高三数学试题-浙江省温州中学高三2018学年第一学期期末考试数学试卷2018.1.22 最新
- 格式:doc
- 大小:698.36 KB
- 文档页数:11
浙江省2018届高三数学上学期考试试题考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号;3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。
一、选择题(本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 31ii-=+( ▲).22A B C D2.双曲线22194y x-=的渐近线方程是(▲)9432....4923A y xB y xC y xD y x=±=±=±=±3.若变量x,y满足约束条件11y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2x y+的最大值是(▲)A.3B.2C.4D.54 已知数列{}n a的前n项和n S,且满足()23n nS a n N*=-∈,则6S=(▲)A. 192B. 189C. 96D. 935. ()4121xx⎛⎫+-⎪⎝⎭展开式中2x的系数为(▲). 16 . 12 . 8 . 4A B C D6.已知()cos,sinaαα=,()()()cos,sinbαα=--,那么0“”a b⋅=是“α=4kππ+()k Z∈”的(▲)A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知函数()()()22130xf x x e ax a x=-+->为增函数,则a的取值范围是(▲).A [)-+∞ .B 3[,)2e -+∞ .C (,-∞- .D 3(,]2e -∞-8. 设,A B 是椭圆22:14x y C k+=长轴的两个端点,若C 上存在点P 满足120APB ∠=,则k 的取值范围是( ▲ )42. (0,][12,+) . (0,][6,+)3324. (0,][12,+) . (0,][6,+)33A B C D ∞∞∞∞9.函数y x =( ▲ ). [1) ) ) . (1,)A B C D ++∞+∞+∞+∞10. 设数列{}n x 的各项都为正数且11x =. ABC ∆内的点()n P n N*∈均满足n P AB ∆与n P AC ∆的面积比为2:1,若11(21)02n n n n n P A x P B x P C ++++=,则4x 的值为( ▲ ) .15 .17 .29 .31A B C D二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分,把答案填在题中横线上)11. 一个棱长为2的正方体被一个平面截去一部分后,剩下部分的三视图如下图所示,则该几何体的表面积为 ▲,体积为 ▲ .第11题图俯视图侧视图正视图12.已知在ABC ∆中,3AB =,BC =2AC =,且O 是ABC ∆的外心,则AO AC ⋅= ▲ ,AO BC ⋅= ▲ .13. 已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,且04πα<<,则sin α= ▲ ,cos α= ▲ .14. 安排甲、乙、丙、丁、戊5名大学生去杭州、宁波、金华三个城市进行暑期社会实践活动,每个城市至少安排一人,则不同的安排方式共有 ▲ 种,学生甲被单独安排去金华的概率是 ▲ . 15. 已知F 是抛物线2:4C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N . 若12FM MN =,则FN = ▲ . 16. 已知函数()()22,0,ln 14,0x x x f x x x ⎧+>⎪=⎨⎪-+≤⎩则关于x 的方程()246f x x -=的不同实根的个数为 ▲ .17. 如图,棱长为3的正方体的顶点A 在平面α内,三条棱AB ,AC ,AD 都在平面α的同侧. 若顶点B ,C 到平面α则平面ABC 与平面α所成锐二面角的余弦值为 ▲ .第17题图三、解答题(本大题共5小题,共74分. 解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分14分)已知函数2()sin cos cos f x x x x ωωω=+(0)ω>的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)将函数()y f x =的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()y g x =在区间[,0]4π-上的最值.19. (本小题满分15分)如图,在四棱锥P ABCD -中,AB AP ⊥,AB ∥CD ,且PB BC ==BD =2CD AB ==120PAD ∠=.(Ⅰ)求证:平面PAD ⊥平面PCD ;(Ⅱ)求直线PD 与平面PBC 所成角的正弦值.第19题PD20.(本小题满分15分)设函数R m xmx x f ∈+=,ln )(. (Ⅰ)当e m =(e 为自然对数的底数)时,求)(x f 的极小值; (Ⅱ)若对任意正实数a 、b (a b ≠),不等式()()2f a f b a b-≤-恒成立,求m 的取值范围.21.(本小题满分15分)如图,已知抛物线py x C 2:21=的焦点在抛物线22:1C y x =+上,点P是抛物线1C 上的动点.(Ⅰ)求抛物线1C 的方程及其准线方程;(Ⅱ)过点P 作抛物线2C 的两条切线,A 、B 分别为两个切点,求PAB ∆面积的最小值.第21题图22.(本小题满分15分)已知无穷数列{}n a 的首项112a =,1111,2n n n a n N a a *+⎛⎫=+∈ ⎪⎝⎭.(Ⅰ)证明:01<<n a ; (Ⅱ) 记()211++-=nn n n n a a b a a ,n T 为数列{}n b 的前n 项和,证明:对任意正整数n ,310n T <.