八年级数学下册17.1勾股定理练习(新版)新人教版【含答案】
- 格式:doc
- 大小:340.52 KB
- 文档页数:8
2022-2023学年人教版八年级数学下册《17.1勾股定理》同步练习题(附答案)一.选择题1.已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A.5B.25C.D.5或2.△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或663.如图,Rt△ABC中,∠BAC=90°,分别以边AB,CA,BC向外作正方形,正方形ABIH 的面积为25,正方形BDEC的面积为169,则正方形ACFG的面积是()A.194B.144C.122D.1104.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a 与较长的直角边b的比的值是()A.B.C.D.6.如图是一正方体的平面展开图,若AB=6,则该正方体A、B两点间的距离为()A.2B.3C.4D.67.如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.28.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.149.如图,正方形ABCD的面积为15,Rt△BCE的斜边CE的长为8,则BE的长为()A.17B.10C.6D.710.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1条B.2条C.3条D.4条二.填空题11.把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.13.如图,已知OA=13,点A到射线OM的距离为5,点B是射线OM上的一个动点,当△AOB为等腰三角形时,线段OB的长度为.14.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点E,且AC=8,BC=5,则△BEC的周长是.15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,AC=6,则BD的长是.16.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…,依此法继续作下去,得OP2022=.三.解答题17.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.18.已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,△ACQ的面积是△ABC面积的;(3)当点Q在边CA上运动时,t为何值时,PQ将△ABC周长分为23:25两部分.19.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?20.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做可爱三角形.(1)根据可爱三角形的定义,等边三角形是可爱三角形吗?请说明理由;(2)若某三角形的三边长分别为2、、3,试判断该三角形是否为可爱三角形,请说明理由.21.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?22.已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)的差的绝对值来表示.(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),则AB两点的横向距离BC=,纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)中方法求线段MN的长.(用含m的式子表示)23.如图,在平面直角坐标系中有△ABC,AB=AC=13,BC=10,点C的坐标为(6,0),求A,B两点的坐标.24.如图,在平面直角坐标系中,点B,C的坐标分别为(﹣a,2a)、(3a,2a),其中a>0,点A为BC的中点,若BC=4,解决下列问题:(1)BC所在直线与x轴的位置关系是;(2)求出a的值,并写出点A,C的坐标;(3)在y轴上是否存在一点P,使得△P AC的面积等于5?若存在,求P的坐标;若不存在,请说明理由.25.如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.参考答案一.选择题1.解:当3和4都是直角边时,第三边长为:;当4是斜边长时,第三边长为:.故选:D.2.解:如图1,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=20,AD=12,∴BD===16,又∵AC=13,∴CD===5,∴BC=BD+CD=21,∴△ABC的面积=×21×12=126;如图2,BC=BD﹣CD=11,∴△ABC的面积=×11×12=66;综上所述,△ABC的面积为126或66,故选:D.3.解:在Rt△ABC中,∠BAC=90°,∴AB2+AC2=BC2,∵正方形ABIH的面积为25,正方形BDEC的面积为169,∴AB2=25,BC2=169,∴AC2=BC2﹣AB2=169﹣25=144,∴正方形ACFG的面积=AC2=144,故选:B.4.解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=(a+b)(a+b)=2××ab+c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b﹣)(a+)=ab+c c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.5.解:∵大正方形的面积是13,设边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴.故选:B.6.解:∵AB=6,∴该正方体的棱长为3=,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为3,故选:B.7.解:由作图可知,点D在线段AB的垂直平分线上,∴AD=BD=2,故选:D.8.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.9.解:∵正方形ABCD的面积为15,∴BC2=15,∠ABC=90°,∴∠EBC=90°,在Rt△BCE中,由勾股定理得:BE===7,故选:D.10.解:由勾股定理得,a=,b=.c=,d=2,∵无理数有,两个,故选:B.二.填空题11.解:6﹣4=2,2×2=4.故图2中小正方形ABCD的面积为4.故答案为:4.12.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.13.解:过A作AN⊥OM于N,则AN=5,∴ON===12,当△AOB为等腰三角形时,分三种情况:①当OA=AB时,如图1所示:∵AN⊥OM,∴ON=BN=12,∴OB=2ON=2×12=24;②OA=OB时,如图2所示:OB=13;③OB=AB时,如图3所示:设OB=AB=x,则BN=ON﹣OB=12﹣x,在Rt△ABN中,由勾股定理得:AN2+BN2=AB2,即52+(12﹣x)2=x2,解得:x=,∴OB=;综上所述,当△AOB为等腰三角形时,线段OB的长度为24或13或,故答案为:24或13或.14.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案是:13.15.解:作DE⊥AB于E,在Rt△ABC中,由勾股定理得,BC=,∵AD平分∠BAC,AC⊥DC,DE⊥AB,∴CD=DE,∴S△ABC=+=,∴6CD+10CD=48,∴CD=3,∴BD=BC﹣CD=8﹣3=5,故答案为:5.16.解:∵OP=1,OP1=,OP2=,OP3=,∴OP2022=.故答案为:.三.解答题17.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.18.解:(1)当t=2s时,点Q在边BC上运动,则AP=2cm,BQ=2t=4(cm),∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),∴PQ的长为2cm;(2)∵S△ACQ=CQ•AB,S△ABC=BC•AB,点Q在边BC上运动时,△ACQ的面积是△ABC面积的,∴CQ=BC=×6=2(cm),∴BQ=BC﹣CQ=6﹣2=4(cm),∴t==2,∴当点Q在边BC上运动时,t为2时,△ACQ的面积是△ABC面积的;(3)在Rt△ABC中,由勾股定理得:AC===10(cm),当点P达到点B时,t==8,当点Q达到点A时,t=+=,∵当其中一个点到达终点时,另一个点也随之停止,∴0≤t≤8,∵AP=tcm,∴BP=(8﹣t)cm,点Q在CA上运动时,CQ=1.5×(t﹣)=(1.5t﹣4.5)(cm),∴AQ=10﹣(1.5t﹣4.5)=(﹣1.5t+14.5)(cm),∴BP+BC+CQ=8﹣t+6+1.5t﹣4.5=(0.5t+9.5)(cm),AP+AQ=t+(﹣1.5t+14.5)=(﹣0.5t+14.5)(cm),分两种情况:①=,即=,解得:t=4,经检验,t=4是原方程的解,∴t=4;②=,即=,解得:t=6,经检验,t=6是原方程的解,∴t=6;综上所述,当点Q在边CA上运动时,t为4或6时,PQ将△ABC周长分为23:25两部分.19.解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形.20.解:(1)等边三角形是可爱三角形,理由:设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形是可爱三角形;(2)该三角形不是可爱三角形,理由:∵22=4,()2=17,32=9,∴22+()2≠2×32,22+32≠2×()2,()2+32≠2×22,∴该三角形不是可爱三角形.21.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.22.解:(1)BC=2﹣(﹣1)=3,AC=3﹣(﹣1)=4,由勾股定理得,AB=,故答案为:3,4,5;(2)∵MN的横向距离为m﹣1,纵向距离为2,∴MN====|m+3|,∵m>0,∴MN=m+3.23.解:过A作AD⊥BC于D,∵AB=AC,∴DC=BD=BC=5,∵点C的坐标为(6,0),∴OC=6,∴OD=1,OB=4,∴B(﹣4,0),在Rt△ADC中,根据勾股定理得AD=12,∴A(1,12);答:A,B两点的坐标分别是(1,12)、(﹣4,0).24.解:(1)平行,∵B与C的纵坐标相同,∴BC∥x轴,故答案为:平行;(2)∵BC=4,∴3a﹣(﹣a)=4,∴a=1,∴B(﹣1,2),C(3,2),∵A为BC的中点,∴A(1,2);(3)存在,设P(0,m),∵AC=2,∴,∴m=﹣3或7,∴P(0,﹣3)或(0,7).25.解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;(3)S△ABC=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).。
