方程,解方程即可;(2)让定价尽量小即可让利于顾客.【详解】解:(1)若该水果店每天销售这种水果所得利润是420元,设单价应为x 元,由题意得:(x-5)[160-20(x-7)]=420,化简得,x 2-20x+96=0,解得x 1=8,x 2=12.答:若该水果店每天销售这种水果所得利润是420元,则单价应为8元或12元.(2)因为让利于顾客,所以定价定为8元.【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.(1)21 14y x =-;(2)见解析;(3)2.【解析】【分析】(1)根据点C 坐标,可得c=-1,然后根据AO=2CO,可得出点A 坐标,将点A 坐标代入求出b 值,即可得出函数解析式;(2)假设存在直线l 使得点D 到直线l 的距离与OD 的长恒相等,设出点D 坐标,分别求出OD 和点D 到直线l 的距离,然后列出等式求出t 的值;(3)作EN ⊥直线l 于点G,FH ⊥直线l 于点H,设出点E 、F 坐标,表示出点M 的纵坐标,根据(2)中得出的结果,代入结果求出M 纵坐标的最小值.【详解】()1∵()0,1c -,∴2114y x bx =+-,又∵2AO OC =,∴点A 坐标为()2,0-,代入得:1210b --=,解得:0b =,∴解析式为:2114y x =-;()2假设存在直线l 使得点D 到直线l 的距离与OD 的长恒相等,设21,14D a a ⎛⎫- ⎪⎝⎭,则2114OD a ===+,点D 到直线l 的距离:2114a t -+,∴22111144a t a -+=+,解得:2t =,∵1t <-,∴2t =-,故当2t =-时,直线l 使得点D 到直线l 的距离与OD 的长恒相等;()3作EN ⊥直线l 于点N ,FH ⊥直线l 于点H ,设()11,E x y ,()22,F x y ,则12EN y =+,22FH y =+,∵M 为EF 中点,∴M 纵坐标为:()()12222222EN FH y y EN FH -+-++==-,由()2得:EN OE =,FH OF =,∴1222222y y EN FH OE OF +++=-=-,要使M 纵坐标最小,即22OE OF +-最小,当EF 过点O 时,OE OF +最小,最小值为8,∴M 纵坐标最小值为822222OE OF +-=-=.【点睛】本题考查了二次函数的综合知识,涉及到抛物线解析式的求法,点到直线的距离、两点间的距离等知识,涉及到的知识点比较多,难度比较大,是中考中的压轴题.。
人教版九年级上册数学第一次月考试题一、单项选择题。
(每小题3分,共30分)1.下列方程中,是关于x 的一元二次方程的是()A .2130x x++=B .220xy x +=C .252x x =-D .20ax bx c ++=2.小明在解方程220x x -=时,只得出一个根2x =,则漏掉的一个根是()A .2x =-B .0x =C .1x =D .3x =3.二次函数2231y x x =-+图象一定过点()A .()1,1-B .(),215-C .()0,1-D .()3,74.若1x 、2x 是一元二次方程2280x x --=的两个根,则1212x x x x +-的值是()A .10B .8-C .6-D .25.将抛物线()212y x =-+向左平移1个单位,再向下平移5个单位后所得抛物线的解析式为()A .()227y x =-+B .()223y x =-+C .23y x =-D .27y x =+6.对于二次函数()=+-2y x 12的图象,下列说法正确的是()A .开口向下B .对称轴1x =C .顶点坐标()1,2--D .与x 轴无交点7.有1个人得了流感,经过两轮传染共有144人患流感,则第三轮后共有()人患流感.A .1000B .1331C .1440D .17288.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图像可能是()A .B .C .D .9.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是()A .k>-14B .k>-14且0k ≠C .k<-14D .k ≥-14且0k ≠10.抛物线2(0)y ax bx c a =++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是1x =.下列结论中:①0abc <;②20a b +=;③0a c +>;④若点(),A m n 在该抛物线上,则2am bm c a b c ++≤++.⑤方程24ax bx c ++=有两个不相等的实数根;其中正确的有()A .5个B .4个C .3个D .2个二、填空题11.一元二次方程290x -=的解是______.12.二次函数245y x x =-+的顶点坐标是__________.13.关于x 的方程22(2)(3)20mm x m x --+--=是一元二次方程,则m 的值为____.14.