物理作业1
- 格式:doc
- 大小:207.00 KB
- 文档页数:4
平作一01 介绍室内热湿环境的构成要素和影响因素。
构成要素:室内空气温度、相对湿度、气流速度、壁面辐射。
影响因素:室外气候(各项)、围护结构(保温)、人体与设备(热工设备)。
影响因素宜具体02 说明冬夏两季,室内开启空调达到相同温度、湿度,而人体热舒适感觉不同的原因。
热湿环境有四项,空调控制尚缺辐射项,冬夏外墙内表面温度迥异,大量冷热辐射的影响,使人体热舒适感觉不同。
题目已称空调达到相同温湿度,及气流速度,不要再从此三项中寻找原因。
03 介绍三种传热方式的名称和特点。
导热、对流、辐射。
导热在于实体,实务体现于结构内;对流在于流体,实务体现于空气中;辐射在于表面,实务体现于结构内外表面。
导热强弱在于材性及其密度;对流强弱在于温差或风速;辐射强弱在于表面明度或光滑度。
特点项目很多,宜选实务运用较直观的内容。
04冬季与夏季、室内与室外,外围护结构的表面处理,针对热辐射有哪些不同要求?表面处理即是反射。
内外之别在于内反红外线,应表面光滑(铝);外反太阳光,应表面浅色(白)。
冬夏之别在于室外侧的吸收与反射,夏应反射、冬宜吸收(涂黑吸收、透射吸收)。
表面处理不应涉及内部构造。
05 写出影响人体热舒适的六项因素,并说明其中哪几项属于物理环境因素。
介绍室内环境中,人体保持热舒适的必要条件和充分条件。
温度、湿度、气流、辐射;衣着、活动量。
前四项为物理环境因素。
人体产热与向环境热交换,保持得失热平衡是热舒适的必要条件;热交换的辐射、对流、蒸发之间保持正常比例(2︰1︰1)是热舒适的充分条件。
应明确正常热平衡所需换热三方式之比例。
06 介绍绿化在建筑热工方面的积极作用。
显著降低围护结构表面温度,大量减少环境相互热辐射,适度降低建筑周围空气温度,遮蔽墙面、减少对流散热。
以防热为主,仅末项保温。
空气品质、噪音之类不属于热工作用。
湿度改变本身不一定是舒适的,而是以热湿转换为手段,实现降温目标。
NO.1 质点运动学和牛顿定律班级 姓名 学号 成绩一、选择1. 对于沿曲线运动的物体,以下几种说法中哪种是正确的: [ B ] (A) 切向加速度必不为零. (B) 法向加速度必不为零(拐点处除外). (C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a为恒矢量,它一定作匀变速率运动.2.一质点作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V,平均速率为V ,它门之间的关系为:[ D ](A )∣V ∣=V ,∣V ∣=V ; (B )∣V ∣≠V ,∣V∣=V ; (C )∣V ∣≠V ,∣V ∣≠V ; (D )∣V ∣=V ,∣V∣≠V .3.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a τ表示切向加速度,下列表达式中, [ D ](1) d /d t a τ=v , (2) v =t r d /d , (3) v =t S d /d , (4) d /d t a τ=v .(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C) 只有(2)是对的. (D) 只有(1)、(3)是对的.(备注:经过讨论认为(1)是对的)4.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是 [ C ](A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 5.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) [ D ](A) t d d v .(B) 2v R . (C) R t 2d d vv +.(D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v .6.质点沿x 方向运动,其加速度随位置的变化关系为:a=31+3x 2. 如在x=0处,速度v 0=5m.s -1,则在x=3m处的速度为:[ A ](A )9 m.s -1; (B )8 m.s -1; (C )7.8 m.s -1; (D )7.2 m.s -1 .7.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?[ E ](A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.8.物体作圆周运动时,正确的说法是:[ C ] (A )加速度的方向一定指向圆心;(B )匀速率圆周运动的速度和加速度都恒定不变; (C )必定有加速度,且法向分量一定不为零;(D )速度方向一定在轨道的切线方向,法向分速度为零,所以法向加速度一定为零;9.以下五种运动形式,a保持不变的运动是 [ E ]A(A )单摆的运动;(B )匀速圆周运动;(C )圆锥摆运动;(D )行星的椭圆轨道运动;(E )抛体运动; 二、填空1.已知一质点在Oxy 平面内运动,其运动学方程为22(192)r ti t j =++;r的单位为m ,t 的单位为s ,则位矢的大小rv = 24i t j + ,加速度a =4(/)j m s 。
物理暑假作业一(7月13日)一.单选题(共5小题,每题4分,共20分)1.一物体做匀变速直线运动,下列说法中正确的是()A.物体的末速度一定与时间成正比B.物体的位移一定与时间的平方成正比C.物体的速度在一定时间内发生的变化与这段时间成反比D.加速度是一个恒量2.一辆汽车正在做匀加速直线运动,计时之初,速度为6m/s,运动28m后速度增加到8m/s,则下列说法正确的是()A.这段时间所用的时间是1sB.这段运动的加速度是3.5m/s2C.自计时开始起,2s末的速度是7m/sD.从开始计时起,经过14m处的速度是3.如图所示,t=0时,质量为0.5kg的物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(经过B点前后速度大小不变),最后停在C点。
每隔2s物体的瞬时速度记录在表格中,重力加速度g=10m/s2,则下列说法中正确的是()t/s0246v/(m•s﹣1)08128A.t=3s时刻,物体恰好经过B点B.t=8s时刻,物体恰好停在C点C.物体运动过程中的最大速度为mD.A、B间的距离大于B、C间的距离4.已知AB=BC,且已知质点在AB段的平均速度为3m/s,在BC段的平均速度为6m/s,设物体沿ABC直线做匀变速直线运动,如图所示,则质点在B点时的速度为()A.4m/s B.4.5m/s C.5m/s D.5.5m/s5.某质点做匀加速直线运动,经过时间t速度由v0变为kv0(k>l),位移大小为x。
则在随后的4t内,质点的位移大小为()A.B.C.D.二.多选题(共8小题,每题4分,共32分)6.一质点沿x轴运动,其位置x随时间t变化的规律为:x=15+10t﹣5t2(m),t的单位为s.下列关于该质点运动的说法正确的是()A.该质点的加速度大小为5m/s2B.t=3s时刻该质点速度为零C.0~3s内该质点的平均速度大小为5m/sD.物体处于x=0处时其速度大小为20m/s7.物体从静止开始做匀加速直线运动,第3秒内通过的位移是3m,则()A.第3秒内的平均速度是1m/s B.物体的加速度是1.2m/s2C.前3秒内的位移是5.4m D.3s末的速度是3.2m/s8.物体由静止开始做加速度大小为a1的匀加速直线运动,当速度达到v时,改为加速度大小为a2的匀减速直线运动,直至速度为零。