17.1 勾股定理练习题一、选择题1.如图所示,某公司举行周年庆典,准备在门口长25m,高7m的台阶上铺设红地毯,已知台阶的宽为3m,则一共需购买________m2的红地毯. ( C)A. 21B. 75C. 93D. 962如图所示,若∠A=60°,AC=20 m,则BC大约是(结果精确到0.1m) ( B)A.34.64 mB.34.6 mC.28.3 mD.17.3 m3.如图所示,字母B所代表的正方形的面积是( C)A.12B.13C.144D.1944.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为( A )5.如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( C )A.3米B.4米C.5米D.6米6.湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.50米B.120米C.100米D.130米7.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为( D)A. 12 cmB. 10 cmC. 8 cmD. 6 cm二、填空题8.在ABC中,C=90°,(1)若c=10,a:b=3:4,则a=__6__,b=__8_.(2)若a=9,b=40,则c=___41___.9.在 ABC中, C=90°,若AC=6,CB=8,则ABC面积为__24__,斜边为上的高为___4.8__.10.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=5;(2)若b=6,c=10,则a=8;(3)若a=5,c=13,则b=12;(4)若a=1.5,b=2,则c= 2.5.11、已知:数7和24,请你再写一个整数,使这些数恰好是一个直角三角形三边的长,则这个数可以是2512.如图,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为____24____m.三、解答题13.如图所示,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长; (2)求△ADB的面积.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,14.如图,已知长方形ABCD中,AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,求CE的长.15、如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CD16、如图,小颍同学折叠一个直角三角形的纸片,使A 与B 重合,折痕为DE ,若已知AC=10cm ,BC=6cm,你能求出CE 的长吗?解:连结BE由已知可知:DE 是AB 的中垂线,∴AE=BE设AE=xcm ,则EC=(10-x)cm在Rt △ABC 中,根据勾股定理:BE 2=BC 2+EC 2x 2=62+ (10-x)2解得x=6.8∴EC=10-6.8=3.2cm解得x=6.8∴EC=10-6.8=3.2cm。
人教新版八年级下学期《17.1 勾股定理》同步练习卷一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM=.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=时,才能使△ABC与△QPA全等.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.7.直角三角形的两条直角边分别为3和4,则斜边上的高为.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是cm.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.11.两边长分别为3和5的直角三角形的第三边长为.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是cm.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有个.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于cm2.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.25.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D 与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.28.如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB上一点,且DE=CE,求AE.29.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D,(1)求BC的长;(2)求AD的长.30.如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,(1)判断直线BE与AD的位置关系是;BE与AD之间的距离是线段的长;(2)若AD=6cm,BE=2cm,求BE与AD之间的距离及AB的长.31.如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.32.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.33.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(,);(2)点Q的坐标是(,);(3)x为何值时,△APQ是以AP为腰的等腰三角形?34.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为;(2)若连接AC,则以AC为一边的正方形的面积为;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为.35.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上;探索创新:(3)若△ABC中有两边的长分别为、(a>0),且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上.36.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.37.已知a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.38.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=.如果,其中b是整数,且0<c<1,那么b=,c=.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.39.如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.(1)设正方形MNPQ网格内的每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积;(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.40.在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.41.如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a、b,斜边为c.你能利用这个图形验证勾股定理吗?42.在数轴上作出表示的点.43.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=6,BC=8,(1)求AB的长;(2)求CD的长.44.如图已知,每个小方格是边长为1的正方形,求△ABC的周长(结果用根号表示).45.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.46.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.47.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.48.在图中,BC长为3,AB长为4,AF长为12,求正方形的面积.(其中∠FAC 和∠ABC都为直角.)49.用直尺和圆规在如图所示的数轴上作出的点.50.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的特殊四边形中是勾股四边形的两种图形的名称,.(2)如下图(1),请你在图中画出以格点为顶点,OA、OB为勾股边,且对角线相同的所有勾股四边形OAMB.(3)如图(2),以△ABC边AB作如图正三角形ABD,∠CBE=60°,且BE=BC,连接DE、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.人教新版八年级下学期《17.1 勾股定理》同步练习卷参考答案与试题解析一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM= 1.5.【分析】本题要靠辅助线的帮助.根据题意画出图形,作出辅助线,根据各边的关系求解.【解答】解:如图,延长DM、AB,交于E,在AE上取中点F,连接DF.∵∠BAD=60°,∠ADC=120°,∴∠BAD+∠ADC=180°,∴AB∥CD,∴∠EBM=∠DCM;在△EMB和△DMC中,,∴△EMB≌△DMC,∴BE=CD;∵AB+CD=2,点F为EA的中点,∠BAD=60°,AD=AF=EF=,∴∠EDA=90°;根据勾股定理可得ED=AD,∴ED=3∵M为ED的中点∴MD=1.5.【点评】本题是一道根据三角形的中线定义结合勾股定理求解的综合题,有利于锻炼学生综合分析、解答问题的能力.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.【分析】根据等腰三角形的性质在表格中找出C点.【解答】解:以A为圆心,AB长为半径画圆,圆弧经过格点C2、C3;以B为圆心,AB长为半径画圆,圆弧经过格点C1,∴BC1=AC2=AC3=AB==,∵因为AB的中点不在格点上,因此AB的垂直平分线不会经过格点∴C1、C2、C3是所要找的点.【点评】心动不如行动,赶快拿起圆规,画出图形,根据数形结合思想,利用全等三角形的性质解答此题.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.【分析】设BC=x,AC=y,根据已知列方程组,从而可求得斜边的平方,即求得斜边的长.【解答】解:设BC=x,AC=y根据题意运用勾股定理,得整理得,=65,即x2+y2=52∴斜边的长是2.【点评】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组.求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=5或10时,才能使△ABC与△QPA全等.【分析】分两种情形分别求解即可.【解答】解:当AP=5时,Rt△ABC≌Rt△QPA,理由是:∵∠C=90°,AQ⊥AC,∴∠C=∠QAP=90°,当AP=5=BC时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),当AP=AC=10,AQ=BC=5时,△ABC≌△PQA,故答案为:5或10.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于18.【分析】可过P作AD、AB的平行线,将矩形ABCD分割成四个小矩形,然后根据勾股定理求出PA、PB、PC、PD四条线段的长度的数量关系,然后再代值计算.【解答】解:如图,过P作AD、AB的平行线,原矩形被分成四个小矩形;由勾股定理得:PA2=a2+b2,PC2=c2+d2;PB2=b2+c2,PD2=a2+d2;因此:PA2+PC2=PB2+PD2,即:32+52=42+PD2,解得,PD2=18.【点评】此题考查了矩形的性质和勾股定理的应用,正确地得到PA、PB、PC、PD四条线段之间的数量关系至关重要.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.【分析】分别求出图中所给直角三角形的斜边长,找出规律,即可解答.【解答】解:根据图形,运用勾股定理知,第一个直角三角形的斜边是,第二个直角三角形的斜边是,推而广之,则第n个直角三角形的斜边是,所以第10个直角三角形的斜边长为.故答案为:.【点评】熟练运用勾股定理,能够根据具体数据进行推广,发现规律.7.直角三角形的两条直角边分别为3和4,则斜边上的高为 2.4.【分析】根据勾股定理求出斜边的长,利用面积法求出三角形斜边上的高.【解答】解:由勾股定理知,斜边c==5,设斜边上的高为h,根据直角三角形的面积公式得:S△=×3×4=×5h,∴h==2.4.【点评】本题利用了勾股定理和直角三角形的面积公式求解.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为10或2.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是6cm.【分析】首先根据勾股定理求得CD的长,再根据角平分线上的点到角两边的距离相等,得D到AB得距离等于CD的长.【解答】解:∵AD=10cm,AC=8cm∴CD=6cm∵AD平分∠CAB∴D点到直线AB的距离=CD=6cm【点评】运用了勾股定理以及角平分线的性质.