高三年级数学学科一、选择题二、填空题11. 18+203 12. 2,52- 13. 35,45 14. 150,77515. 5 16. 4个 17. 23三、解答题 18 解:( Ⅰ)1())242f x x πω=++-----------------4分 22T ππω==,所以1ω=-----------------------6分 (Ⅱ)1()(2))242g x f x x π==++------------------8分 当[,0]4x π∈-时,34[,]444x πππ+∈---------------------10分所以min 31()()162g x g π=-=; max ()(0)1g x g ==-------14分19 解:(Ⅰ)证明:取CD 中点为E ,连接BE ,因为BC BD =,所以BE CD ⊥,又2CD AB =,AB //CD ,所以//AB DE =,所以四边形ABED 为矩形,所以AB AD ⊥,又AB AP ⊥,所以AB ⊥平面PAD .-------------------------------------------4分 又//AB CD ,所以CD ⊥平面PAD ,又CD ⊂平面PCD ,所以平面PAD ⊥平面PCD .-------------------------------6分第19题PD(Ⅱ) 在ABP ∆中,AB =PB =AB AP ⊥,所以2AP =;在ABD ∆中,AB =,BD =AB AD ⊥,所以2AD =.取PD 和PC 的中点分别为F 和G ,则//12FG CD =,又//12AB CD =,所以//AB FG =,所以四边形AFGB 为平行四边形,又2PA AD ==,F 为PD 的中点,所以AF PD ⊥,所以AF ⊥平面PCD ,所以BG ⊥平面PCD ,所以平面PBC ⊥平面PCD ,----------10分 所以PC 为PD 在平面PBC 上的射影,所以DPC ∠为PD 与平面PBC 所成的角。
浙江省温州市一中2018-2019学年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知偶函数在区间单调递增,则满足的取值范围是()A. B. C. D.参考答案:B2. 函数的递增区间是()A. B. C. D.参考答案:A3. 若等式对于一切实数都成立,则( )A. B. C.D.0参考答案:B解法一:∵,∴(C为常数),取得,再取得,即得,∴,故选B.解法二:∵,∴∴,故选B.4. 已知函数,其导函数的部分图像如图所示,则函数的解析式为()A.B.C.D.参考答案:B5. 平面ABC,,且PA=AB=BC,则异面直线PB与AC所成角等于;参考答案:6. 已知向量,若,则直线:与圆:的位置关系是()A.相交B.相交且过圆心C.相切D.相离参考答案:C7. 过点M(-2,0)作斜率为(≠0)的直线与双曲线交于A、B两点,线段AB的中点为P,O为坐标原点,OP的斜率为,则等于A. B.3 C. - D. -3参考答案:B设,,则,。
因为点在双曲线上,则有两式相减化简得:,即。
8. (2009湖北卷理)设a为非零实数,函数A、 B、C、 D、参考答案:D解析:由原函数是,从中解得即原函数的反函数是,故选择D9. 已知、是三次函数的两个极值点,且,,则的取值范围是A. B. C. D.参考答案:A略10. 等差数列中,则此数列前20项和等于().A. B. C. D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 函数的最小正周期T=.参考答案:π略12. 已知等差数列{a n},S n是数列{a n}的前n项和,且满足a4=10,S6=S3+39,则数列{a n}的首项a1= ,通项a n= .参考答案:1,3n﹣2。
考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设出等差数列的首项和公差,由已知列方程组求得首项和公差,则答案可求.解答:解:设等差数列{a n}的首项为a1,公差为d,由a4=10,S6=S3+39,得,解得.∴a n=1+3(n﹣1)=3n﹣2.故答案为:1,3n﹣2.点评:本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.13. 方程的解是。
绝密★考试结束前2017年11月温州中学高三高考科目模拟考试(期中)数学试题卷命题:徐进光、刘旭飞 校 稿:潘克亮本试卷分第(Ⅰ)卷(选择题)和第(Ⅱ)卷(非选择题)两部分.满分150分,考试时间120分钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
参考公式:球的表面积公式:24πS R =,其中R 表示球的半径; 球的体积公式:34π3V R =,其中R 表示球的半径;棱柱体积公式:V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高; 棱锥体积公式:13V Sh =,其中S 为棱柱的底面面积,h 为棱柱的高;台体的体积公式:()1213V h S S = 其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高.第Ⅰ卷(选择题 共40分) 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|y=ln(2-x 2)},N={x|Z x e e ex ∈<<+,121},则M N =I ( ) A .{}1B .{}1,0-C .{}1,0,1-D .∅2.已知221(32)z m m m i =-+-+(,m R i ∈为虚数单位),则“1m =-”是“z 为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中周期为π且为奇函数的是 ( ) A .)22sin(π-=x y B .)22cos(π-=x yC .)2sin(π+=x yD .)2cos(π+=x y4.