课时作业(1) 质点参考系1.(多选)下列关于质点的说法正确的是( )A.研究踢出去的足球的运动轨迹时,可以把足球看成质点B.研究乒乓球运动员如何打出漂亮的弧圈球时,可以把乒乓球看成质点C.研究校运动会上小明优美而标准的跳高动作时,不能把他看成质点D.研究“复兴号”列车从北京南站开往上海虹桥站的运动时,可以把列车看成质点ACD[研究踢出去的足球的运动轨迹时,可以不考虑足球的形状和大小,选项A正确;如果将乒乓球视为质点,就无法研究弧圈球的技术问题了,选项B错误;研究跳高动作时,不可将小明视为质点,选项C正确;“复兴号”列车的长度与北京到上海的距离相比小得多,可以将列车视为质点,选项D正确.]2.下列与参考系有关的成语是( )A.三足鼎立B.刻舟求剑C.滴水穿石D.立竿见影B[三足鼎立、滴水穿石以及立竿见影均不涉及物体的位置变化状况,故均与参考系无关,而刻舟求剑是以船为参考系来研究剑的运动,故涉及参考系.]3.2019年1月14日,在伦敦举行的2019世界斯诺克大师赛首轮比赛中,中国选手丁俊晖以6比1战胜英国选手利索斯基,晋级下一轮.下列关于台球的说法正确的是( ) A.因为台球比较小,所以一定可以把它看成质点B.丁俊晖在击球时可以把台球看成质点C.解说员在解说进球路线时可以把台球看成质点D.丁俊晖在分析进球路线时可以把台球看成质点C[物体能否看成质点,要看物体的大小和形状对所研究的问题有无影响,故A错误;丁俊晖在击球时,需要考虑击球的位置,因此不能把台球看成质点,故B错误;而解说员在解说进球路线时只需说明球的行进轨迹,因此可以把台球看成质点,故C正确;而丁俊晖在分析进球路线时需要考虑球的旋转情况对路线的影响,因此不可以把台球看成质点,故D 错误.]4.(多选)2019年4月23日上午,中国人民解放军在青岛海域举行海上大阅兵,共有32艘战舰接受检阅.图甲是正在接受检阅的一字排列的舰队,图乙是正在接受检阅的“辽宁舰”上歼-15战机的起飞表演.下列说法正确的是( )A.若以大海为参考系,图甲中各艘舰艇是运动的B.若以一字排列的舰队为参考系,图甲中各艘舰艇是运动的C.若以“辽宁舰”为参考系,图乙中正在起飞的歼-15战机是运动的D.若以“辽宁舰”为参考系,图乙中准备起飞的歼-15战机是运动的AC[若以大海为参考系,图甲中各艘舰艇是运动的,若以一字排列的舰队为参考系,图甲中各艘舰艇是静止的,故A正确,B错误;若以“辽宁舰”为参考系,图乙中正在起飞的歼-15战机是运动的,准备起飞的歼-15战机是静止的,故C正确,D错误.] 5.如图所示,一架执行救援任务的直升机悬停在上空,钻井平台位于直升机正下方,救生员抱着伤病员,缆绳正在将他们拉上直升机,若以救生员为参考系,则处于静止状态的是( )A.伤病员B.直升机C.钻井平台D.直升机驾驶员A[救生员与伤病员相对静止,所以以救生员为参考系,伤病员处于静止状态,故选项A正确;由于缆绳正在将救生员及伤病员拉上直升机,所以以救生员为参考系,直升机是向下运动的,故选项B错误;由于救生员相对钻井平台向上运动,所以以救生员为参考系,钻井平台向下运动,故选项C错误;由于缆绳正在将救生员及伤病员拉上直升机,直升机驾驶员相对直升机静止,所以以救生员为参考系,直升机驾驶员向下运动,故选项D错误.] 6.下列关于质点的说法正确的是( )A.质点是一个理想化模型,实际上并不存在,所以引入质点这个概念没有多大意义B.体积很小的物体都可以看成是质点,而体积较大的物体一定不能看成质点C.只要物体运动不是很快,就可以把物体看成质点D.物体的大小和形状对所研究问题的影响可以忽略时,可以将物体看成质点D[质点是理想化模型,实际上不存在,但在研究问题时可以把体积很庞大的物体看成一个点,这有利于问题的研究,故A错误;体积很小的物体不一定都可以看作质点,故B 错误;物体能否看成质点主要是看物体的大小和形状对所研究问题的影响是否可以忽略,与物体的运动快慢没有关系,所以C错误,D正确.]7.在庆祝中华人民共和国成立70周年阅兵式上,受阅方队军容严整、精神抖擞,依次通过天安门,接受祖国和人民的检阅,出色地完成了受阅任务.如图为战旗方队以同一速度通过天安门广场时的精彩场面,在此过程中,下列说法正确的是( )A.以受阅车上战旗旗杆为参考系,受阅车辆是静止的B.以受阅车辆为参考系,天安门城楼是静止的C.以该方队的领队车辆为参考系,该方队的其他车辆是运动的D.以地面为参考系,战旗是静止的A[以受阅车上战旗旗杆为参考系,受阅车辆是静止的,选项A正确;以受阅车辆为参考系,天安门城楼是运动的,选项B错误;以该方队的领队车辆为参考系,该方队的其他车辆是静止的,选项C错误;以地面为参考系,战旗是运动的,选项D错误.] 8.(多选)如图是某次日全食时的美妙景象,那么下列说法正确的是( )A.在观测日全食时可将月球看成质点B.在观测日全食时不能将月球看成质点C.月球绕地球转动,这是以太阳为参考系来描述的D.月球绕地球转动,这是以地球为参考系来描述的BD[在物体的大小和形状对所研究问题的影响可以忽略不计的情况下,可以把物体看成质点,所以在观测日全食时不能将月球看成质点,选项A错误,选项B正确;月球绕地球做圆周运动,是以地球为参考系来描述的,选项C错误,选项D正确.]9.(多选)各乘一架直升机的甲、乙、丙三人,甲看到楼房匀速上升,乙看到甲匀速上升,丙看到乙匀速下降,甲看到丙匀速上升,则甲、乙、丙相对于地面的运动可能是( ) A.甲、乙匀速下降,v乙>v甲,丙停在空中B.甲、乙匀速下降,v乙>v甲,丙匀速上升C.甲、乙匀速下降,v乙>v甲,丙匀速下降,且v丙<v甲D.甲、乙匀速下降,v乙>v甲,丙匀速下降,且v丙>v甲ABC[由于甲看到楼房匀速上升,故甲相对于地面一定在匀速下降;又由于乙看到甲匀速上升,故乙一定也做匀速直线运动,且其下降的速度比甲要大,即v乙>v甲;丙看到乙匀速下降,说明丙静止或下降或上升,且下降时小于乙的速度;因为甲看到丙匀速上升,说明丙可能静止,也可能下降,且其速度小于甲的速度,故A、B、C都是正确的,D错误.]。