关于x 的一元二次方程x 2﹣x+m=0没有实数根,则m 的取值范围是______.15.一元二次方程23100x x +-=的两个根是12x =-,253x =,那么二次函数2310y x x =+-与x 轴的交点坐标是________.16.a 是方程210x x +-=的一个根,则代数式3222007a a ++的值是________.17.如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC ∆与ABD ∆的面积比为1:3,则k 值为________.三、解答题18.解方程2340x x +-=.19.一个二次函数,当自变量0x =时,函数值1y =-,且过点()2,0-和点1,02⎛⎫⎪⎝⎭,求这个二次函数的解析式.20.某家快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均增长率.21.已知关于x 的一元二次方程2240x x m --=.(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根1x 、2x 满足1229x x +=,求m 的值.22.已知二次函数y=x 2-2x-3.(1)用配方法把y=x 2-2x-3化为y=a (x-h )2+k 的形式为__________(2)完成下表,并在平面直角坐标系中画出这个函数图像.x ……y……(3)结合图像回答:不等式2230x x --<的解集是.23.王老师对小明推铅球的录像进行技术分析,发现铅球行进的高度(m)y 与水平距离(m)x 之间的关系可以表示为2+112243y x x =-+,铅球从出手到落地的路线如图所示.(1)求铅球出手点的离地面的高度OA 是多少米?铅球推出的水平距离OB 是多少米?(2)求铅球推出的水平距离是多少米时铅球到达最高点?24.如图,用长为6m 的铝合金条制成“日”字形窗框,若窗框的宽为xm ,窗户的透光面积为ym 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式(结果要化成一般形式);(2)能否使窗的透光面积达到2平方米,如果能,窗的高度和宽度各是多少?如果不能,请说明理由.(3)窗的宽度为多少米时,窗户的透光面积最大?并求出此时的最大面积.25.如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 过A ,B ,C 三点,点A 的坐标是(3,0),点C 的坐标是(0,﹣3),动点P 在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x 轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考答案1.C2.B3.B4.A5.C6.C7.D8.D9.B10.B11.x 1=3,x 2=﹣3.12.(2,1)13.2-14.m>0.2515.()2,0-,5,03⎛⎫ ⎪⎝⎭16.200817.118.14x =-,21x =19.2312y x x =+-20.10%.21.(1)证明见解析;(2)22.(1)()214y x =--;(2)见解析;(3)1x <-或3x >23.(1)铅球出手点离地面的高度是2米,铅球推出的水平距离DB 是12米;(2)铅球推出水平距离是4米时到达最高点,最高点是83米24.(1)233(02)2y x x x =-+<<;(2)不能使窗的透光面积达到2平方米,理由见解析;(3)窗的宽度为1米时,面积最大为32平方米25.(1)y =x 2﹣2x ﹣3;(2)315,24P ⎛⎫- ⎪⎝⎭;(3)存在,点P 的坐标为(1,﹣4)或(﹣2,5).。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程是一元二次方程的是()A .21x y +=B .2243x x +-C .134x x+=D .220x -=2.一元二次方程2410x x --=配方后可化为()A .()225x +=B .()223x +=C .()225x -=D .()223x -=3.二次函数2y x =-图象的顶点坐标为()A .(0,0)B .(-1,0)C .(1,0)D .(0,-1)4.一元二次方程2230x x -+=的根的情况是()A .方程没有实数根B .方程有两个相等的实数根C .方程有两个不相等的实数根D .无法判断方程实数根情况5.将二次函数23y x =-的图象沿x 轴向左平移2个单位长度后得函数为()A .()232y x =--B .232y x =--C .232y x =-+D .()232y x =-+6.某次球赛共有x 个队参加,每两个队之间打一场比赛,共打了171场,由题意可列出的方程是()A .1(1)1712x x -=B .(1)171x x -=C .2(1)171x x +=D .(1)171x x +=7.