如图1,四棱柱1111D C B A ABCD -中,E 、F 分别是1AB 、1BC 的中点.下列结论中,正确的是 ( )A .1BB EF ⊥B .//EF 平面11A ACC C .BD EF ⊥D .⊥EF 平面11B BCC5.P 为△ABC 部一点,且满足||2||2PB PA ==,56APB π∠=,且2340PA PB PC ++=u u u r u u u r u u u r r,则ABC ∆的面积为( )A .98 B .43C .1D .656.设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是( ).A .0a ≤B .85a ≥C .8875a a ≤-≥或 D .87a ≤-7.将正方形ABCD 沿对角线BD 折叠成一个四面体ABCD ,当该四面体的体积最大时,直线AB 与CD 所成的角为( )A .090B .060C .045D .0308.在ABC ∆中,已知53tan ,41tan ==B A ,且ABC ∆最大边的长为17,则ABC ∆的最小边为 ( )A .1B .5C .2D .39.设实数a 使得不等式2|2||32|x a x a a -+-≥对任意实数x 恒成立,则满足条件的a 所组成的集合是( )1A .]31,31[-B .]21,21[-C .]31,41[-D .[3,3]- 10.设)(x f ,)(x g 都是定义在实数集上的函数,定义函数))((x g f ο:x R ∈任意,))(())((x g f x g f =ο.若⎩⎨⎧≤>=.0 ,,0 , )(2x x x x x f ,⎩⎨⎧>≤=.0 ,ln ,0 , )(x x x e x g x ,则 ( ) A .)())((x f x f f =ο B .)())((x f x g f =ο C .)())((x g x f g =οD .)())((x g x g g =ο第Ⅱ卷(非选择题 共110分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若()2a i i b i +=+,其中,∈a b R ,i 是虚数单位,则a b -=( ▲ )A .-3B .-2C .2D .3 2.()51x -的展开式中,3x 的系数为( ▲ )A .-10B .-5C .5D .103.使不等式230x x -<成立的充分不必要条件是 ( ▲ )A .03x <<B 04x <<C 02x <<D 0x <,或3x > 4.某程序框图如图所示,该程序运行后输出的s 值为( ▲ )A .102B .410C .614D .16385.设,,αβγ是三个不重合的平面,,m n 是不重合的直线,下列判断正确的是 ( ▲ )A .若,αββγ⊥⊥,则//αγB .若,,m n αα⊥⊥则//m nC .若//,//,m n αα则//m nD .若,//,l αββ⊥则l α⊥ 6.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足01<+n n S S 的正整数n 的值为( ▲ )A.10B.11C.12D. 13 7.函数 2||,0()sin()(πϕωϕω<>+=x A x f 的部分图象如图所示,则=)(πf ( ▲ )A .4B .32C .2D .38.已知O 为原点,双曲线2221x y a-=上有一点P ,过P 作两条渐近线的平行线,交点分别为,A B ,平行四边形OBPA 的面积为1,则双曲线的离心率为( ▲ )AD9.已知正方体1111ABCD A BC D -,过顶点1A 作平面α,使得直线AC 和1BC 与平面α所成的角都为30 ,这样的平面α可以有( ▲ )A.4个B.3个C.2个D.1个10.已知函数q px x x f ++=2)(与函数)))(((x f f f y =有一个相同的零点,则)0(f 与)1(f ( ▲ )A .均为正值B .均为负值 C. 一正一负 D. 至少有一个等于0二、 填空题:本大题共7小题,每小题4分,共28分。
图 1 浙江省温州市十校联合体 2018届高三年级上学期联考数学试题(文科)(完卷时间:120分钟, 满分:150分,本次考试不得使用计算器)一、选择题:本大题共10题,每小题5分,共50分. 1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =( )A .{11}x x -≤<B .{1}x x >C .{11}x x -<<D .{1}x x ≥- 2.设i 为虚数单位,则3+2i 2-3i =( )A .1B .-1C .iD .-i3.设集合}30|{≤<=x x M , }20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若向量),3(m a =,)1,2(-=b ,0=⋅,则实数m 的值为 ( )A .32-B .32C .2D .65.某程序框图如图1所示,该程序运行输出的k 值是( )A .4B .5C .6D .7 6.函数22cos ()14y x π=--是( )A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为2π的奇 7.如图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为 ( )图2俯视图侧视图正视图4 A.6+B.24+C.143D.32+8.设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为()A.0 B.2C.4 D.69.已知 时均有当且21)()1,1(,)(,102<-∈-=≠>xfxaxxfaa x则实数a的取值范围()A.[)∞+⎥⎦⎤⎝⎛,,2210 B.(]4,11,41⎪⎭⎫⎢⎣⎡C.(]211,21,⎪⎭⎫⎢⎣⎡D.[)∞+⎥⎦⎤⎝⎛, 441,010.已知12,F F分别是双曲线2222:1x yCa b-=(0,0)a b>>的左,右焦点。