中国地质大学(武汉)远程与继续教育学院大学物理(1) 课程作业1(共 3 次作业) 学习层次:专科 涉及章节:第1章 ——第2章1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的? (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. [ ]2. 质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) m v . (C) m v . (D) 2m v .[ ]3. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]4. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为 (A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .[ ]5. 质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为 (A) 1.5 J . (B) 3 J . (C) 4.5 J .(D) -1.5 J . [ ]6. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为AR OC AxyR O23(A) Rm 2v . (B) R m 232v .(C) R m 22v . (D) Rm 252v . [ ]7. 一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v 射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为(A) 221v m .(B) )(222m M m v .(C) 2222)(v M m m M . (D) 222v M m . [ ]8. 一刚体以每分钟60转绕z 轴做匀速转动(沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3 ,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:(A) k j i157.0 125.6 94.2 v(B) j i8.18 1.25 v(C) j i8.18 1.25 v(D) k4.31 v [ ]9. 两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示.将绳子剪断的瞬间,球1和球2的加速度分别为a 1=g,a 2=g. (B) a 1=0,a 2=g. (C) a 1=g,a 2=0. (D) a 1=2g,a 2=0.[ ]10. 如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成 角,则A 端对墙壁的压力大小 (A) 为41mg cos . (B)为21mg tg . (C) 为 mg sin . (D) 不能唯一确定. [ ]11. 一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为 y = A sin t , 其中A 、均为常量,则(1) 物体的速度与时间的函数关系式为________________________;(2) 物体的速度与坐标的函数关系式为________________________.12. 一质点沿半径为R 的圆周运动,其路程S 随时间t 变化的规律为221ct bt S(SI) ,式中b 、c 为大于零的常量,且b 2>Rc. 则此质点运动的切向加速度a t =______________;法向加速度a n =________________.13. 已知地球的半径为R ,质量为M .现有一质量为m 的物体,在离地面高度为2R 处.以地球和物体为系统,若取地面为势能零点,则系统的引力势能为________________________;若取无穷远处为势能零点,则系统的引力势能为 ________________.(G 为万有引力常量)14. 质量为0.25 kg 的质点,受力i t F (SI)的作用,式中t 为时间.t = 0时该质点以j2 v(SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________.15. 在一以匀速v行驶、质量为M 的(不含船上抛出的质量)船上,分别向前和向后同时水平抛出两个质量相等(均为m )物体,抛出时两物体相对于船的速率相同(均为u ).试写出该过程中船与物这个系统动量守恒定律的表达式(不必化简,以地为参考系)____________________________________________________.16. 定轴转动刚体的角动量(动量矩)定理的内容是__________________________ _____________________________________________________________________, 其数学表达式可写成_________________________________________________. 动量矩守恒的条件是________________________________________________.17. 一个质量为m 的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,沿逆时针方向爬行,它相对于地面的速率为v ,此时圆盘正沿顺时针方向转动,相对于地面的角速度为 .设圆盘对中心轴的转动惯量为J .若小虫停止爬行,则圆盘的角速度为______________________________________.18. 如图所示,质量为m =2 kg 的物体A 放在倾角 =30°的固定斜面上,斜面与物体A 之间的摩擦系数 = 0.2.今以水平力F =19.6 N 的力作用在A 上,求物体A 的加速度的大小.19. 如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为的固定的光滑斜面上,则斜面给物体的支持力为(A) cos mg . (B) sin mg .(C) cos mg . (D)sin mg. [ ]mAF20. 一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为 ,如图所示.则摆锤转动的周期为(A)g l.(B) glcos . (C) g l2. (D) glcos 2 . [ ]21. 公路的转弯处是一半径为 200 m 的圆形弧线,其内外坡度是按车速60 km/h 设计的,此时轮胎不受路面左右方向的力.雪后公路上结冰,若汽车以40 km/h 的速度行驶,问车胎与路面间的摩擦系数至少多大,才能保证汽车在转弯时不至滑出公路?22. 如图所示,在与水平面成 角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.23. 一质量为m 的子弹,水平射入悬挂着的静止砂袋中,如图所示.砂袋质量为M ,悬线长为l .为使砂袋能在竖直平面内完成整个圆周运动,子弹至少应以多大的速度射入?24. 小球A ,自地球的北极点以速度0v在质量为M 、半径为R 的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO '与0v平行,小球A 的运动轨道与轴OO '相交于距O 为3R 的C 点.不考虑空气阻力,求小球A 在C 点的速度v 与0v之间的夹角 .25. 如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J 和221B B B r m J )26. 一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为: cos :cos v v u u设航路均为直线, 为两直线的夹角.