已知函数()212y x =-++的图象上两点A (1,n )与B (-3,m ),则正确的是()A .n m>B .n m=C .n <mD .无法确定8.若x =-1是关于x 的一元二次方程210+-=ax bx 的一个根,则2022-2a+2b 的值为()A .2019B .2020C .2021D .20229.同一直角坐标系中,函数231y x y x =-=-与的交点在()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限10.二次函数y =ax 2+bx +c(a≠0,a ,b ,c 为常数)的图象如图所示,则ax 2+bx +c =m 有实数根的条件是()A .m≤-2B .m≥-2C .m≥0D .m >4二、填空题11.已知抛物线2(5)y a x =-的开口向下,则a 的取值范围为________12.若关于x 的方程220x x k -+=有两个不相等的实数根,则k 的取值范围为________13.二次函数223y x x =+-的图像与x 轴有_________个交点.14.一个三角形的两边长分别为3和5,第三边长是方程28160x x -+=的根,则该三角形的面积为________15.已知2222(2)()15a b a b +++=,那22a b +的值是________16.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ab >0;②a+b ﹣1=0;③a >1;④关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣1a.其中正确结论的序号是_____.三、解答题17.解方程:(1)2410x x -=+(2)()()2322x x x -=-18.已知一元二次方程220x mx m --=的一个根是12-.求m 的值和方程的另一个根.19.已知二次函数223y x x =--(1)用配方法223y x x =--把化为2()y a x h k =-+的形式(2)完成下表,并在平面直角坐标系中画出这个函数图像.x ……y……(3)结合图像回答:当-1<x <2时,函数值y 的取值范围.20.今年疫情期间,某家快递公司业务迅速增长,统计3月份与5月份完成投递的快递总件数分别为10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)按照这个速度,6月份完成投递的快递总件数为多少件?21.已知关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0.(1)求证:无论k 取何值,此方程总有实数根;(2)若等腰△ABC 的一边长a =3,另两边b 、c 恰好是这个方程的两个根,求k 值多少?22.2020年上半年疫情牵动万人心,每个人都在为抗击疫情而努力.某厂改造了10条口罩生产线,每条生产线每天可生产口罩400个.如果每增加一条生产线,每条生产线就会比原来少生产20个口罩.设增加x 条生产线后,每条生产线每天可生产口罩y 个.(1)直接写出y 与x 之间的函数关系式;(2)设该厂每天可以生产的口罩w 个,请求出w 与x 的函数关系式,并求出增加多少条生产线时,每天生产的口罩数量最多,最多为多少个?23.如图,抛物线2y x bx c =-++经过直线4y x =-+与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D (1)求此抛物线的解析式及D 点坐标;(2)若点M 为在x 轴上方的抛物线上的一个动点,当ACM △与ABC 的面积相等,求此时点M 的坐标.24.如图,在ABC 中,∠ACB=90°,BC=BD ,AC=AE .连结DC ,CE .(1)求∠DCE 的度数.(2)设BC=a ,AC=b .①线段BE 的长是关于x 的方程2220x bx a +-=的一个根吗?说明理由.②若D 为AE 的中点,求ab的值.25.已知关于x 的二次函数y =ax 2﹣4ax+a+1(a >0)(1)若二次函数的图象与x 轴有交点,求a 的取值范围;(2)若P (m ,n )和Q (5,b )是抛物线上两点,且n >b ,求实数m 的取值范围;(3)当m≤x≤m+2时,求y 的最小值(用含a 、m 的代数式表示).参考答案1.D 2.C 3.A 4.A 5.D6.A 7.B 8.B 9.B 10.B 11.a <5.12.k <1.13.214.6.15.3.16.②③④17.(1)1x 2=-,2x 2=-(2)12x 2,x 3==.18.1m =,方程的另一个根为119.(1)()214y x =--;(2)填表,作图见解析;(3)4-<y <0.20.(1)10%;(2)13.31万件.21.(1)详见解析;(2)k =32或2.22.(1)40020y x =-;(2)()22054500w x =--+(020x ≤≤且x 为整数),增加5生产线时,每天生产的口罩数量最多,最多为4500个.23.(1)234y x x =-++,32524D ⎛⎫⎪⎝⎭,;(2)()04M ,或()34.M ,24.(1)45︒;(2)①线段BE 的长是关于x 的方程2220x bx a +-=的一个根,理由见解析;②3.425.(1)a≥13;(2)m <﹣1或m >5;(3)y 的最小值为:am 2﹣3a+1或﹣3a+1或am 2﹣4am+a+1.。