浙江省杭州市2018届高三上学期期末教学质量检测数学试题卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}[]22,0,4A x x B =+≤=,则()R C A B =I ( )A. RB.{}0C.{},0x x R x ∈≠ D.∅ 2.双曲线2214y x -=的渐近线方程为( ) A.12y x =± B.2y x =± C.3y x =± D.5y x =± 3.设数列{}n a 的通项公式为*2()n a kn n N =+∈,则“2k >”是“数列{}n a 为递增数列的”( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.若函数()f x 的导函数'()f x 的图象如图所示,则( )A. 函数()f x 有1个极大值,2个极小值B. 函数()f x 有2个极大值,2个极小值C. 函数()f x 有3个极大值,1个极小值D. 函数()f x 有4个极大值,1个极小值5.若直线y x =与曲线x m y e +=(m R ∈,e 为自然对数的底数)相切,则m =( )A. 1B. 2C. 1-D. 2-6.设不等式组01y x y y mx ≥⎧⎪+≤⎨⎪≥⎩,所表示的区域面积为()S m R ∈,若1S ≤,则( ) A. 2m ≤- B. 20m -≤≤ C. 02m <≤ D. 2m ≥7.设函数2()1x f x b a =+-(0a >且1a ≠),则函数()f x 的奇偶性( ) A. 与a 无关,且与b 无关 B. 与a 有关,且与b 有关C. 与a 有关,但与b 无关D. 与a 无关,但与b 有关8.在三棱锥P ABC -中,PA ⊥平面ABC ,90BAC ∠=o,,D E 分别是,BC AB 的中点,AB AC ≠,且AC AD >.设PC 与DE 所成角为α,PD 与平面ABC 所成角为β,二面角P BC A --为γ,则( )A.αβγ<<B.αγβ<<C.βαγ<<D.γβα<<9.设函数2()(,)f x ax bx c a b R =++∈,记M 为函数()y f x =在[1,1]-上的最大值,N 为a b +的最大值,则( )A. 若13M =,则3N =B. 若12M =,则3N = C. 若2M =,则3N = D. 若3M =,则3N = 10.在四边形ABCD 中,点,E F 分别是,AD BC 的中点,设AD BC m ⋅=u u u r u u u r ,AC BD n ⋅=u u u r u u u r,若 2,1,3AB EF CD ===,则( )A. 21m n -=B. 221m n -=C. 21m n -=D. 221n m -=二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.设复数52z i=-(其中i 为虚数单位),则复数z 的实部为 ,虚部为 . 12.在一次随机实验中,事件A 发生的概率为p ,事件A 发生的次数为ξ,则期望E ξ= ,方差D ξ的最大值为 .13.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,5,3,sin 2sin a b C A ===,则sin A = ,设D 为AB 边上一点,且2BD DA =u u u r u u u r ,则BCD ∆的面积为 . 14.如图是某三棱锥的三视图,则该三棱锥的体积为 ,表面积为 .15.在二项式25()()a x a R x +∈的展开式中,若含7x 的项的系数为10-,则a = .16.有红、黄、蓝三种颜色的小球(除颜色外均相同)各4只,都分别标有字母,,,A B C D ,任意取出4只,字母各不相同且三种颜色齐备的取法共有 种.(用数字作答) 17.已知单位向量12,e e u r u u r 的夹角为3π,设122a e e λ=+r u r u u r ,则当0λ<时,a λ+r 的取值范围是 .三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)设向量(23sin ,cos ),(cos ,2cos )a x x b x x =-=r r ,() 1.f x a b =⋅+r r(1)求函数()f x 的最小正周期;(2)若方程2()()f x t t t R =-∈无实数解,求t 的取值范围.19.(本小题满分15分)如图,在三棱锥A BCD -中,60BAC BAD DAC ∠=∠=∠=o ,2AC AD ==, 3.AB =(1)证明:AB CD ⊥;(2)求CD 与平面ABD 所成角的正弦值.20.(本小题满分15分)设函数22()().1f x x R x =∈+ (1)求证:2()1f x x x ≥-++;(2)当[1,0]x ∈-时,函数()2f x ax ≥+恒成立,求实数a 的取值范围.21.(本小题满分15分)已知椭圆22:132x y C +=,直线:(0)l y kx m m =+≠,设直线l 与椭圆C 相交于,A B 两点.(1)若3m >,求实数k 的取值范围;(2)若直线,,OA AB OB 的斜率成等比数列(其中O 为坐标原点),求OAB ∆的面积的取值范围.22.(本小题满分15分)设数列{}n a 满足2*113,(1)20().n n n a a a a n N +=-++=∈(1)求证:1n a >;(2)求证:12n n a a +<<;(3)设数列{}n a 的前n 项和为n S ,求证:1222()233().23n n n S n -≤-≤-。