参考答案1、 E ;2、C ;3、C ;4、B ;5、B ;6、B ;7、B ;8、B ;9、D ;10、D 11、t A t y cos d /d v ; 22cos y A t A v 12、-c ; (b -ct )2/R13、R GmM 32; R GmM3 14、j t i t 2323 (SI) 15、v v v v M u m u m M m )()()2(16、定轴转动刚体所受外力对轴的冲量矩等于转动刚体对轴的角动量(动量矩)的增量.0)(d 21J J t M t t z刚体所受对轴的合外力矩等于零. 17、20mRJ mR J v18解:对物体A 应用牛顿第二定律 平行斜面方向: ma f mg F r sin cos 垂直斜面方向: 0sin cos F mg N 又 N f r 由上解得 2m/s 91.0)sin cos (sin cosmF mg mg F a19、C 20、D21、解:(1)先计算公路路面倾角 . 设计时轮胎不受路面左右方向的力,而法向力应在水平方向上.因而有 R m N /sin 21vmg N cos∴ Rg21tg v(2)当有横向运动趋势时,轮胎与地面间有摩擦力,最大值为 N ′, (N ′为该时刻地面对车的支持力)R m N N /cos sin 22vmg N N sin cos∴cos sin cos sin 2222Rg Rgv v将Rg 21tg v 代入得 078.021222221 Rg Rgv v v v22、解:如图所示,设l 为弹簧的原长,O 处为弹性势能零点;x 0为挂上物体后的伸长量,O '为物体的平衡位置;取弹簧伸长时物体所达到的O 处为重力势能的零点.由题意得物体在O '处的机械能为: sin )(2102001x x mg kx E E K 在O 处,其机械能为:2222121kx m Ev 由于只有保守力做功,系统机械能守恒,即: 2202002121sin )(21kx m x x mg kx E Kv 在平衡位置有: mg sin =kx 0∴ k mg x sin 0代入上式整理得: kmg kx mgx E m K 2)sin (21sin 212202v23、解:动量守恒 V M m m )(0 v越过最高点条件l M m g M m /)()(2v机械能守恒22)(212)()(21v V M m L g M m M m 解上三式,可得m gl M m /5)(0 v24、解:由机械能守恒:)3/(21/21220R GMm m R GMm m v v ①根据小球绕O 角动量守恒: sin 30v v Rm Rm ② ①、②式联立可解出. RGM /129sin 20v v25、解:根据转动定律 f A r A = J A A ①其中221AA A r m J,且 f B r B = J B B ② 其中221B B B r m J .要使A 、B 轮边上的切向加速度相同,应有O "Ox 0xOla = r A A = r B B ③由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ④ 由③式有 A / B = r B / r A 将上式代入④式,得 f A / f B = m A / m B = 2126、证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 cos 2222xy y x l对t求导,得txyt y x t y y t x x t l ld d cos 2d d cos 2d d 2d d 2d d 2 将v , t y u t x d d d d 代入上式,并应用0d d tl 作为求极值的条件, 则得 cos cos 0yu x y ux v vcos cos u y u x v v由此可求得cos cos v v u u y x 即当两船的距离最短时,两船与码头的距离之比为 cos cos v : v u u。
八年级上册物理课堂作业1一、选择题50题号 1 2 3 4 5 6 7 8 9 10 11 12 13答案题号14 15 16 17 18 19 20 21 22 23 24 25答案1.关于声现象,下列说法正确的是A.物体不振动可能也会发出声音B.声音在空气和水中的传播速度不同C.声音是一种波,它可以在真空中传播D.“公共场所不要大声喧哗”是要求人们在公共场所说话音调放低些2.吉它是年轻人喜爱的一种乐器.在演奏前,需要调整琴弦的松紧程度,这样做的目的是调节琴弦发声时的A.振幅B.响度C.音调D.音色3. 关于声音,下列说法中正确的是A.声波具有能量B.声音可以在真空中传播C.“禁鸣喇叭”是在传播途中控制噪声D.只要物体在振动,我们就一定能听到声音4.音乐会上不同的乐器演奏同一首乐曲,我们也能够分辨出不同乐器发出的声音。
这主要是依据A.音调B.音色C.响度D.频率5.如图所示,用一张硬卡片先后快拨和慢拨木梳的齿,听到卡片声音发生变化.这个实验用来探究A.音调是否与声源振动频率有关B.声音能否在真空中传播C.声音能否在固体中传播D.声音传播是否需要时间6.用大小不同的力先后两次敲击同一个音叉,比较音叉两次发出的声音:A.音调不同B.响度不同C.音色不同D.音调、响度、音色均不同7.关于声现象,下列说法中正确的是A.“闻其声而知其人”主要是根据声音的响度来判断的B.“不敢高声语,恐惊天上人”中的“高”指声音的音调高C.中考期间学校周围路段禁鸣喇叭,这是在声音传播的过程中减弱噪声D.用超声波能粉碎人体内的“小石头”,说明声波具有能量8.下列关于声音的产生和传播的说法中,正确的是A.声音都是靠空气来传播的B.只要物体振动,就能听到声音C.回声是声音被障碍物反射而形成的D.声音的传播速度不受周围环境温度的影响9.下面关于声现象的配对中,错误的是A.“闻其声,知其人”---------发声体不同,音色不同B..“震耳欲聋”-----音调很高C.“隔墙有耳”-------------------固体也能传声D.用声波清洗眼镜-----------------声波可以传播能量10.下列有关声现象的说法中,正确的是A.气体不能发声B.声音是一种波C.声音能在真空中传播D.声源的振幅越大,音调越高11.关于声音,下列说法正确的是A.一切发声的物体都在振动B.只要物体在振动,我们就能听到声音C.声音在不同介质中的传播速度相同D.声音在真空中的传播速度为3×108m/s 12.喇叭里响起“我和你,心连心……”的歌声,小凡说:“是刘欢在演唱.”他的判断是根据声音的A.音调不同B.响度不同C.音色不同D.频率不同13.婴儿从呱呱坠地的那时起,就无时无刻不与声打交道。
1.如图所示,用长L=0.50m的绝缘轻质细线,把一个质量m=1.0g带电小球悬挂在带等量异种电荷的平行金属板之间,平行金属板间的距离d=5.0cm,两板间电压U=1.0³103V。
静止时,绝缘线偏离竖直方向θ角,小球偏离竖直距离a=1.0cm。
(θ角很小,为计算方便可认为tanθ≈sinθ,取g=10m/s2,需要求出具体数值,不能用θ角表示)求:(1)两板间电场强度的大小;(2)小球带的电荷量。
2.如图所示,四个电阻阻值均为R,电键S闭合时,有一质量为m,带电量为q的小球静止于水平放置的平行板电容器的中点。