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为15cm2.【分析】设直角三角形ABC的两直角边是a和b,斜边是c,由勾股定理得出a2+b2=c2,求出以a b为边长的两个正方形的面积之和是a2+b2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2,代入求出即可.【解答】解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以a b为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.【点评】本题考查了勾股定理和正方形的面积,关键是得出c2=a2+b2=15cm2,题目具有一定的代表性,是一道比较好的题目.11.两边长分别为3和5的直角三角形的第三边长为4或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当5是斜边时,第三边长==4;当5是直角边时,第三边长==.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是10或2cm.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为7:3.【分析】过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.【解答】解:过点A作AG⊥BC,垂足为G,∵DE⊥BC∴EF∥AG又∵F是AB中点∴E也为BG中点,==∴EG=BE=4 AG=2EF=6又∵∠C=45°∴AG=GC=6∴EC=EG+GC=10又∵∠C=45° DE⊥BC∴DE=EC=10∴DF=DE﹣EF=10﹣3=7∴DF:FE=7:3.故答案为:7:3.【点评】此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm,面积为cm2.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm,cm2.【点评】此题主要考查勾股定理及三角形的面积.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=12.【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.故答案为12.【点评】此题是勾股定理题目,解决本题的关键是根据勾股定理得到三个面积之间的关.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【解答】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.【点评】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【分析】根据勾股定理求得AB的长,再根据三角形的面积公式求得CD即可.【解答】解:∵AC=4,BC=3,∴AB=5,∵S=×3×4=×5×CD,△ABC∴CD=.故答案为:.【点评】此题考查了直角三角形面积的不同表示方法及勾股定理的综合应用.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有8个.【分析】根据等腰三角形的性质和勾股定理分别求出以AB为腰的等腰三角形的个数和以AB为底边的等腰三角形的个数即可得出答案.【解答】解:如图所示:以AB为腰的等腰三角形共4个,其底边长为=2的共有4个;以AB为底边的等腰三角形共有4个,其中腰长为的2个,腰长为2的有2个.故答案为:8.【点评】此题主要考查学生对等腰三角形的性质和勾股定理的理解和掌握,此题难易程度适中,适合学生训练.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于5cm2.【分析】先根据角之间的关系以及正方形的性质证明两空白三角形全等,然后根据勾股定理即可解答.【解答】解:如图所示∵∠1+∠5=90°,∠1+∠2=90°,∴∠5=∠2,同理∠1=∠3,又FD=DE,∴△FGD≌△EDH,可得,FG=DH,由勾股定理的几何意义可知S A+S B=S C即2+3=S C.∴S C=5.【点评】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+;(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP 为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.【分析】(1)分别以点A,C为圆心,以大于AC为半径画弧,两弧相交于点C,D,过CD作直线l即可.(2)所求线段DE等于BC的一半,那么根据题中的数据利用三角函数求出BC 即可.【解答】解:(1)如图,(2)因为直线l垂直平分线段AC,所以CE=AE,又因为BC⊥AC,所以DE∥BC,所以DE=BC.因为在Rt△ABC中,AB=5,cosA=,所以AC=ABcosA=5×=3,由BC===4得DE=2.【点评】本题考查基本作图和利用三角函数来解决相关问题.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.【分析】根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×ab+(a﹣b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【解答】解:∵大正方形面积为:c2,直角三角形面积为ab,小正方形面积为:(a﹣b)2,所以c2=4×ab+(a﹣b)2,即c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【点评】本题主要考查了勾股定理的证明,要认真理解勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.【分析】根据题意,我们可在图中找等量关系,有中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即证在直角三角形中斜边的平方等于两直角边的平方和.【点评】本题考查了学生对定理的证明和对三角形和正方形面积公式的熟练掌握和运用.24.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.。
2022-2023学年人教版八年级数学下册《17.1勾股定理》解答题专题训练(附答案)1.如图是边长为1的正方形网格,下面是勾股定理的探索与验证过程,请补充完整:∵S1=,S2=,S3=,∴S1+S2=S3.即2+2=2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请你用该图验证勾股定理.3.2000多年来,人们对直角三角形三边之间的关系的探究颇感兴趣,古往今来,下至平民百姓,上至帝王总统都愿意探究它,研究它的证明,新的证法不断出现.下面给出几种探究方法(由若干个全等的直角三角形拼成如图图形),试用面积法选择其中一种推导直角三角形的三边a、b、c之间的数量关系(1)三边a、b、c之间的数量关系为;(2)理由:.4.计算:(1)在Rt△ABC中,∠C=90°,a=8,b=15,求c(2)在Rt△ABC中,∠C=90°,a=3,b=4,求c(3)一个直角三角形的两边长分别为3cm和5cm,求这个三角形的第三边长.5.如图,阴影部分是一个长方形,求它的面积.6.如图,在△ABC中,∠ACB=90°,AC=20,BC=15,CD⊥AB于点D.求:(1)CD的长;(2)BD的长.7.如图,求等腰三角形ABC的面积.8.如图.你能计算出各直角三角形中未知边x的长度吗?9.细心观察如图,认真分析各式,然后解答下列问题:()2+1=2,S1=()2+1=3,S2=()2+1=4,S3=.(1)用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S1+S2+S3+…+S n的值.10.如图,4×4方格中每个小正方形的边长都为1.(1)图①中正方形ABCD的边长为;(2)在图②的4×4方格中画一个面积为8的正方形;(3)把图②中的数轴补充完整,然后用圆规在数轴上表示实数和﹣.11.如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2﹣BN2=AC2.12.写出图中3个三角形的面积S1、S2、S3之间的关系,并给出证明.13.(1)如图1,∠ACB=90°,图中有阴影的三个半圆的面积S1,S2,S3有什么关系?(2)如图2,∠ACB=90°,△ABC的面积为20,在AB的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.14.设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.15.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E.若AC=8,BC=4,求AE的长.17.如图,在△ABC中,AB=8cm,AC=6cm,∠A=90°,点D在AB上,且BD=CD.(1)求BC和BD的长.(2)求△BDC的面积.18.在△ABC中,AB=10,AC=17,BC=21,求高AD(画图作答).19.已知:如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)当△ABP为直角三角形时,求t的值;(2)当△ABP为等腰三角形时,求t的值.20.定义:如图,点M,N把线段AB分割成AM,MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知M,N把线段AB分割成AM,MN,NB,若AM=2.5,MN=6.5,BN=6,则点M,N是线段AB的勾股分割点吗?请说明理由.(2)已知点M,N是线段AB的勾股分割点,且AM为直角边,若AB=14,AM=4,求BN的长.参考答案1.解:∵S1=4,S2=9,S3=13,∴S1+S2=S3.即AC2+BC2=AB2.故答案为:4,9,13,AC,BC,AB.2.解:梯形的面积=(a+b)(a+b)=ab+ab+c2,∴a2+2ab+b2=ab+ab+c2,∴a2+b2=c2.3.解:(1)由勾股定理得:a2+b2=c2.故答案为:a2+b2=c2.(2)选择图1.∵大正方形的面积=4个直角三角形的面积+小正方形的面积,∴(a+b)2=4×ab+c2,即a2+2ab+b2=2ab+c2,∴a2+b2=c2.故答案为:(a+b)2=4×ab+c2.4.解:(1)利用勾股定理,得c===17,即c=17;(2)利用勾股定理,得c===5,即c=5;(3)5cm是直角边时,第三边==cm,5cm是斜边时,第三边==4cm,所以,第三边长为cm或4cm.5.解:由勾股定理得(cm),∴长方形的面积为5×1=5(cm2).6.解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,由勾股定理可得,AB===25,∴AB的长是25;∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,∵AC=20,BC=15,AB=25,∴20×15=25CD,∴CD=12,∴CD的长是12.(2)∵CD⊥AB于点D,∴∠CDB=90°,在Rt△BCD中,∠CDB=90°,BC=15,CD=12,由勾股定理可得,BD===9,∴BD的长为9.7.解:过点C作CD⊥AB于点D,∵AC=BC,DC⊥AB,∴AD=BD=AB=3cm,∵BC=5cm,∴DC==4(cm),∴等腰三角形ABC的面积为:×4×6=12(cm2).8.解:如图1中,∵∠A=∠B=45°,∴∠C=90°,AC=BC=1,∴AB===.∴x=,如图2中,∵∠C=90°,AC=3,∠B=30°∴AB=2AC=6,∴x=BC===3.9.解:(1)结合已知数据,可得:OA n2=n;S n=;(2)∵OA n2=n,∴OA10=.(3)S1+S2+S3+…+S n=++++…+.10.解:(1)图①中正方形ABCD的边长为=;故答案为:;(2)如图所示:(3)如图所示:11.证明:∵MN⊥AB于N,∴BN2=BM2﹣MN2,AN2=AM2﹣MN2∴BN2﹣AN2=BM2﹣AM2,又∵∠C=90°,∴AM2=AC2+CM2∴BN2﹣AN2=BM2﹣AC2﹣CM2,又∵BM=CM,∴BN2﹣AN2=﹣AC2,即AN2﹣BN2=AC2.12.解:如图①:设三个半圆的直径分别为:d1、d2、d3,S1=×π×()2=π,S2=×π×()2=π,S3=×π×()2=π.