浙江省温州市龙湾中学2018-2019学年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为0.5,两次闭合后都出现红灯的概率为0.2,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.0.1 B.0.2 C.0.4 D.0.5参考答案:C【考点】古典概型及其概率计算公式.【分析】设A表示“开关第一次闭合后出现红灯”,B表示“开关第二次闭合后出现红灯”,则P(A)=0.5,P(AB)=0.2,由此利用条件概率计算公式能求出在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率.【解答】解:设A表示“开关第一次闭合后出现红灯”,B表示“开关第二次闭合后出现红灯”,∵开关第一次闭合后出现红灯的概率为0.5,两次闭合后都出现红灯的概率为0.2,∴P(A)=0.5,P(AB)=0.2,∴在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率:P(B|A)===0.4.故选:C.2. 双曲线的离心率为()A.B.C.D.参考答案:A略3. 已知非空集合,全集,集合,集合,则()A. B. C. D.参考答案:B略4. 复数,,则复数在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A5. 已知函数的图象关于y轴对称,且当成立a=(20.2)···,则a,b,c的大小关系是()A.B.C.D.参考答案:A因为函数关于轴对称,所以函数为奇函数.因为,所以当时,,函数单调递减,当时,函数单调递减。
因为,,,所以,所以,选A.7.阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是A.S<8B. S<9C. S<10D. S<11参考答案:B7. 下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题参考答案:B【考点】命题的真假判断与应用.【分析】利用命题的定义判断A的正误;函数的极值的充要条件判断B的正误;命题的否定判断C的正误;四种命题的逆否关系判断D的正误;【解答】解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”,不满足否命题的定义,所以A不正确;对于B,已知y=f(x)是R上的可导函数,则“f′(x0)=0”函数不一定有极值,“x0是函数y=f(x)的极值点”一定有导函数为0,所以已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件,正确;对于C,命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”,不满足命题的否定形式,所以不正确;对于D,命题“角α的终边在第一象限角,则α是锐角”是错误命题,则逆否命题为假命题,所以D不正确;故选:B.8. 如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分.当x1=6,x2=9,p=8.5时,x3等于( )A.11 B.10 C.8 D.7参考答案:C考点:选择结构.专题:创新题型.分析:利用给出的程序框图,确定该题最后得分的计算方法,关键要读懂该框图给出的循环结构以及循环结构内嵌套的条件结构,弄清三个分数中差距小的两个分数的平均分作为该题的最后得分.解答:解:根据提供的该算法的程序框图,该题的最后得分是三个分数中差距小的两个分数的平均分.根据x1=6,x2=9,不满足|x1﹣x2|≤2,故进入循环体,输入x3,判断x3与x1,x2哪个数差距小,差距小的那两个数的平均数作为该题的最后得分.因此由8.5=,解出x3=8.故选C.点评:本题考查学生对算法基本逻辑结构中的循环结构和条结构的认识,考查学生对赋值语句的理解和认识,考查学生对程序框图表示算法的理解和认识能力,考查学生的算法思想和简单的计算问题.9. 在等差数列中,=,则数列的前11项和=().A.24 B.48C.66 D.132参考答案:D10. 已知x1、x2是函数f(x)=﹣3的两个零点,若a<x1<x2,则f(a)的值是( )A.f(a)=0 B.f(a)>0C.f(a)<0 D.f(a)的符号不确定参考答案:D考点:函数零点的判定定理.专题:函数的性质及应用.分析:将函数的零点问题转化为求两个函数的交点问题,通过图象读出g(a),h(a)的大小,从而解决问题.解答:解:令f(x)=0,∴e x=3x,令g(x)=e x,h(x)=3x,如图示:,由图象可得:x<x1时,e x>3x,∴f(x)=,∴f(a)=,∵e a﹣3a>0,∴a>0时:f(a)>0,当a<0时:e a﹣3a>0,a<0,∴f(a)<0,故选:D.点评:本题考察了函数的零点问题,渗透了转化思想,数形结合思想,是一道基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为 10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n= 。