现打开电键S,这个带电小球便向平行板电容器的一个极板运动,并和此板碰撞,碰撞过程中小球没有机械能损失,只是碰后小球所带电量发生变化,碰后小球带有和该板同种性质的电荷,并恰能运动到另一极板,设两极板间距离为d,不计电源内阻,求:(1)电源电动势E多大?q 为多少?(2)小球与极板碰撞后所带的电量3.如图所示,一束电子经加速电场加速后进入偏转电场,已知电子的电荷量为e,质量为m,加速电场的电压为U1,偏转电场两极板间的距离为d,极板长度为L.问:(1)电子进入偏转电场时的速度大小;(2)若要使得电子在飞出偏转电场时的侧位移恰好为d/2,则需在偏转电场两极板间加上多大电压.4.在一个水平面上建立x轴,在过原点O垂直于x轴的平面的右侧空间有一匀强电场,场强大小E=6³106N/C,方向与x轴正方向相同,在O处放一个带电量q=-5³10-9C,质量m=10g的绝缘物块(可视为质点),物块与整个水平面间的动摩擦因数µ=0.1,现沿x轴正方向给物块一个初速度υ0=2m/s,如图所示,g取10m/s2,求:(1)物块向右运动时加速度的大小;(2)物块最终停止运动时离O处的距离.5.写出电子、质子、氘核、α粒子经过同一电场加速后获得的速度的大小的表达式,并指明上述四种粒子中的哪一个会获得更大的速度大小。
第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x tx xta +=⋅==v v 2分()x x xd 62d 02⎰⎰+=v vv2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解:=a d v /d t 4=t , d v4=t d t⎰⎰=vv 00d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 tt x txx d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ctbt S += 其中b 、c 是大于零的常量,求从0=t开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+= 解得 cb cR t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt=ω (k 为常量).已知st2=时,质点P 的速度值为32 m/s .试求1=ts 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad4//sRttk ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2= 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s/32/m R a n ==v1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率20=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度9.4522='=gh v m/s 1分离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gtt t-+=v v v 1分08.420==gt v s 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222shl+=将上式对时间t 求导,得 ts st l ld d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v tl v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v sl tl s l ts v ==-=-=船或 sv s hslv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船第二章 运动与力课 后 作 业μ1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得θμθμs i n c o s +=Mg F 2分令)s i n (c o s )c o s s i n (d d 2=++--=θμθθμθμθMg F∴ 6.0tg ==μθ,637530'''︒=θ2分且d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)解:人受力如图(1) 图2分am g m N T 112=-+ 1分N底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=-- ∴5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-=1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2 / L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有 rr L M TLr r T d )/(d 2)(⎰⎰-=ω∴)2/()()(222L r L M r T -=ω 3分O第三章 动量与角动量课 后 作 业1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分 设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分将t q m m ∆=∆代入得vm x q f =,v m y q f =∴14922=+=y x f f fN 2分f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分32、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分 即mgt μμ≥-)3(5,s 256.0t t =≥ 1分物体开始运动后,所受冲量为⎰-︒=tt tN F I 0d )30cos(μ)(96.1)(83.30202t t t t---=t = 3 s, I = 28.8 N s 2分 则此时物体的动量的大小为 I m =v 速度的大小为 8.28==m I vm/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2) 解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的. 利用2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分 设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221 ③0==+yy m m m vv v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分 负号表示冲量方向与0v方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为 jt b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F以及当质点从A 点运动到B点的过程中F的分力xF 和yF 分别作的功.