重庆市第七中学校 2024-2025学年九年级上学期第一次月考数学试题一、单选题1.在2, 1.7-,0)A .2 BC .0D . 1.7-2.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成这四个图案中是中心对称图形的是( )A .B .C .D . 3.抛物线()235y x =-+的顶点坐标是( )A .(3,5-)B .(3-,5)C .(3,5)D .(3-,5-) 4.如图,50AOB ∠=︒,CD OB ∥交OA 于E ,则AEC ∠的度数为( )A .50︒B .100︒C .120︒D .130︒5.若两个相似三角形的面积之比为4:9,则它们的边长之比为( )A .4:9B .2:3C .3:2D .9:46.如图,在ABC V 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B7的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间8.观察下列图形的规律,依照此规律第6个图形中共有( )个点.A .60B .63C .66D .699.如图,正方形ABCD 中,E 为BC 边上一点,连接DE ,将DE 绕点E 逆时针旋转90︒得到EF ,连接DF 、BF ,若ADF α∠=,则EFB ∠一定等于( )A .αB .45α︒-C .903α︒-D .12α 10.有n 个依次排列的算式:第1项是2a ,第2项是221a a ++,用第2项减去第1项,所得之差记为1b ,将1b 加2记为2b ,将第2项与2b 相加作为第3项,将2b 加2记为3b ,将第3项与3b 相加作为第4项,……,以此类推.某数学兴趣小组对此展开研究,得到3个结论①529b a =+;②若第6项与第5项之差为4057,则2024=a ;③当n k =时,212342k b b b b b ak k +++++=+L ;其中正确的个数是( )A .0B .1C .2D .3二、填空题11.112cos302-⎛⎫+︒= ⎪⎝⎭. 12.将抛物线22y x =向下平移3个单位长度,得到新的抛物线的解析式是.13.某种茶叶的价格两次下降,每次下降的百分率相同,原来每袋125元,现在每袋80元,则每次下降的百分率是.14.已知一个正多边形的内角为140︒,这个多边形的条数为.15.如图,已知公路l 上A ,B 两点之间的距离为20米,点B 在C 的南偏西30°的方向上,A 在C 的南偏西60°方向上,则点C 到公路l 的距离为米.16.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于.17.若关于x 的一元一次不等式组234223x m x +≤⎧⎪+⎨<-⎪⎩的解集是2x <-,且关于y 的分式方程322m y y y-=--有非负整数解,则符合条件的所有整数m 的和为. 18.如果一个四位自然数M 各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M 为“会意数”.把四位数M 的前两位数字和后两位数字整体交换得到新的四位数M '.规定()99M M F M '-=.例如:2335M =,∵235+=,358+=,∴ 2335是“会意数”.则()3523233523351299F -==.那么“会意数”4162N =,则()F N =;已知四位自然数S abcd =是“会意数”,(4b ≤,7d ≤,且a 、b 、c 、d 均为正整数),若()F S 恰好能被8整除,则满足条件的数S 的最大值是.三、解答题19.计算:(1)(x +y )2+(2x +y )(x ﹣2y ) (2)22293()211x x x x x x -+÷--+- 20.如图,已知ABC V ,BD 平分ABC ∠.(1)用尺规完成以下基本作图:作BD 的垂直平分线交AB 于点E ,交BC 于点F ,交BD 于点G ,连接DE ,DF .(保留作图痕迹,不写作法,不下结论)(2)求证:四边形BFDE 是菱形证明:BD Q 平分ABC ∠∴①∵EF 垂直平分BD∴BE DE =,GB GD =1EDB ∴∠=∠2EDB ∠∠∴=∴②在BGF V 和DGE △中2EDB GB GDBGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BGF DGE ∴V V ≌∴③BF ED ∥Q∴四边形BFDE 是平行四边形∵④∴平行四边形BFDE 是菱形(⑤)21.