浙江省温州市林垟中学2018年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. “”是“的展开式的第三项是60”的()A.充分不必要条件B. 必要不充分条件C. 充要条件 D.既不充分也不必要条件参考答案:A2. 函数的零点个数是( )A.0 B.l C.2 D.4参考答案:C【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】由f(x)=0,得,然后在坐标系中分别作出函数y=|log2x|,y=的图象,利用图象观察函数零点的个数.【解答】解:∵函数的定义域为{x|x>0},∴由f(x)=0,得,在坐标系中分别作出函数y=|log2x|,y=的图象如图:由图象可知两个函数只有两个交点,∴函数f(x)的零点个数为2个.故选:C【点评】本题主要考查函数零点的个数判断,利用数形结合的思想是解决本题的关键.3. 已知,,,则()A.B.C.D.参考答案:C,故4. 已知不等式的解集是M.若且,a的取值范围是( )A. B.C. D.参考答案:A由题可知,即,故选A.5. 等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6 B.9 C.36 D.72参考答案:D【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.6. 设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生但A不发生的概率要同,则事件A发生的概率P(A)是()A、 B、 C、D、参考答案:D略7. 已知且的值()A.一定小于0 B.等于0 C.一定大于0 D.无法确定参考答案:A8. 已知的导函数为,且满足,则()A.-2B. 2C. -1D. 1参考答案:C【分析】利用导数求得的值,再由此求得的值.【详解】依题意,故,,所以,,故选C.【点睛】本小题主要考查导数的运算,考查函数值的求法,属于基础题.9. 设集合A={0,1,2},则集合B={x-y |x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9参考答案:C因为,所以,即,有5个元素,选C.10. 如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()A.B.C.D.参考答案:C【考点】异面直线的判定.【分析】利用一面直线的定义和正方体的性质,逐一分析各个选项中的2条直线的位置关系,把满足条件的选项找出来.【解答】解:A 中的PQ与RS是两条平行且相等的线段,故选项A不满足条件.B 中的PQ与RS是两条平行且相等的线段,故选项B也不满足条件.D 中,由于PR平行且等于SQ,故四边形SRPQ为梯形,故PQ与RS是两条相交直线,它们和棱交与同一个点,故选项D不满足条件.C 中的PQ与RS是两条既不平行,又不相交的直线,故选项C满足条件.故选 C二、填空题:本大题共7小题,每小题4分,共28分11. 已知,则函数z=3x﹣y的最小值为.参考答案:【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(﹣,1).化目标函数z=3x﹣y为y=3x﹣z,由图可知,当直线y=3x﹣z过A时,直线在y轴上的截距最大,z有最小值﹣.故答案为:﹣.12. 在中,角A、B、C所对的边分别为a,b,c,S表示的面积,若==参考答案:45°略13. 设为坐标原点,点在直线上.若是斜边长为2的等腰直角三角形,则实数__________.参考答案:2或【命题意图】本小题主要考查直线方程等基础知识;考查推理论证能力、运算求解能力等;考查化归与转化思想、数形结合思想、分类与整合思想等;考查逻辑推理、直观想象、数学运算等.【试题简析】若为直角三角形的斜边,则点到直线距离等于,由点线距离公式,得,解得;若或为直角三角形的斜边,则点到直线距离等于2,由点线距离公式,得,解得,故答案为2或.【变式题源】(2016全国卷Ⅱ·理4)圆的圆心到直线的距离为1,则a =A.B.C.D.214. 已知O是外心,若,则.参考答案:【知识点】向量的数量积 F3.解析:因为O为三角形的外心,所以,由整理得:,同理整理可得:,所以,故答案为.【思路点拨】根据O为三角形外心,可得再让已知式子分别与向量求数量积,可得到与,再结合向量夹角公式求得结果.15. 设函数f(x)=|x2﹣2x|﹣ax﹣a,其中a>0,若只存在两个整数x,使得f(x)<0,则a的取值范围是.参考答案:(0,]【考点】5B:分段函数的应用.【分析】分别画出y=|x2﹣2x|与y=a(x+1)的图象,则存在两个整数,使得y=|x2﹣2x|在直线y=ax+a的下方,结合图象即可求出函数a的范围【解答】解:f(x)=|x2﹣2x|﹣ax﹣a<0,则|x2﹣2x|<ax+a,分别画出y=|x2﹣2x|与y=a(x+1)的图象,如图所示,∵只存在两个整数x,使得f(x)<0,当x=1时,y=|12﹣2|=1,∴2a=1,解得a=,此时有2个整数,结合图象可得a的取值范围为(0,],故答案为(0,].【点评】本题分段函数的问题,涉及数形结合和转化的思想,属中档题.16. 动点到点的距离与它到直线的距离相等,则的轨迹方程为参考答案:y2 8x略17. 如图,点的坐标为,函数过点,若在矩形内随机取一点,则此点取自阴影部分的概率等于__________.参考答案:试题分析:由得,,曲边梯形的面积为,所以所求概率为.考点:几何概型.【名师点睛】几何概型的常见类型的判断方法1.与长度、角度有关的几何概型,其基本事件只与一个连续的变量有关;2.与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;3.与体积有关的几何概型.三、解答题:本大题共5小题,共72分。