解:(1)位矢 j t b i t a rωωs i n c o s += (SI) 可写为 t a x ωc o s = , t b y ωs i n = ta tx xωωs i n d d -==v , tb tyωωc o s d dy -==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m yx=+vv2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m yx=+vv 2分(2) jmai ma F yx+==jt mb i t maωωωωsin cos 22--2分由A →B ⎰⎰-==02d c o s d aax x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==bby y t b m y F W 02dysin d ωω=⎰-=-bmb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kLkxx L F -=+- ② 2分由② 解出kF L x 2-=使小球继续保持静止的条件为Fk F L k x k ≤-=2 ③ 2分所求L 应同时满足①、③式,故其范围为 kF <L kF 3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为gly mf μ= 1分摩擦力的功 ⎰⎰--==0d d al al fygy l m y f Wμ2分=022al ylmg -μ =2)(2a l l mg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v vm m -其中 ∑W = W P +W f ,v 0 = 0 1分 W P =⎰l axP d =la l mg x x lmg la2)(d 22-=⎰2分由上问知 l a l mg Wf2)(2--=μ所以222221)(22)(vm a l lmg la l mg =---μ得 []21222)()(a l a llg ---=μv 2分4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有m g h m fs -=2021v2分ααμαμsin cos sin mghNh fs ==mgh m mgh -==2021ctg v αμ 2分)c t g 1(220αμ+=g h v =4.5 m 2分 (2)根据功能原理有 fsm mgh =-221v1分αμc t g 212m g h m g h m -=v1分[]21)c t g 1(2αμ-=gh v =8.16 m/s 2分第五章刚体的转动课后作业1、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr.将由两个定滑轮以及质量为m和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示.2分2mg-T1=2ma1分T2-mg=ma1分T1 r-T r=β221mr1分T r-T2 r=β221mr1分a=rβ2分解上述5个联立方程得:T=11mg / 82分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M / 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为21M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at, a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分aOAmm 1 ,l1v2v俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131lm J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分 m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为glm x x lm gMlf10121d μμ-=⋅-=⎰② 2分由角动量定理 ω210310l m dt Mtf-=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 2201cx x v -=,0y y=,0z z=.相应体积为2201cV xyz V v -== 3分 观察者A测得立方体的质量2201cm m v -=故相应密度为 V m /=ρ22022011/cV cm v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为aa x 221=,aa y221=面积可表示为:xy a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中 2)/(1c a a x xv -=' =0.6×a221aa a y y 221=='在O '系中测得的图形为菱形,其面积亦可表示为 606.022=='⋅'='a a a S x y cm 2 3分x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vS t年 2分以飞船上的时钟计算:≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆,22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分 那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴)1111(22122220ccc m W v v ---==4.72×10-14 J =2.95×105 eV2分第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为 4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分 A = 10 cm ,N/m3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得 x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分 即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分 2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1 因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25c o s /==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x(SI) 1分 (2) 速率)434s i n (41025d d 2π-π⨯π-==-t t xv (SI) 2分当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t xvm/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动,k = π2. 