为了解七、八年级学生对消防知识的掌握情况,某校对七年级和八年级学生进行了消防知识的测试,现从中各随机选出20名同学的成绩进行分析,将学生成绩分为A 、B 、C 、D 四个等级.分别是A :70x <,B :7080x ≤<,C :8090x ≤<,D :90100x ≤≤,其中,七年级学生的成绩为:66,75,76,78,79,81,82,83,84,86,86,88,88,88,91,92,94,95,96,96.八年级等级C 的学生成绩为:87,81,86,83,88,82,89.两组数据的平均数、中位数、众数、方差如下表:根据以上信息,解答下列问题:(1)填空:a =______,b =______,m =______.(2)根据以上数据,你认为在此次知识测试中,哪个年级的成绩更好?请说明理由;(一条理由即可)(3)若该校七年级有800名学生参加测试,八年级有740名学生参加测试,请估计两个年级参加测试学生中成绩优秀(大于或等于90分)的学生共有多少人?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,5AB =.动点P 以每秒1个单位长度的速度从点C 出发,沿折线C A B →→运动,到达B 点时停止运动.设点P 的运动时间为t 秒()08t <<,BCP V 的面积为y .(1)请直接写出y 关于t 的函数表达式,并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出当BCP V 的面积小于3时t 的值.24.第三届智跑重庆国际城市定向赛暨重庆(大渡口)体育旅游节于2024年4月13日至21日在重庆市大渡口区举行.如图,A 为比赛起点,比赛途经点B 在起点A 的正东方向,比赛途经点C 在点A 的北偏东60︒方向,相距1200米,且点C 在途经点B 的正北方向:途经点D 在点C 的北偏西30︒方向,相距2400米;终点E 在点D 的正西方,点E 在点B 的西北方向. 1.41≈ 1.73≈ 2.45≈)(1)求ED 的长度.(结果精确到1米)(2)小明和小李参与了该越野赛,两人从起点A 出发前往终点E ,小明选择的定向路线为A C D E ---.小李选择的定向路线为A B E --.请问小明和小李的比赛路线谁更短?并说明理由.25.已知在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠经过点()1,0A -、()3,0B 、()0,3C 三点,点D 和点C 关于抛物线对称轴对称,抛物线顶点为点G .(1)求该抛物线的解析式;(2)连接CG 、BG ,求GCB △的面积;(3)若点M 在抛物线上,在抛物线对称轴上是否存在一点N ,使得A 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标,若不存在,请说明理由.26.在ABC V 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点,连接AD ,将AD 绕着D 点逆时针方向旋转90°得到DE ,连接AE .(1)如图1,AH BC ⊥,点D 恰好为CH 中点,AE 与BC 交于点G ,若4AB =,求AE 的长度;(2)如图2,DE 与AB 交于点F ,连接BE ,在BA 延长线上有一点P ,PCA EAB ∠=∠,求证:AB AP =;(3)如图3,DE 与AB 交于点F ,且AB 平分EAD ∠,点M 为线段AF 上一点,点N 为线段AD 上一点,连接DM MN ,,点K 为DM 延长线上一点,将BDK V 沿直线BK 翻折至BDK V 所在平面内得到BQK △,连接DQ ,在M ,N 运动过程中,当DM MN +取得最小值,且DKQ ∠=︒45时,请直接写出DQ BC的值.。
和县二中2021-2021学年度第一学期九年级第一次月考数 学 试 题一、选择题〔每题4分,共40分〕1、以下式子中二次根式的个数有〔 〕 ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x . A 、2个B 、3个C 、4个D 、5个2、与32-相乘,结果为1的数是〔 〕 A 、3 B 、32- C 、32+ D 、23-3、以下属于一元二次方程是〔 〕A 、0232=-xx B 、322++x x C 、()03=-a a D 、()()()541422--=-x x x 4、以下各式中,最简二次根式是〔 〕A 、32 B 、22+a C 、a 8 D 、23a5、把(a -1)11-a根号外的因式移入根号内,其结果是〔 〕 A 、1-a B 、-1-a C 、a -1 D 、-a -16、0和-1都是某个方程的根,那么此方程是〔 〕A 、012=-xB 、0)1(=+x xC 、02=-x xD 、0122=++x x 7、假设2<x ,化简442+-x x 的结果〔 〕A 、2-xB 、x -2C 、 2+xD 、x --2 8、关于的方程022=+-k x x 有实数根,那么k 的取值范围是〔 〕A 、1<kB 