浙江省温州中学高三2018学年第一学期期末考试数学试卷 2018.1.22一、选择题(本大题共10小题,每小题5分共50分.)1.若非空集合U B A 、、满足Φ==B A ,U B A ,则称)B ,A (为U 的一个分割,则集合}3,2,1{U =的不同分割有 ( ).A 5个 .B 6个 .C 7个 .D 8个 2.已知正态分布函数2)1x (2e21)x (f --=π,则 ( ).A )x (f 在R 上单调递减. .B )x (f y =的图像关于直线1x =对称. .C 0)x (f )x 1(f =-- .D 0)x (f )x 2(f =+-3.下列命题中,条件M 是条件N 的充要条件的为 ( ) .A 22bc ac N ,b a M >>:: .B c b d a N ,d c ,b a M ->->>:: .C bd ac N 0,d c ,0b a M >>>>>:: .D M |a b ||a ||b |,N a b-=+≤:: 4.若n m 、是两条不同的直线,γβα、、是三个不同的平面,则下列命题中是真命题的是( ) .A 若βαβ⊥⊂,m ,则α⊥m .B 若m//n n,,m ==γβγα ,则βα// .C 若αβ//m ,m ⊥,则βα⊥ .D 若βαγα⊥⊥,,则γβ//5.已知⎩⎨⎧≥<+-=1 x , x log 1 x , a 4x )13a ()x (f a是),(+∞-∞上的减函数,则a 的取值范围为( ).A )1,0( .B )31,0(.C )31,71[ .D )1,71[6.给出一个如图所示的程序框图,若要使输入的x 的值与输出的y 的值相等,则x 的可能值的个数为( ).A 1个 .B 2个 .C 3个 .D 4个7.设椭圆)0b a (1b y a x 2222>>=+的离心率为e ,右焦点)0,c (F ,方程0c bx ax 2=-+的两个实数根分别为21x ,x ,则点)x ,x (P 21( ).A 必在圆1y x 22=+内 .B 必在圆1y x 22=+上.C 必在圆1y x 22=+外 .D 与1y x 22=+的关系与e 有关8.已知复数nn n 2n 21n C i C i iC Z +++= (其中i 为虚数单位),以下判断中正确的为( ) .A 不存在*N n ∈,使Z 为纯虚数 .B 对任意的*N n ∈,Z 为实数.C 存在无限个*N n ∈,使Z 为实数 .D 不存在*N n ∈,使Z 为实数9.已知OA (6,2)=,)4,2(=,1||=,点C 在直线OA 上的投影为D ,则||的最大值为 ( ) .A 1010+ .B 1010-.C 110+ .D 110-10.由9个正数组成的矩阵⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a 中,每行中的三个数成等差数列,且131211a a a ++,232221a a a ++,333231a a a ++成等比数列,给出下列判断:①第2列12a ,22a ,32a 必成等比数列;②第1列11a ,21a ,31a 不一定成等比数列;③23213212a a a a +≥+;④若9个数之和等于9,则1a 22≥.其中正确的个数有 ( ).A 1个 .B 2个 .C 3个 .D 4个二、填空题(本大题共7小题,每小题4分,共28分)11.已知数列)N n (1n 73n a },a {*n n ∈++=,请判断命题N a ,N n P n *∉∈∀:的真假_____. 12.ABC ∆中,c b a 、、分别为C B A ∠∠∠、、的对边,bcosC CcosB =,且31cosA =,则=sinB _13.已知正三棱锥ABC P -的四个顶点在体积等于π36的球O 的表面上.若PC PB PA 、、两两互相垂直,则球心O 到平面ABC 的距离等于__________.14.已知函数x x )x (f 3+=,对任意的0)x (f )2mx (f ],2,2[m <+--∈恒成立,则x 的取值范围为.15.在集合*{x N |x 10}∈≤中取三个不同的数c b a 、、,则满足30c b a 12≤++≤的等差数列c b a 、、,有____________个.16.B 地在A 地的正东方向4)km (处,C 地在B 地的北偏东45的)km (处.有一直线型的马路l 过C 地且与线段BC 垂直,现欲在马路l 上造一个车站P .造一公里马路的费用为5(万元),则修筑两条马路PB PA 、的最低费用为__________(万元).17.已知集合}0x 21y 2x y |)y x,{(M ≥≥≤=且,})a 4()a y ()a x (|)y x,{(N 222-≤-+-=,若M N ⊆,则a 的取值范围为________.三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分)已知函数2f (x)2cos x 2asinxcosx-1=+的图像关于直线8x π=对称.(Ⅰ)求a 的值;(Ⅱ)把函数)x (f y =的图像按向量a平移后与函数g(x)=的图像重合,求a 的坐标. 19.(本题满分14分)已知盒子A 中有m 个红球与m 10-个白球,盒子B 中有m 10-个红球与m 个白球(两个盒子中的球形状、大小都相同). (Ⅰ)分别从B A 、中各取一个球,ξ表示红球的个数. (ⅰ)请写出随机变量ξ的分布规律,并证明ξE 等于定值; (ⅱ)当ξD 取到最大值时,求m 的值.(Ⅱ)在盒子A 中不放回地摸取3个球.事件A :在第一次取到红球后,以后两次都取到白球.事件B :在第一次取到白球后,以后两次都取到红球,若)B (P )A (P =,求m 的值.20.(本题满分15分)如下组合体由直三棱柱111C B A ABC -与正三棱锥ACD B -组成,其中,BC AB ⊥.它的正视图、俯视图、从左向右的侧视图的面积分别为22+1,22+1,1. (Ⅰ)求直线1CA 与平面ACD 所成角的正弦; (Ⅱ)在线段1AC 上是否存在点P ,使⊥P B 1平面ACD .若存在,确定点P 的位置;若不存在,说明理由.121.(本题满分15分)已知点)0,1(F ,直线1x l -=:,动点P 到点F 的距离等于点P 到直线l 的距离,动直线PO 与直线l 交于动点N ,过N 且平行于x 轴的直线与动直线PF 交于动点Q . (Ⅰ)求证:动点Q P 、在同一条曲线C 上运动;(Ⅱ)曲线C 在x 轴上方点P 处的切线与直线l 交于点R ,M 为线段PQ 的中点. (ⅰ)求证:直线RM //x 轴;(ⅱ)若直线RM 平分PRF ∠,求直线PF 的方程.22.(本题满分14分)已知函数lnx exax )x (f 2-+=(其中a 为常数,e 为自然对数的底数). (Ⅰ)任取两个不等的正数21x x 、,0x x )x (f )x (f 2121<--恒成立,求:a 的取值范围;(Ⅱ)当0a >时,求证:0)x (f =没有实数解.