由勾股定理可得:d12=d22+d32,∴S3+S2=(d32+d22)=π=S1,所以,S1、S2、S3的关系是:S3+S2=S1.如图②:设AC=b,BC=a,AB=c,则S2=a2,S3=b2,S1=c2,又∵a2+b2=c2,∴S1、S2、S3的关系是:S3+S2=S1.如图③:设AC=b,BC=a,AB=c,则S2=×a×a=a2,S3=×b×b=b2,S1=×c×c=c2,又∵a2+b2=c2,∴S1、S2、S3的关系是:S3+S2=S1.13.解:(1)S1=π()2=,同理S2=,S3=,∵BC2+AC2=AB2,∴S1+S2=S3;(2)S阴影=S1+S2+S△ABC﹣S3=S△ABC,则S阴影=S△ABC=20.故答案为:20.14.证明:设斜边为c,根据勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=+,即.15.解:(1)在Rt△ABC中由面积的两种算法可得:解得:CD=(2)在Rt△ABD中AD2=42﹣x2=16﹣x2在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2所以16﹣x2=﹣11+12x﹣x2…(9分)解得=(10分)16.解:连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,BC2+CE2=BE2,∴42+(8﹣x)2=x2,解得x=5,∴AE=5.17.解:(1)∵AB=8cm,AC=6cm,∠A=90°,∴BC===10(cm),设BD=CD=xcm,则AD=(8﹣x)cm,∵∠A=90°,∴AD2+AC2=CD2,∴(8﹣x)2+62=x2,解得x=,即BD=cm,由上可得,BC=10cm,BD=cm;(2)由(1)知BD=cm,AC=6cm,∠A=90°,∴S△BDC===(cm2),即△BDC的面积是cm2.18.解:设DC=x,则BD=21﹣x,∵在△ABC中,AB=10,AC=17,BC=21,AD⊥BC,∵AD2=AB2﹣BD2=CA2﹣CD2,∴102﹣(21﹣x)2=172﹣x2,∴x=15,∴AD2=172﹣152=64,∴AD=8.19.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=102﹣62=64,∴BC=8(cm),由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=8cm,即t=4;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣8)cm,AC=6cm,在Rt△ACP中,AP2=62+(2t﹣8)2,在Rt△BAP中,AB2+AP2=BP2,即:102+[62+(2t﹣8)2]=(2t)2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(2)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=16cm,t=8;③当BP=AP时,AP=BP=2tcm,CP=|2t﹣8|cm,AC=6cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=62+(2t﹣8)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.20.解:(1)点M、N是线段AB的勾股分割点.理由如下:∵AM2+BN2=2.52+62=42.25,MN2=6.52=42.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点;(2)设BN=x,则MN=14﹣AM﹣BN=10﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(10﹣x)2=x2+16,解得x=4.2;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=16+(10﹣x)2,解得x=5.8.综上所述,BN=4.2或5.8.。
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
初中数学·人教版·八年级下册——第十七章勾股定理17.1 勾股定理基础闯关全练拓展训练1.在△ABC中,∠C=90°,2∠A=∠B,∠A,∠B,∠C的对边分别为a,b,c,则a∶b∶c等于()A.1∶2∶1B.1∶√2∶1C.1∶√3∶2D.1∶2∶√3答案C设∠A=x°,则∠B=2x°,∵△ABC中∠C=90°,∴∠A+∠B=90°,即x°+2x°=90°,解得x=30,∴∠A=30°,∠B=60°,设a=1,∴c=2,由勾股定理得b=√c2-a2=√4-1=√3,∴a∶b∶c=1∶√3∶2.故选C.2.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.32答案C如图,根据勾股定理知④号正方形的边长为√12+12=√2,则②号正方形的边长为√(√2)2+(√2)2=2,⑤号正方形的边长为√22+22=2√2,则①号正方形的边长为√(2√2)2+(2√2)2=4,所以①号正方形的面积为4×4=16.故选C.3.(2016广西防城港期中)如图,长方体的长、宽、高分别为4cm,3cm,12cm,则BD'=.答案13cm解析连接BD,则BD=√42+32=5(cm),故BD'=√52+122=13(cm).4.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.答案24cm2解析∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得a2+b2=c2,即(a+b)2-2ab=c2,∴196-2ab=100,即ab=48,则Rt△ABC的面积为1ab=24cm2.2能力提升全练拓展训练1.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是.答案76解析在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.2.(2014山东潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,所以该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.答案25解析由题意可知葛藤绕圆柱五周到达点B,故先把圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连接其对角线,则该对角线的长即为每段的最短长度,为√32+42=5(尺),所以葛藤的最短长度为5×5=25尺,故答案为25.3.(2016山东聊城莘县期中)如图,已知直角△ABC的两直角边长分别为6,8,分别以其三边为直径向外作半圆,则图中阴影部分的面积为.答案24解析在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB=√AC2+BC2=10,则S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB=322π+12×42×π+12×6×8-522π=24.4.如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=.答案5√2解析△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是等腰直角三角形,所以CF=√FA2+CA2,又AC=√DA2+DC2=√42+32=5,所以CF=√52+52=5√2.三年模拟全练拓展训练1.(2016广东深圳翰林学校第一次月考,15,★★☆)如图,长方体的长为15cm,宽为10cm,高为20cm,点B到点C的距离为5 cm,一只蚂蚁如果沿着长方体的表面从A点爬到B点,需要爬行的最短距离是.答案25cm解析(1)当长方形NFGC与长方形CGAD展开在一个面上时,AB=√BD2+AD2=√152+202=25(cm);(2)当长方形NMDC与长方形CDAG展开在一个面上时,AB=√AG2+BG2=√102+252=5√29(cm);(3)当长方形NCGF与长方形FGAE展开在一个面上时,AB=√AC2+BC2=√302+52=5√37(cm).因为25<5√29<5√37,所以蚂蚁需要爬行的最短距离是25cm.2.(2016河北保定模拟,23,★★☆)(1)如图①所示,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间的关系(不必证明);(2)如图②,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系并证明;(3)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.解析(1)S2+S3=S1.(2)S2+S3=S1.证明:S3=π8AC2,S2=π8BC2,S1=π8AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=π8(BC2+AC2)=π8AB2=S1,∴S2+S3=S1.(3)S2+S3=S1.证明:S1=√34AB2,S2=√34BC2,S3=√34AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=√34(BC2+AC2)=√34AB2=S1,∴S2+S3=S1.五年中考全练拓展训练1.(2016湖南株洲中考,8,★☆☆)如图,以直角三角形的边a、b、c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数为()A.1B.2C.3D.4答案D根据勾股定理可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积,然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.故满足S1+S2=S3的图形个数为4.2.(2016浙江杭州中考,9,★☆☆)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0B.m2-2mn+n2=0C.m2+2mn-n2=0D.m2-2mn-n2=0答案C根据题意画图,如图.在Rt△ABC中,n>m且△ABE和△AEC均为等腰三角形,∴AB=BE=m,则AE=EC=n-m,根据勾股定理可得AE=√2AB,即n-m=√2m,两边平方整理得,m2+2mn-n2=0,故选C.3.(2014广西钦州中考,12,★☆☆)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有()A.1种B.2种C.3种D.4种答案C根据题意得出最短路径如图所示,最短路程为√22+22+1=2√2+1,则从A点到B点的最短路程的走法共有3种.故选C.4.(2013四川雅安中考,17,★★☆)在平面直角坐标系中,已知点A(-√5,0),B(√5,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.答案(0,2),(0,-2),(-3,0),(3,0)解析如图,①当点C位于y轴上时,设C(0,b).则√(√5)2+b2+√(√5)2+b2=6,解得b=2或b=-2,此时C(0,2)或C(0,-2).②当点C位于x轴上时,设C(a,0).则|-√5-a|+|a-√5|=6,即2a=6或-2a=6,解得a=3或a=-3,此时C(-3,0)或C(3,0).综上所述,满足条件的所有点C的坐标是(0,2),(0,-2),(-3,0),(3,0).核心素养全练拓展训练1.(2014浙江温州中考改编)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图①或图②摆放时,都可以用“面积法”来证明.下面是小聪利用图①证明勾股定理的过程:将两个全等的直角三角形按图①所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.图①图②证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),∴12b2+12ab=12c2+12a(b-a).∴a2+b2=c2.请参照上述证法,利用图②完成下面的证明.将两个全等的直角三角形按图②所示方式摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连接.∵S五边形ACBED=,又∵S五边形ACBED=,∴.∴a2+b2=c2.证明连接BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式√x2+4+√(12-x)2+9的最小值.解析(1)√(8-x)2+25+√x2+1.(2)当A、C、E三点共线时,AC+CE的值最小.(3)如图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,且AB=2,ED=3,连接AE交BD于点C.设BC=x,AE的长即为代数式√x2+4+√(12-x)2+9的最小值.过点A作AF∥BD交ED的延长线于点F,得长方形ABDF,则AB=DF=2,AF=BD=12.所以AE=√122+(3+2)2=13.即√x2+4+√(12-x)2+9的最小值为13.。