、1≤kC 、1-≤kD 、1≥k 9、直角三角形两直角边和为7,面积为6,那么斜边长为〔 〕 A 、5 B 、37 C 、7 D 、3810、某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,假设利润平均每月的增长率为x,那么依题意列方程为〔 〕A 、()75.821252=+x B 、75.825025=+xC 、()75.82125252=++x D 、()()[]75.82111252=++++x x二、填空题〔每题5分,共20分〕11、式子x 31-有意义,那么x 的取值范围是12、假设两个最简二次根式x x 32+与15+x 可以合并,那么x = .13、方程〔3-2x 〕〔x +5〕=-6x +14化为一般形式是________ ________. 14、观察以下各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n ≥1)的代数式表示出来是 .三、〔本大题共2小题,每题8分,共16分〕15、计算:〔1〕⎪⎭⎫⎝⎛-⋅⋅102132531〔2〕⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+a a b a b a b a a a 146932216、解方程:〔1〕()()2225+=+y y y 〔2〕01522=+-x x四、〔本大题共2小题,每题8分,共16分〕17、1=x 是一元二次方程()012122=---+m x m x m 的一个根.求m 的值,并写出此时的一元二次方程的一般形式.18、假设x,y 为实数,且144+-+-=x x y ,求xy 的值.五、〔本大题共2小题,每题10分,共20分〕 19、x +1x = 4, 求x - 1x的值.20、在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直,〔如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m 2,问道路应为多宽?六、〔本大题总分值12分〕21、阅读理解:我们把dc ba 称作二阶行列式,规定他的运算法那么为bc ad dcb a -=.如243525432-=⨯-⨯=.〔1〕计算:2421622;〔2〕如果0213=+xx ,求x 的值.七、〔本大题总分值12分〕22、〔1〕探索:解以下方程,将得到的两根21,x x 和2121,x x x x ⋅+的值填入下面的表格.方 程1x2x21x x +21x x ⋅0432=-+x x0122=-+x x02532=+-x x〔2〕猜测:2121,x x x x ⋅+的值与一元二次方程()002≠=++a c bx ax 〔21,x x 是其两个根〕的各项系数c b a ,, 之间有何关系?〔3〕利用一元二次方程的求根公式证明〔2〕中的猜测.八、〔本大题总分值14分〕23、在以下图中每个正方形都有边长为1的小正方形组成: 〔1〕观察图形填写以下表格:正方形边长 1 3 5 7 … n(奇数)黑色小正方形个数…正方形边长 2 4 6 8 … n(偶数)黑色小正方形个数…〔2〕在边长为n 〔n ≥1〕的正方形中,设黑色小正方形的个数为P 1 ,白色小正方形的个数为P 2,问是否存在偶数n ,使P 2=5P 1 ? 假设存在,请求出n 的值;假设不存在,请说明理由.参考答案一、选择题:1-10 B C C B B B B B A D 二、填空题:n=1 n=2 n=3 n=4 n=5 n=611、31≤x 12、-5 13、0122=-+x x 14、()21121++=++n n n n 三、计算:15、(1〕34- (2)ab a a 43+16、〔1〕25,221=-=y y 〔2〕4175,417521-=+=x x 四、17、0=m 012=-x 18、2五、19、32± 20、1m 六、20、〔1〕32 〔2〕324--=x 七、 22、〔1〕〔2〕ax x a x x =⋅-=+2121, 〔3〕略八、〔1〕依次:1,5,9,13,2n-1 ; 依次:4,8,12,16,2n 〔2〕存在,n=12初三第一学期月考试卷数学初三一、选择题〔每题3分,共27分〕 题号 1 2 3 4 5 6 7 8 9 答案1.方程(1)x x x -=的根是〔 〕 A.122,0x x ==B.2x =-C.122,0x x =-=D.2x =2.方程20x =的实数根的个数是〔 〕 A.1个B.2个C.03.某型号的 连续两次降价,每个售价由原来的1185元降到了580x ,那么列出方程正确的选项是〔 〕 A.2580(1)1185x += B.21185(1)580x += C.21185(1)580x -=D.2580(1)1185x -=4.假设实数x 、y 满足(3)(1)0x y x y +++-=,那么x y +的值为〔 〕 A.1B.2-C.2或1-D.2-或15.