温州中学高三2018学年第一学期期末考试数 学 试 卷一、选择题(本大题共10小题,每小题5分,共50分)题号 12 3 4 5 6 7 8 9 10 答案二、填空题(本大题共7小题,每小题4分,共28分)11、 12、 13、14、 15、 16、 17、 三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分)学号 班级 姓名 得分 …………………………………………密…………………………………………封………………………………………线…………………………………19.(本题满分14分)20、(本题满分15分)21、(本题满分15分)22、(本题满分14分)温州中学高三2018学年第一学期期末考试数 学 试 卷二、填空题(本大题共7小题,每小题4分,共28分)11、假 12、13、 1 14、(-2,23) 15、 3416、17、 [5,5]三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分) 已知函数2f (x)2cos x 2sinxcosx-1a =+的图像关于直线8x π=对称.(Ⅰ)求a 的值;(Ⅱ)把函数)x (f y =的图像按向量b 平移后与函数g(x)=的图像重合,求:向量b 的坐标.()cos 2sin 2.......2).............................4()1)...............681.......................................................8(0)()2114f x x a x x f a a f f a a φππ=+=+==+==⇒=+∴=解(1):分分分分另解: (2)())2()48f x x x ππ=+=+-------g(x)=()f x 向右移动8π个单位向上移动1个单位即可得()g x 图象 (,1)8b π∴=-…………………………………….14分19.(本题满分14分)已知A 、B 两盒中都有红球、白球,且球的形状、大小都相同。
盒子A 中有m 个红球与m 10-个白球,盒子B 中有m 10-个红球与m 个白球.(Ⅰ)分别从B A 、中各取一个球,ξ表示红球的个数. (ⅰ)请写出随机变量ξ的分布列,并证明ξE 等于定值;学号 班级 姓名 得分 …………………………………………密…………………………………………封………………………………………线…………………………………(ⅱ)当ξD 取到最大值时,求m 的值.(Ⅱ)在盒子A 中不放回地摸取3个球.事件E :在第一次取到红球后,以后两次都取到白球.事件F :在第一次取到白球后,以后两次都取到红球,若P(E)P(F)=,求m 的值.解:(Ⅰ)ξ0 1 2P(10)100m m-22(10)100m m -+(10)100m m-…………………………………………………………………………………….4分22(10)(10)121100100m m m mE ξ-+-∴=⨯+⨯=………………………………7分∴2(10)(10)(5)2510010050m m m m m D ξ----+=+=5m D ξ∴=时取最大值……………………………………………………….10分(Ⅱ)()1210129(10)(9) (1172)m mm C C m m P E C C ---==分 ()211012109(1) (1272)m m m C C m m P F C C ---==分 ()()P E P F =5........................................................................................14m ∴=分20、(本题满分15分)如右放置在水平面上的组合体由直三棱柱111C B A ABC -与正三棱锥ACD B -组成,其中,BC AB ⊥.它的正视图、俯视图、从左向右的侧视图的面积分别为1,1,1.(Ⅰ)求直线1CA 与平面ACD 所成角的正弦;(Ⅱ)在线段1AC 上是否存在点P ,使⊥P B 1平面ACD .若存在,确定点P 的位置;若不存在,说明理由.C 11221111,11231212(0,(0,2,0),2,0),(0,BA BC BD a BB bab a a b a B BC BB BA x y z A C D B C A ACD G a BG ====⎧+=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪=⎪⎩∆∴=⎝⎭解:(1)设由条件分)以点为原点,分别以、、为轴、轴、轴建立空间直角坐标系,则分)的重心()()111112,2(2,2,2),cos ,(2)2,2,112,22,2222ACD CA a CA AP mAC m B P B A AP m m m am λ⎛ ⎝⎭-=-==∴===+=--==∴-===为平面的法向量.(7分)又则分)分)令(分)14.P ⎪⎪∴⎨⎪∴无解(分)不存在满足条件的点21、(本题满分15分)已知点)0,1(F ,直线1x l -=:,动点P 到点F 的距离等于点P 到直线l 的距离,动直线PO 与直线l 交于动点N ,过N 且平行于x 轴的直线与动直线PF 交于动点Q .(Ⅰ)求证:动点Q P 、在同一条曲线C 上运动;(Ⅱ)曲线C 在X 轴上方的点P 处的切线与直线l 交于点R ,M 为线段PQ 的中点. (ⅰ)求证:直线RM //x 轴;(ⅱ)若直线RM 平分PRF ∠,求直线PQ 的方程.221111211121121I 4244(,),:,(1,)444(-)(544:,:(1)46P C y x y P y OP y x N y y Q y y y NQ y PF y x y y Q C ==--=-=--、()点在曲线:上(分)令,分)显然点在曲线上。