《勾股定理》练习一、选择——基础知识运用1.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.42.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC 能作出()A.2个B.3个C.4个D.6个3.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.54.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c25.一个钝角三角形的两边长为3、4,则第三边可以为()A.4 B.5 C.6 D.76.如图所示,三个正方形中两个的面积分别为S1=169,S2=144,则S3=()A.50 B.25 C.100 D.30二、解答——知识提高运用7.在四边形ABCD中(见图),线段BC长5,∠ABC为直角,∠BCD为135°,AC=AD,而且点A到边CD的垂线段AE的长为12,线段ED的长为5,求四边形ABCD的面积。
8.画一个直角三角形,分别以它的三条边为边向外作等边三角形,要求:(1)画出图形;(2)探究这三个等边三角形面积之间的关系,并说明理由。
9.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC 和△ACD拼成一个凸四边形ABCD.(1)画出四边形ABCD;(2)求出四边形ABCD的对角线BD的长。
10.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3√3,AB=5√3,∠EBC=30°,求BC。
2021——2022学年度人教版八年级数学下册第十七章勾股定理 17.1 勾股定理课后练习一、选择题1.下列四组数中,是勾股数的是()A .5,12,13B .23,24,25C .1,2,3D .7,24,262.在平面直角坐标系中,已知点A (-2,5),点B (1,1),则线段AB 的长度为()A .2B .3C .4D .53.一个直角三角形有两边长为3cm ,4cm ,则这个三角形的另一边为()A .5cmB .7cmC .7cmD .5cm 或7cm4.在△ABC 中,∠C =90°,BC =2,sin A =23,则边AC 的长是( ) A .5 B .3 C .43 D .135.如图所示,在Rt ABC 中,分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若17S =,224S =,则3S 的值为()A .17B .20C .25D .316.如图,一张直角三角形纸片,两直角边AC =4cm ,BC =8cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则DE 的长为().A .25B .5C .52D .5 7.如图,在ABC 中,AB AC >,AH BC ⊥于H ,M 为AH 上异于A 的一点,比较AB AC -与MB MC -的大小,则AB AC -()MB MC -.A .大于B .等于C .小于D .大小关系不确定8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNPQ 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=45,则S 2的值是( )A .12B .15C .20D .259.如图所示,小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A .2mB .2.25mC .2.5mD .3m10.如图,AC BC ⊥,一架云梯AB 长为25米,顶端A 靠在墙AC 上,此时云梯底端B 与墙角C 距离为7米,云梯滑动后停在DE 的位置上,测得AE 长为4米,则云梯底端B 在水平方向滑动的距离BD 为()A .4米B .6米C .8米D .10米二、填空题11.△ABO 是边长为2的等边三角形,则任意一边上的高长为___.12.已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.13.如图,在数轴上,点O 所对应的实数是0,点A 所对应的实数是2,过点A 作数轴的垂线段AB ,且1AB =,连接OB .以O 为圆心,OB 的长为半径画弧,交数轴的负半轴于点C ,则点C 对应的实数为______.14.如图,小明想要测量学校旗杆AB 的高度,他发现系在旗杆顶端的绳子垂到了地面,从而测得绳子比旗杆长a 米,小明将这根绳子拉直,绳子的末端落在地面的点C 处,点C 距离旗杆底部b 米(b a >),则旗杆AB 的高度为__________米(用含a ,b 的代数式表示).15.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .三、解答题16.某中学初二年级游同学在学习了勾股定理后对《九章算术》勾股章产生了学习兴趣.今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何?”本题大意是:如图,木柱AB BC ⊥,绳索AC 比木柱AB 长三尺,BC 的长度为8尺,求:绳索AC 的长度.17.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD =4寸,点C 、点D 与门槛AB 的距离CE =DF =1尺(1尺=10寸),求AB 的长.18.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长. 19.能够成为直角三角形三边长的三个正整数,,a b c 称为勾股数,世界上第一次给出勾股数公式的是我国古代数学著作《九章算术》,共勾股数的公式为:222211(),,()22a m nb mnc m n =-==+,其中0,,m n m n >>是互质的奇数. (1)当5,3m n ==时,求这个三角形的面积;(2)当5,5m t n t =+=-时,计算三角形的周长(用含t 的代数式表示),并直接写出符合条件的三角形的周长值.20.已知:如图,ABC 中,90C ∠=︒,AB ==BC(1)求AC 的长;(2)求ABC 的面积.21.若图是一个高为3米,长为5米的楼梯表面铺地毯.(1)求地毯的长是多少米?(2)如果地毯的宽是2米,地毯每平方售价是10元,铺这个楼梯一共需要多少元?22.如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60︒.已知A点的高度AB为3米,台阶AC的坡度为(即:AB BC=,且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度.(侧倾器的高度忽略不计)23.阅读下列一段文字,然后回答下列问题.已知在平面内有两点P1(1x,1y),P2(2x,2y)其两点间的距离P1P2 =直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|2x− 1x|或|2y− 1y|.(1)已知A (1,4)、B (-3,2),试求A、B两点间的距离;(2)已知一个三角形各顶点坐标为D(-1,4)、E(-2,2)、F(3,2),你能判定此三角形的形状吗?说明理由:(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使得∆PDF是以DF为底的等腰三角形,求点P的坐标.【参考答案】1.A2.D3.D4.A5.D6.B7.C8.B9.A10.C1112.513.14.22 2b aa-15.1016.绳索长是736尺17.52寸18.8 319.(1)三角形的面积为60;(2)1050a b c t++=+;符合条件的三角形的周长为70.20.(1)(2)21.(1)7米;(2)140元22.(1)6AC=米;(2)树高为9米.23.(1)DEF是直角三角形;(3)12P⎛⎫-⎪⎝⎭,18.2.2菱形的判定同步练习一、选择题1.如图,若要使▱ABCD成为菱形,则可添加的条件是() A.AB=CD B.AD=BCC.AB=BC D.AC=BD第1题图第2题图2.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°3.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角4.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,拉动这个四边形,使它形状改变,当∠B=90°,如图甲,测得AC=2,当∠B=60°时,如图乙,AC=()A 2B . 2C 6D . 225.若依次连结四边形各条边的中点所构成的四边形是菱形,则原四边形一定是()A.矩形 B.菱形 C.平行四边形 D.对角线相等的四边形6.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形7.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD,AC于点E,O连接CE,则CE的长为()A 2.5B . 2.8C 3D . 3.58.如图,在菱形ABCD中,AB = 5,∠,则对角线AC等于()A.20B.15C.10D.59.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形10.如图,△ABC 中,DE ∥BC ,EF ∥AB ,要判定四边形DBFE 是菱形,还需要添加的条件是()A .AB =ACB .AD =BDC .BE ⊥ACD .BE 平分∠ABC11.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是()A .矩形B .菱形C .一般的四边形D .平行四边形第11题图 第12题图12.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,则四边形OCED 的面积为()A .2 3B .4C .4 3D .8二、填空题13.判定一个四边形是菱形的方法有:(1)菱形的定义:有一组邻边______的_______是菱形;(2)四条边__________的四边形是菱形;(3)对角线____的_________的是菱形.14.在四边形ABCD 中,AC ⊥BD ,AB ∥CD ,请你添上一个条件:_________,使得四边形ABCD 是菱形.15.如图,四边形ABCD 的对角线互相垂直,且满足AO =CO ,请你添加一个适当的条件,使四边形ABCD 成为菱形.(只需添加一个即可)16.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是1 ,则点A 的坐标是 。