3分 又 m m k π==ω 4分mT 22=π=ω3分4、一物体同时参与两个同方向的简谐振动:)212c o s (04.01π+π=t x (SI),)2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )c o s (φω+=t A x 则)c o s (2122122212φφ-++=A A A A A① 2分以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分又 22112211c o s c o s s i n s i n a r c t gφφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=Ts, 可得角频率 Tπ=2ω,2ωm k =∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分 221007.121-⨯==vm E K J 2分2222)/4(2121xT m kxEpπ=== 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分 (2) 总能量221011.12121-⨯===FA kAE J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.O解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分 当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kAJ , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成)/27c o s (1.0φλ+π-π=x t y (SI) 2分t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy 且π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y(SI) 2分 或 ]3112.07cos[1.0π+π-π=x t y(SI)(m ) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时c o s 0==φA y , 0sin 0>-=φωA v所以 π-=21φ2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为]2)4.05(2c o s [04.0π--π=x t y(SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121c o s (5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=,而另一平面简谐波沿Ox 轴负方向传播,波的表达式为)/(2cos 2λνx t A y +π=求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν,)212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 AA A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212c o s (π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212s i n (2/d d π+ππ-==vt A t y νν)2c o s (2π+ππ=t A νν 3分5、设入射波的表达式为)(2cos 1Tt xA y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2c o s [2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2c o s ()21/2c o s (2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21=, n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2c o s [1φλν+-π=x t A y 2分则反射波的表达式是])(2c o s [2ππ++-+-=φλνxOP OP t A y2分合成波表达式(驻波)为 )2c o s ()/2c o s (2φνλ+ππ=t x A y 2分在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y , 故得 π=21φ2分因此,D 点处的合成振动方程是 )22c o s ()6/4/32c o s (2π+π-π=t A y νλλλt A νπ=2s i n 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000 A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解:223131vvρ==nm p∴ 90.1/32==v p ρkg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w v m/s 3分(2)()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: RR i R i C P +=+=222,∴()5122=⎪⎭⎫ ⎝⎛-=-=R C RR C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt =TiR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kw T 32== 300 K 3分第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).233)5解:(1) A →B :))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E νJ .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1))(25)(112212V p V p T T C E V -=-=∆2分(2)))((211221V V p p W -+=,W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分(3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分p 1p p12(摩尔热容C =TQ ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105P a)10-3m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCDOVp解: 121Q Q -=ηQ 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C AB DC T T T T T T T T T T Q Q --=--=4分根据绝热过程方程得到:γγγγ----=DD AA T p T p 11,γγγγ----=CC BB T p T p 11∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分 故 %251112=-=-=BC T T Q Q η2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η2111T T T WQ -= 且1212T T Q Q =∴ Q 2 = T 2 Q 1 /T 1 即212122112T T T W T T T T T Q -=⋅-==24000 J 4分由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分(2) ='-='η121T T 425 K 2分。