方程2650x x +-=的左边配成完全平方后所得方程为〔 〕 A.2(3)14x +=B.2(3)14x -=C.21(6)2x +=6.如图,ABC △的三点都在O 上,AB 是直径,50BAD ∠=︒,那么ACD ∠的度数是〔 〕 A.40︒B.50︒C.55︒D.60︒7.如图,O 的直径为8cm ,弦CD 垂直平分半径OA ,那么弦CD 的长为〔 〕 A.3cmB.23cmC.43cmD.83cm6题图 7题图 8题图8.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,那么以下结论中不一定成立的是〔 〕A.COB BOD ∠=∠B.CE DE =C.OE BE =D.BD =BC9.如图:在O 中,直径AB 垂直于弦CD ,垂足为P ,假设PA = 1,PB =4,那么CD 的长为〔 〕 A.5B.25C.2D.4二、填空题〔每题3分,共21分〕 题号 10 11 12 13 14 15 16 答案10.如图,O 的半径为5,弦AB =8, P 是弦AB 上一任意一点,那么OP 的取值范围是 .11.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将BCE △绕点C 顺时针方向旋转90︒得到DCF △,连结EF ,假设60BEC ∠=︒,那么EFD ∠的度数为 . 12.假设一个三角形的三边长均为满足方程2680x x -+=,那么此三角形的周长为 .13.关于x 的一元二次方程220x mx m -+=的一个根为1,那么方程的另一根为 . 14.如果二次三项式226x x m -+是一个完全平方式,那么m 的值是 .15.关于x 的方程22(2)2(1)10k x k x --++=有两个不相等的实数根,那么k 的取值范围是 . 16.假设21(1)1xx --=,那么x = .三、解以下一元二次方程〔每题5分,共25分〕17.2(3)2(3)0y y y -+-= 18.2(21)9x -=19.24630m m --= 20.21202x x -+=21.2124n n --=0四、解答题〔22至26题,每题8分,27题7分〕 22.在如下图的平面直角坐标系中,有△ABC .〔1〕将ABC △向x 轴负半轴方向平移4个单位得到111A B C △,画出图形并写出点1A 的坐标.〔2〕以原点O 为旋转中心,将ABC △顺时针旋转90︒后得到222A B C △,画出图形并写出点2A 的坐标.〔3〕222A B C △可以看作是由111A B C △先向右平移4个单位,然后以原点O 为旋转中心,顺时针旋转90︒得到的.除此之外,222A B C △还可以由111A B C △经过旋转变换得到,请在图中找出旋转中心.23.某商店从厂家以每件21a 元,那么可以卖出(35010)a -件,但物价局限定每件商品加价不能超过进价的20%.商店方案要赚400元,需要卖出多少件商品?每件商品应售价为多少元? 24.〔1〕如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .〔2〕如图8,OAB △固定不动,保持OCD △的形状和大小不变,将OCD △绕着点O 旋转〔OAB △和OCD △不能重叠〕,求AEB ∠的大小.25.1240m <<,且关于x 的二次方程222(1)0x m x m -++=有两个整数根,求整数m .26.如图,BC 为O 的直径,AD BC ⊥于D ,AB AF =,BF 与AD 交于点E .求证:AE BE =.27.课堂上,老师将图①中AOB △绕O AOB △旋转90︒时,得到11A OB ∠.(4,2)A 11A OB △的面积是 .1A 的坐标为〔 , 〕,1B 的坐标为〔 , 〕课后,小玲和小惠对该问题继续进行探究,将图②中AOB △绕AO 的中点(2,1)C 时针旋转90︒得到A O B '''△,设O B ''交OA D ,′ O A ''交x 轴于E .此时,A O ''和B '坐标分别为(1,3),(3,1)-和(3,2)且O B ''过B 旋转过程中,小玲和小惠发现旋转中的三角形与AOB △重叠局部的面积不断变小,旋转到90︒时重叠局部的面积〔即四边形CEBD 的面积〕最小,求四边形CEBD C 面积.在〔2〕的条件下,求AOB △外接圆的半径.北京八一中学初三数学上统练2008-10-8班 姓名 成绩一、填空:1.关于x 的一元二次方程2(2)30x k x +--=的一个根是1,那么k = 4 .2.当a 5≠±时,关于方程22(5)70a x ax -+-=是一元二次方程.3.当x 为 1时 代数式2433x x x -+-的值为0. 4.如图,ABC ∆是等腰直角三角形,90ACB ∠=︒,4BC =,假设将ABC ∆绕点A 旋转45︒后得到AED ∆,点E 在线段AB 上,那么这个图形的旋转中心是 点A ;旋转角等于 45 度;AB =AD =42 B ∠= 45 度5.直线3y x =+上有一点(5,2)P m m -,那么点P 关于原点的对称点'P 为(7,4)。