八年级数学下册《勾股定理》练习题与答案(人教版)一、选择题1.由线段a 、b 、c 组成的三角形不是直角三角形的是( )A.=7,b =24,c =25;B.a =13,b =14,c =15;C.a =54,b =1,c =34; D.a =41,b =4,c =5;2.根据图形(图1,图2)的面积关系,下列说法正确的是( )A.图1能说明勾股定理,图2能说明完全平方公式B.图1能说明平方差公式,图2能说明勾股定理C.图1能说明完全平方公式,图2能说明平方差公式D.图1能说明完全平方公式,图2能说明勾股定理3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A.34B.4C.4或34D.以上都不对5.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣16.如图,在4×4的方格中,△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2, 3C.三边长为a,b,c的值为11,2,4D.a2=(c+b)(c﹣b)8.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺9.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米10.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cmB.10cmC.14cmD.无法确定11.如图,已知∠AOB=60°,点P是∠AOB的角平分线上的一个定点,点M、N分别在射线OA、OB上,且∠MPN与∠AOB互补.设OP=a,则四边形PMON的面积为( )A.34a2 B.14a2 C.38a2 D.18a212.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题13.若三角形三边之比为3:4:5,周长为24,则三角形面积.14.如图,等边△OAB的边长为2,则点B的坐标为.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD =4,则AE的长是_____.16.如图,运载火箭从地面L处垂直向上发射,当火箭到达点A处时,从位于地面R处的雷达测得AR的距离是40 km,此时测得∠ARL=30°,n(s)后,火箭到达点B处,此时测得∠BRL=45°,则火箭在这n(s)中上升的高度是 km.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则S n= .三、解答题19.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.20.如图,已知四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.24.已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:△AOM和△BON全等:(2)如图2,将△MON绕点O顺时针旋转,当点N恰好在AB边上时,求证:BN2+AN2=2ON2.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.B.2.B3.B.4.A.5.B6.B.7.C.8.C9.B.10.B.11.A.12.A13.答案为:24.14.答案为:(1,3).15.答案为:2 3.16.答案为:(203﹣20).17.答案为:61.18.答案为:38(34)n-1.19.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;20.解:连接AC.∵∠ABC =90°,AB =1,BC =2∴AC = 5在△ACD 中,AC 2+CD 2=5+4=9=AD2∴△ACD 是直角三角形∴S 四边形ABCD =12AB •BC +12AC •CD =12×1×2+12×5×2=1+ 5.故四边形ABCD 的面积为1+ 5.21.解:∵∠BDC =45°,∠ABC =90°∴△BDC 为等腰直角三角形∴BD =BC∵∠A =30°∴BC =12AC 在Rt △ABC 中,根据勾股定理得AC 2=AB 2+BC2 即(2BC)2=(4+BD)2+BC 2 解得BC =BD =2+23.22.解:(1)∵AB =13,BD =8∴AD =AB ﹣BD =5∴AC =13,CD =12∴AD 2+CD 2=AC 2∴∠ADC =90°,即△ADC 是直角三角形∴△ADC 的面积=12×AD ×CD =12×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°由勾股定理得:BC =413,即BC 的长是413.23.解:操作一:(1)14 (2)35º操作二:∵AC =9cm ,BC =12cm∴AB =15(cm)根据折叠性质可得AC =AE =9cm∴BE =AB ﹣AE =6cm设CD=x,则BD=12﹣x,DE=x在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2解得x=4.5∴CD=4.5cm.24. (1)证明:∵∠AOB=∠MON=90°∴∠AOB+∠AON=∠MON+∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴AM=BN;(2)证明:连接AM∵∠AOB=∠MON=90°∴∠AOB-∠AON=∠MON-∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴∠MAO=∠NBO=45°,AM=BN∴∠MAN=90°∴AM2+AN2=MN2∵△MON是等腰直角三角形∴MN2=2ON2∴BN2+AN2=2ON2.25.解:(1)AC+CE=(8-x)2+25+x2+81.(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD(点A与点E在BD的异侧),使AB=2,ED=3,连结AE交BD于点C设BC=x,则AE的长即为x2+4+(12-x)2+9的最小值.过点E作EF⊥AB,交AB的延长线于点F.在Rt△AEF中,易得AF=2+3=5,EF=12∴AE=13即x2+4+(12-x)2+9的最小值为13.。
人教版数学八年级下册17.1《勾股定理》一、选择题1.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4B.7,24,25C.8,12,20D.5,13,15.2.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是( )A. B.﹣ C. D.﹣3.由线段a、b、c组成的三角形不是直角三角形的是( )A.=7,b=24,c=25;B.a=,b=,c=;C.a=,b=1,c=;D.a=,b=4,c=5;4.以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,125.已知Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若∠B=900,则()A.b2= a2+ c2;B.c2= a2+ b2;C.a2+b2=c2;D.a+b=c6.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6B.8C.10D.127.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或258.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则以AB为边的正方形的面积为( )A.10B.9C.100D.259.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.14410.以面积为9 cm2的正方形对角线为边作正方形,其面积为()A.9 cm2B.13 cm2C.18cm2D.24 cm2二、填空题11.已知直角三角形的两边长分别是5,12,则第三边的长为_______.12.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可达到建筑物的高度是_______m.13.如图,数轴上点A表示的实数是.14.在Rt△ABC中,∠C=90o, AC=6,BC=8,则AB边的长是 .15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD=4,则AE的长是_____.三、解答题16.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC的长.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?参考答案1.答案为:B2.答案为:D3.答案为:B4.答案为:C5.答案为:A6.答案为:B7.答案为:C8.答案为:A9.答案为:A10.答案为:C.11.答案为:10cm或cm;12.答案为:12.13.答案为:14.答案为:10.15.答案为:16.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD=9,∴BC=CD+BD=5+9=14.17.解:如图,在Rt△ABC中,根据勾股定理可知,BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.17.2《勾股定理的逆定理》一、选择题1.下列各组数中不能作为直角三角形的三边长的是( )A.6,8,10B.5,12,13C.1,2,3D.9,12,152.下列三角形中,可以构成直角三角形的有( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,6D.三边长分别为1.5,2,2.53.满足下列条件的△ABC不是直角三角形的是( )A.BC=8,AC=15,AB=17B.BC:AC:AB=3:4:5C.∠A+∠B=∠CD.∠A:∠B:∠C=3:4:54.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n).其中可以构成直角三角形的有( )A.5组B.4组C.3组D.2组5.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列判断错误的是( )A.如果∠C-∠B=∠A,则△ABC是直角三角形B.如果a2+c2=b2,则△ABC不是直角三角形C.如果(c-a)(c+a)=b2,则△ABC是直角三角形D.如果∠A∶∠B∶∠C=5∶2∶3,则△ABC是直角三角形6.适合下列条件的△ABC中,直角三角形的个数为( )①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个7.△ABC的三边为a、b、c,且(a+b)(a﹣b)=c2,则( )A.△ABC是锐角三角形B.c边的对角是直角C.△ABC是钝角三角形D.a边的对角是直角8.如图,在4×4的方格中,△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形9.有下面的判断:①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=90°,则a2+b2=c2;③若△ABC中,a2-b2=c2,则△ABC是直角三角形;④若△ABC是直角三角形,则(a+b)(a-b)=c2.其中判断正确的有( )A.4个B.3个C.2个D.1个10.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题11.在△ABC中,如果(a+b)(a﹣b)=c2,那么∠ =90°.12.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是。