作业一: 物理层课后作业1. 写出下列缩略语的英文全称和中文含义IMP、OSI/RM、MODEM、LAN、FDM、TDM、STDM、WDM、DWDM、CDMA、PCM、SONET、SDH、STM-1、OC-48、DTE、DCE、QAM2. 什么叫码元速率?什么叫信息速率?两者的关系如何?3. 电视信道的带宽为6MHZ,如果全使用4个电平的数字信号,每秒种能发送多少比特?4. 一个二进制信号经过信噪比为30dB的3kHz信道传送,问最大可达到的数据传输率是多少?5. 若要在一条50KHZ的信道上传输1.544Mbps的T1载波,信噪比至少要多大?6. 画出传输10110010时,采用AM、FM、绝对PM、相对PM不同的调制方式时的信号波形图(二元制)。
7. 试画出比特流000111010110的不归零编码(NRZ)、不归零码反转(NRZI)、曼彻斯特编码、差分曼彻斯特编码的波形?8、收发两端之间的传输距离为1000km,信号在媒体上的传播速率为2.0*108m/s。
试计算以下两种情况的发送时延和传播时延:(1)数据长度为107bit,数据发送速率为100kb/s;(2)数据长度为103bit,数据发送速率为1Gb/s;从以上计算结果可得出什么结论?9、共有4个站进行码分多址CDMA通信。
4个站的码片序列为:A:(-1 -1 -1 +1 +1 -1 +1 +1)B:(-1 -1 +1 -1 +1 +1 +1 -1)C:(-1 +1 -1 +1 +1 +1 -1 -1)D:(-1 +1 -1 -1 -1 -1 +1 -1)现在收到这样的码片序列:(-1 +1 -3 +1 -1 -3 +1 +1)。
问哪个站发送了数据?发送数据的站发送的是1还是0?10、课本P37页,1-19题11、课本P63页的2-07题。
作业1
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.一子弹从水平方向飞来打穿一放在光滑的水平面上的木块。
关于此过程,对子弹和木块组成的系统,以下看法正确的是()
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.动量不守恒,机械能不守恒
2.关于“探究碰撞中的不变量”实验,下列说法不正确的是()
A.实验要求碰撞一般为一维碰撞
B.实验中的不变量是系统中物体各自的质量与速度的乘积之和
C.只需找到一种情境的不变量即可,结论对其他情境也同样适用
D.进行有限次实验找到的不变量,具有偶然性,结论还需要实践检验
二、多选题
3.分析下列情况中系统的动量是否守恒()
A.如图2所示,小车停在光滑水平面上,人在车上走动时,对人与车组成的系统
B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)
C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统
D.斜向上抛出的手榴弹在空中炸开时
4.如图所示为“探究碰撞中的不变量”的实验装置示意图.在本实验中,实验必须要求的条件是()
A.斜槽轨道应尽可能光滑
B.斜槽轨道末端的切线水平
C .入射小球每次都从斜槽上的同一位置无初速度释放
D .入射小球与被碰小球满足0b m m >,a b r r =
5.如图所示,木块AB 用轻弹簧连接,放在光滑的水平面上,A 紧靠墙壁,在木块B 上施加向左的水平力F,使弹簧压缩,当撤去外力后( )
A .A 尚未离开墙壁前,A
B 系统的动量守恒;
B .A 尚未离开墙壁前,弹簧和B 系统的机械能守恒
C .A 离开墙壁后,AB 系统动量守恒;
D .A 离开墙壁后,AB 系统机械能守恒。
6.如图所示,运动员挥拍将质量为m 的网球击出.如果网球被球拍击打前、后瞬间速度的大小分别为v 1、v 2,v 1与v 2方向相反,且v 2>v 1.重力影响可忽略,则此过程中球拍对网球作用力的冲量
A .大小为m (v 2+v 1)
B .大小为m (v 2-v 1)
C .方向与v 1方向相同
D .方向与v 2方向相同
三、实验题
7.某同学在“探究碰撞中的不变量”实验中,采用如图1所示的实验装置,在光滑的水平轨道上,停着甲、乙两辆小车,甲车系一穿过打点计时器的纸带.在启动打点计时器的同时,给甲车沿轨道方向的冲量,甲车运动一段距离后,与静止的乙车发生正碰,由于两车相撞处装有尼龙拉扣,两车立即粘在一起继续运动.纸带记录下碰撞前甲车和碰撞后两车运动情况,如图2所示,纸带上AB 两点的距离为_____cm ;为完成实验,同学已经测出碰撞前后小车甲的速度,他还需要测量_____.
8.某同学用如图所示的装置做“验证动量守恒定律”的实验。
先将a球从斜槽轨道上某固定点处由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次;再把同样大小的b 球放在斜槽轨道末端水平段的最右端静止放置,让a球仍从原固定点由静止开始滚下,和b 球相碰后,两球分别落在记录纸的不同位置处,重复10次。
(1)本实验必须测量的物理量有______________________;
A.斜槽轨道末端到水平地面的高度H
B.小球a、b的质量m a、m b
C.小球a、b的半径r
D.小球a、b离开斜槽轨道末端后平抛飞行的时间t
E.记录纸上O点到各落地区域中心点A、B、C的距离OA、OB、OC
F.a球的固定释放点到斜槽轨道末端水平部分间的高度差h
(2)根据实验要求,m a_______m b(填“大于”、“小于”或“等于”);
(3)按照本实验方法,验证动量守恒的验证式是_______________________________。
(用“(1)”中所给的有关字母表示)
四、解答题
9.如图,竖直固定轨道abcd段光滑,长为L=1.0m的平台de段粗糙,abc段是以O为圆心的圆弧.小球A和B紧靠一起静止于e处,B的质量是A的4倍.两小球在内力作用
下突然分离,A分离后向左始终沿轨道运动, 与de段的动摩擦因数μ=0.2,到b点时轨道对A的支持力等于A的重力的, B分离后平抛落到f点,f到平台边缘的水平距离S= 0.4m,平台高h=0.8m,g取10m/s2,求:
(1)AB分离时B的速度大小v B;
(2)A到达d点时的速度大小v d;
(3)圆弧abc的半径R.。