1人教版八年级数学下册 第十七章 勾股定理 17.1 勾股定理 课后练习2一、选择题1.如图,在△中,∠的垂直平分线交AB 于点D ,交的延长线于点E ,则的长为( )A .B .C .D .2.如图1,在△ABC 中,∠ACB=90°,∠CAB=30°,△ABD 是等边三角形,E 是AB 的中点,连结CE 并延长交AD 于F ,如图2,现将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,则sin ∠ACH 的值为( )A .√3-17B .17C .16D .√3-163.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC的最小值为()A. B. C. D.4.如图,在△ABC中,∠ACB=90°,将其绕B点顺时针旋转一周,则分别以BA,BC为半径的圆形成一个圆环(阴影部分),为求该圆环的面积,只需测量一条线段的长度即可,这条线段是()A.AD B.AB C.AC D.BD5.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )2A.4 B.5 C.D.66.如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC 的面积为()A.B.C.D.7.已知一个直角三角形的两边长分别为3和5则第三边长是().A.5 B.4 C.D.4或8.已知某长方形的面积为7,现有一等腰直角三角形,该三角形的面积是长方形的3倍,则该三角形的直角边的长度为()A..9.如图的方格纸中,小正方形的边长为1,点A、B是格点.在图中找出格点C,连结CA、CB,使△ABC为轴对称图形,这样的格点数有()34A .5个B .6个C .7个D .8个10.若△ABC 中,AB =7,AC =8,高AD =6,则BC 的长是( )A .B .10C .10D .以上都不对二、填空题 11.如图,在平面直角坐标系中有一矩形ABCD ,其中A (0,0),B (8,0),D (0,4),若将△ABC 沿AC 所在直线翻折,点B 落在点E 处.则E 点的坐标是____.12.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.13.如图,Rt △ABC 中,∠ACB =90o,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .14.如图,在△ABC中,AC=BC=2, ∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是_______.15.有一块直角三角形的绿地,量得两直角边分别为6,8,现在要将绿地扩充成等腰三角形,且扩充部分是以8为直角三角形,扩充后等腰三角形绿地的周长______三、解答题16.已知:如图,△ABC和△ECD都是等腰直角三角形,,D为AB边上一点,求证:(1)△ACE≌△BCD;(2)17.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长.518.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”.(1)已知:如图1,在△ABC中,∠C=90°,BC=2√3,AB=2√7.求证:△ABC是“匀称三角形”;(2)在平面直角坐标系xoy中,如果三角形的一边在x轴上,且这边的中线恰好等于这边的长,我们又称这个三角形为“水平匀称三角形”.如图2,现有10个边长是1的小正方形组成的长方形区域记为G, 每个小正方形的顶点称为格点,A(3,0),B(4,0),若C、D(C、D两点与O不重合)是x轴上的格点,且点C在点A的左侧.在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有几个?其中是否存在横坐标为整数的点P,如果存在请求出这个点P的坐标,如果不存在请说明理由.19.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x,BE=y, 请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?67问题②:在△DEF 的移动过程中,是否存在某个位置,使得0EBD 22.5∠=?如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形?20.阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD的长为;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.图① 图②21.如图,在四边形ABCD 中,AD ∥BC ,BD =CD ,∠BDC =90°,AD =3,BC =8.求AB 的长.822.如图,在四边形ABCD 中,AB=AD ,∠DAB=∠BCD=90°,设p=BC+CD , 四边形ABCD 的面积为S .(1)试探究S 与p 之间的关系,并说明理由;(2)若四边形ABCD 的面积为9,求BC CD 的值.23.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.... 如图1,在等腰△ABC 中,AB =AC , AC 边上的高为h ,点M 为底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,连接AM ,利用S △ABC =S △ABM +S △ACM ,可以得出结论:h = h 1+h 2.类比探究:在图1中,当点M 在BC 的延长线上时,猜想h 、h 1、h 2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l 1:y =34x +3,l 2:y =-3x +3,若l 2上一点M 到l 1的距离是1,试运用 “阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.【参考答案】1.B 2.B 3.B 4.C 5.B 6.A 7.D 8.A 9.D 10.C11.(245,325)12.6.513.91415.32cm或cm或cm16.(1)∵∴即…………2分∵∴△BCD≌△ACE …………4分(2)∵,∴…………5分∵△BCD≌△ACE∴∴∴17.周长为42或321011 18.(1)证明见解析;(2)4个,存在,(3,√32).19.(1)BE ==其中0≤x ≤7)①AD 10=-AD 7=-,③当AD 为斜边时,AD 2=BE 2+BC 2,2x =2x 20x 109-++25解得x=6.7当BE 为斜边时,BE 2=AD 2+BC 2,2x 20x 109-+=2x +25解得x=4.2当BC 为斜边时,BC 2=BE 2+AD 2,25=2x +2x 20x 109-+无实数解20.(2)BD=2;21.解:作AE ⊥BC 于E ,DF ⊥BC 于F .∴AE ∥DF ,∠AEF =90°.∵AD ∥BC ,∴四边形AEFD 是矩形.12 ∴EF =AD =3,AE =DF .∵BD =CD ,DF ⊥BC , ∴DF 是△BDC 的BC 边上的中线∵∠BDC =90°,∴DF =12BC =BF =4. ∴AE =4,BE =BF −EF =4−3=1. 在Rt △ABE 中,AB 2=AE 2+BE 2 ∴AB =√42+12=√17.22.(1)214S p ;(2)6.23.(1)h = h 1-h 2(2)(13,2)或(-13,4)。
第十七章勾股定理17.1 勾股定理(第一课时勾股定理的证明)精选练习答案一、单选题(共10小题)1.(2020·山东青岛市·八年级期中)若实数m、n满足|m﹣3|+4n-=0,且m、n恰好是Rt的两条边长,则的周长是()A.5 B.57C.12 D.12或7【答案】D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】n-0,∵|m﹣4n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7故选:D.2.(2020·吉林长春市·八年级期末)勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A .2B .3C .5D .6【答案】B【分析】 由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .3.(2020·广东清远市·八年级期末)下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12【答案】C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .4.(2020·福建福州市·八年级期末)在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22 D .2 【答案】A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .5.(2020·吉林长春市·八年级期末)如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3【答案】C【分析】 根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.6.(2020·张掖市期中)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.C.12或D.以上都不对【答案】C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C7.(2020·江门市期中)在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【详解】分两种情况:在图①中,由勾股定理,得==;BD8===;CD2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得==;BD8===;CD2∴BC=BD―CD=8―2=6.故选C.8.(2020·河北张家口市·八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【详解】 如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .9.(2020·山东泰安市·八年级期中)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11【答案】C【详解】 试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.10.(2020·伊宁市期中)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13119B.13或15 C.13 D.15【答案】C【分析】直角三角形中斜边最长,结合已知数据,利用勾股定理可求出第三边的长.【详解】当12,522+=12513.故第三边的长为13.故选:C.二、填空题(共5小题)11.(2020·南丹县期中)已知直角三角形的两边长分别为3、4.则第三边长为________.【答案】57【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22-=;437②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.∆的周12.(2020·黑龙江绥化市期中)在△ABC中,AB=15,AC=13,高AD=12,则ABC长为_______________.【答案】32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.13.(2020·广西防城港市·八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.【答案】17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-10-14=17(cm2).14.(2020·山东菏泽市·八年级期中)已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.【答案】4.8cm【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.15.(2020·广东韶关市·八年级期中)平面直角坐标系中,点()3,4P -到原点的距离是_____.【答案】5【分析】作PA x ⊥轴于A ,则4PA =,3OA =,再根据勾股定理求解.【详解】作PA x ⊥轴于A ,则4PA =,3OA =.则根据勾股定理,得5OP =.故答案为5.三、解答题(共2小题)16.(2020·湖南株洲市期末)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 17.(2020·宿州期中)在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13.(1)求AC 的长;11/1 (2)求四边形ABCD 的面积.【答案】(1)5;(2)36【分析】(1)由勾股定理可得:22AC AB BC =+,从而可得答案;(2)先证明ACD △是直角三角形,再利用四边形的面积等于两个直角三角形的面积和,从而可得答案.【详解】解:(1)∵∠B =90°,AB =4,BC =3,∴2222435AC AB BC =+=+=;(2)由(1)知,AC =5,∵CD =12,AD =13,∴AC 2+CD 2=22251216913+===AD 2,∴ACD △是直角三角形,∠ACD =90°,∵AB =4,BC =3,∠B =90°,AC =5,CD =12,∠ACD =90°,∴四边形ABCD 的面积是,即四边形ABCD 的面积是36.。
人教版数学八年级下册17.1 勾股定理 课堂练一、选择题1.如图,△ABC 中,AD ⊥BC 于D ,AB=5,BD=4,DC=2,则AC 等于(B )A.13B.C.D.52.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( D )A. 60海里B. 45海里3.一直角三角形的三边分别为2、3、x ,那么x 为( C )A. B. C.或 D.无法确定4. 右图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( C )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理5.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( B )A.120cmB.130cmC.140cmD.150cm6.如图,每个小正方形的边长为1,A,B,C 是小正方形的顶点,则∠ABC 的度数为( D )A. 90°B. 60°C. 30°D. 45°7.如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm ,设正方形A 、B 、C 、D 、E 、F 面积分别为S A 、S B 、S C 、S D 、S E 、S F ,则下列各式正确有( D )个. ① S A +S B +S C +S D =49;② S E +S F =49;③ S A +S B +S F =49;④ S C +S D +S E =49A.1 B .2 C.3 D .48.如图,90ACB ∠=,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =(A ) A.7 B.8 C.9 D.109.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( C )A.51B.49C.76D.无法确定10.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m11.如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C )A.12cmB.cmC.15 cmD.cm12.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.二、填空题:13.在△ABC中,∠B=90度,BC=6,AC=8,则AB= .【答案】2.14. 我国古代有这样一道数学问题:枯木一根直立地上高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.【答案】2515.如图所示,在数轴上点A所表示的数为a,则a的值为.【答案】﹣1﹣.16.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC 交于点E,若AD=BD,则折痕BE的长为________.【答案】417.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.【答案】2.218. 已知等腰三角形的一边长为10,面积为30,该三角形的周长为.【答案】10+2或20+2或20+6三、解答题:19.如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.解:过点B作BE⊥AC于E,则.设AE=x,则.∵BD=2CD=2,∴BD=2,CD=1,BC=3.∴.由AB2﹣BD2=AD2=AC2﹣CD2,得.∴,,9x4﹣36x2+36=9x2﹣3x44x4﹣15x2+12=0,∴.又,所以不合题意.故,从而.20.如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?【答案】如图:作A关于EF的对称点A',连接A'B,易知A'B的长为最短距离,由勾股定理得得A'B==20 (cm).21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=D E,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.22.在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.解:连接AM,根据题意△ACM,△AMD,△BMD为直角三角形,由勾股定理得:①;②;.∵M是BC的中点,∴CM=BM,∴③分别把②,③代入①整理得:,所以.23.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《17.1勾股定理》课时练学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列各组数中不能作为直角三角形的三边长的是()A .6,8,10B .5,12,13C .1,2,3D .9,12,152.长方体敞口玻璃罐,长、宽、高分别为16cm 、6cm 和6cm ,在罐内点E 处有一小块饼干碎末,此时一只蚂蚁正好在罐外壁,在长方形ABCD 中心的正上方2cm 处,则蚂蚁到达饼干的最短距离是多少cm .()A .BC .24D3.如图,阴影部分是一个长方形,它的面积是()平方厘米.A .3B .4C .5D .64.如图,小方格都是边长为1的正方形,则△ABC 中BC 边上的高等于()A .BC .D5.如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=()A .6B .62C .63D .126.已知,如图,AD 平分BAC Ð,E 是BC 的中点,DE BC ^,DM AB ^,DN AC ^,若8AB =,5AC =,则CN 的长为()A .1B .32C .2D .37.如图,在ABC 中,4,3,60,AB BC B M ==Ð= 是BC 延长线上一点,2,CM P =是边AB 上一动点,连结PM ,作DPM △与BPM △关于PM 对称(点D 与点B 对应),连结AD ,则AD 长的最小值是()A .0.5B .0.6C .521D 1338.如图,在ABC 中,D ,E 分别是边BC ,AC 的中点,已知90ACB Ð=°,4BE =, 7AD =,则AB 的长为().A .13B .53C .10D .15二、填空题9.直角三角形的两边长为5和7,则第三边长为.10.若三角形三边之比为3:4:5,周长为24,则三角形面积.11.一个直角三角形的两直角边为8,15,则斜边上的高为_______12.如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60°方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30°方向上,那么小岛A 到航线BC 的距离等于____________海里.13.如图,一架梯子AB斜靠在左墙时,梯子顶端B距地面2.4m,保持梯子底端A不动,将梯子斜靠在右墙时,梯子顶端C距地面2m,梯子底端A到右墙角E的距离比到左墙角D的距离多0.8m,则梯子的长度为_____m.14.在△ABC中,∠C=90°,AC=BC=1,将△ABC沿射线AB翻折,得到△ABD,再将AC 沿射线AB平移,得到EF,连接DE、DF,则△DEF周长的最小值是__.三、解答题15.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.(1)试找出它们的共同点,并证明你的结论;(2)写出当a=17时,b,c的值.16.如图,为修建高速铁路需凿通隧道AC,测得,,,若每天可凿隧道0.3m,需要多少天才能把隧道AC凿通?17.如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东方向,办公楼B位于南偏东方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B 之间的距离.18.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算出两圆孔的中心点A和点M之间的距离.参考答案1.C2.B3.C4.B5.A6.B7.C8.A 9.2或10.24;11.12.13.2.5或5 214115.解:(1)以上各组数的共同点可以从以下方面分析:①以上各组数均满足a2+b2=c2;②最小的数(a)是奇数,其余的两个数是连续的正整数;③最小奇数的平方等于另两个连续整数的和,如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…由以上特点我们可猜想并证明这样一个结论:设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),则m,n,n+1就构成一组简单的勾股数,证明:∵m2=n+(n+1)(m为大于1的奇数),∴m2+n2=2n+1+n2=(n+1)2,∴m,n,(n+1)是一组勾股数;(2)运用以上结论,当a=17时,∵172=289=144+145,∴b=144,c=145.16.,为直角三角形,,,,(天).答:需要天才能将隧道凿通.17.由题意可知:,,.在中,,,.在中,,,.由勾股定理,,即,解得.米.18.。
17.1 勾股定理
一、选择题
1.在下列四组数中,不是勾股数的一组数是
A. B.
C. D.
2.若直角三角形的三边长分别为、a、,且a、b都是正整数,则三角形其
中一边的长可能为
A. 22
B. 32
C. 62
D. 82
3.设直角三角形的两条直角边分别为a和b,斜边长为c,已知,则
A. 1
B. 5
C. 10
D. 25
4.如图,四边形ABCD的对角线AC与BD互相垂直,若,则
AD的长为
A.
B. 4
C.
D.
5.某商场一楼与二楼之间的手扶电梯如图所示其中AB、CD分别表示一楼、二楼地面
的水平线,的长是8m,则乘电梯从点B到点C上升的高度h是
A. B. 8m C. D. 4m
6.如图:图形A的面积是
A. 225
B. 144
C. 81
D. 无法确定
7.如图,在中,,垂足为D,点E是AB的中点,
,则AB的长为
A. 2a
B.
C. 3a
D.
8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯
子底端到左墙角的距离为米,顶端距离地面米,如果保持
梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,
则小巷的宽度为
A. 米
B. 米
C. 米
D. 米
9.九章算术中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺问折
高者几何?意思是:一根竹子,原高一丈一丈尺,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为
A. B.
C. D.
10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代
数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角
形和一个小正方形拼成的一个大正方形,设直角三角形较长直角
边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为
A. 3
B. 4
C. 5
D. 6
二、解答题
11.如图,在中,AD是BC边上的高,
,求BC的长结果保留
根号
12.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三
角形;在图2中画出一个面积是5的四边形.
13.小智和小慧想知道学校旗杆AB的高度,他们发现旗杆上的绳子从顶端垂到地面还
多了1米图,即米,当他们往外把绳子拉直,发现绳子下端刚好接触地面时,触点D离旗杆下端B的距离为5米图,于是,小智和小慧很快算出了旗杆的高度,你能推算出旗杆的高度吗?请写出过程.
14.如图是“赵爽弦图”,其中、、和是四个全等的直角三
角形,四边形ABCD和EFGH都是正方形,根据这个图形的面积关系,可以证明勾股定理设,取.
正方形EFGH的面积为______,四个直角三角形的面积和为______;
求的值.
【答案】
1. D
2. B
3. B
4. A
5. D
6. C
7. B
8. C9. D10. C
11. 解:是BC边上的高,,
,
,
在中,根据勾股定理,
,
,
,
是BC边上的高,,
,
,
.
12. 解:只须画直角边为2和3的直角三角形即可这时直角三角形的面积为:
;
画面积为5的四边形,我们可画边长的平方为5的正方形即可.
如图1和图2.
13. 解:能推算出旗杆的高度;
设旗杆的高度为x米,则绳子的长度为米,根据勾股定理可得:,
解得,.
答:旗杆的高度为12米.
14. 4;96。