全国二卷高考数学模拟39
- 格式:docx
- 大小:1.23 MB
- 文档页数:4
2023年普通高等学校招生全国统一考试数学模拟测试(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i(1i)1i+=- ( )A .1B .1-C .i -D .i 2.已知集合{0,1,2,3}A =,{|22,}x B y y x x A ==-∈,则A B =( )A .{1,2}B .{0,1,3}C .{1,2,3}D .{0,1,2} 3.已知向量(1,2)a =- ,(2,1)b = ,且(2)a a b ⋅-=( )A .5B .5-C .11D .11-4.关于椭圆2222:1(0)x y C a b a b+=>>,有以下四个命题.甲:长轴长为10.乙:短轴长为8.丙:离心率为45.丁:C 上的点到其左焦点的距离的最大值为8. 若只有一个假命题,则该命题是 ( ) A .甲 B .乙 C .丙 D .丁5.灯笼起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面的一部分(除去两个球冠).如图2,球冠是由球面被一个平面截得的,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球的半径为R ,球冠的高为h ,则球冠的面积2S Rh π=.已知该灯笼的高为40cm ,圆柱的高为4cm ,圆柱的底面圆直径为24cm ,则围成该灯笼所需布料的面积为( )A .21536cm πB .21472cm πC .21824cm πD .21760cm π6.泊松分布是统计学里常见的离散型概率分布,由法国数学家泊松首次提出.泊松分布的概率分布列为()e (0,1,2,)!kP X k k k λλ-=== ,其中e 为自然对数的底数,λ是泊松分布的均值.已知某线路每个公交车站台的乘客候车相互独立,且每个站台候车人数X 服从参数为(0)λλ>的泊松分布.若该线路某站台的候车人数为2和3的概率相等,则该线路公交车两个站台各有1个乘客候车的概率为( )A .41e B .44e C .694e D .69e 7.已知ln 33a =,22e b =,ln 77c =,则( )A .b a c <<B .a b c <<C .b c a <<D .c b a <<8.在正方体1111ABCD A B C D -中,N 是BC 上靠近点B 的一个四等分点,M 是棱1CC 上的动点,若平面1D MN 与平面ABCD 所成锐二面角的最小值为θ,则cos θ=( )A .45B .35CD二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.如图,四棱雉S ABCD -的底面为正方形,SD ⊥平面ABCD ,则下列结论正确的是 ( ) A .AB SA ⊥B .AC 与SB 所成的角为90︒C .AD 与SB 所成的角等于CD 与SB 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角10.已知lg 2a =,lg 3b =,则( )A .2107a b+=B .2lg12a b +=C .181log 102a b=+D .361log 522aa b-=+11.已知抛物线2:4C y x =的准线与x 轴交于点K ,过焦点F 的直线l 与C 交于A ,B 两点,AB 的中点为M ,过点M 作AB 的垂线交x 轴于点Q ,点M 在C 的准线上的射影为点N ,则 ( )A .AF BF AF BF +=⋅B .tan cos AKF MQF ∠=∠C .//NF MQD .32AB FQ =12.已知()f x 是R 上的奇函数,(1)1f =,且(2)(2)40f x f x x --++=恒成立,则 ( )A .(3)5f =B .(4)8f =C .(2023)4047f =D .(2024)8096f =三、填空题:本题共4小题,每小题5分,共20分.13.在62x ⎛⎝的展开式中,第四项的系数为 .14.写出满足圆心在直线2y x =,且被x 轴截得的弦长为2的圆的标准方程 .15.已知函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的部分图象如图所示,6855f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则ω= .16.若函数3211()e 32xf x x ax ax =--有唯一一个极值点,则实数a 的取值范围是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{}n a 满足3333221232(1)n a a a a n n ++++=+ . (1)求{}n a 的通项公式; (2)若12n n n b a a +=,求数列{}n b 的前n 项和n S .在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 2cos bc A ab C ac B +=. (1)证明:2a ,2b ,2c 成等差数列; (2)若sin 3sin A C =,求cos B .如图,在直三棱柱111ABC A B C -中,AB BC ⊥,2AB BC ==,13CC =,点D ,E 分别在棱1AA ,1CC 上,且11AD C E ==,过点1A 的平面//α平面BDE ,平面11B C F α= . (1)求1A F ;(2)求直线BF 与平面BDE 所成角的正弦值.二氧化碳会导致温室效应,是全球变暖的元凶之一.因为二氧化碳具有保温的作用,会逐渐使地球表面温度升高.某机构统计了当地近几年二氧化碳的排放量x (单位:百万吨)与该地平均气温升高值y (单位:℃)的一些数据,得到如下表格:x141721273239y 0.2 0.3 0.5 0.8 1.01.4(1)依据表中给出的数据,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(计算结果精确到0.001).(若0.75r ≥,则线性相关程度很高,可用线性回归模型拟合,否则不可用) (2)试用最小二乘法求出y 关于x 的回归方程.(3)某企业为降低二氧化碳的排放量,加大了研发投入,使得企业每天的二氧化碳排放量Z (单位:吨)近似服从正态分布(5,4)N ,则该企业每天的二氧化碳排放量Z 超过7吨的概率为多少?附:相关系数()()niix x y y r --=∑;回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.若随机变量X 服从正态分布2(,)N μσ,则()0.6827P X μσμσ-<+= . 参考数据:61126.6i ii x y==∑,62150)4(i i x x =-=∑,621.041(i i y y =-=∑ 3.61≈.已知函数()()ln 1(0)f x x a x a =-->.(1)若曲线()y f x =在x a =处的切线方程为(1)0a x y b --+=,求实数a ,b 的值; (2)若2a =,关于x 的方程()f x mx =有两个不同的实数解,求实数m 的取值范围.22.(12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,过点F 的直线l 与双曲线C 交于A ,B 两点.当l x ⊥轴时,AB =. (1)若A 点坐标为11(,)x y ,B 点坐标为22(,)x y ,证明:1221212()x y x y y y -=-. (2)在x 轴上是否存在定点M ,使得222AM BM AB +-为定值?若存在,求出定点M 的坐标及这个定值;若不存在,请说明理由.。
2024学年西藏拉萨中学高考全国统考预测密卷(2)数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )A .24πB .28πC .32πD .36π2.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-3.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3D .44.集合}{220A x x x =--≤,{}10B x x =-<,则AB =( )A .}{1x x < B .}{11x x -≤< C .{}2x x ≤D .{}21x x -≤<5.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种6.已知等差数列{}n a 的公差为-2,前n 项和为n S ,若2a ,3a ,4a 为某三角形的三边长,且该三角形有一个内角为120︒,则n S 的最大值为( )A .5B .11C .20D .257.已知双曲线2222:1(0,0)x y E a b a b-=>>满足以下条件:①双曲线E 的右焦点与抛物线24y x =的焦点F 重合;②双曲线E 与过点(4,2)P 的幂函数()f x x α=的图象交于点Q ,且该幂函数在点Q 处的切线过点F 关于原点的对称点.则双曲线的离心率是( ) A .312+ B .512+ C .32D .51+8.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( )A .2223S S ,且B .2223S S ,且C .2223S S ,且D .2223S S ,且9.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-10.已知等差数列{}n a 中,468a a +=则34567a a a a a ++++=( ) A .10B .16C .20D .2411.设函数()22cos 23sin cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .7212.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,4二、填空题:本题共4小题,每小题5分,共20分。
2023年普通高等学校招生全国统一考试数学模拟测试(一)参考答案1.【答案】B 【命题意图】本题考查复数的四则运算,要求考生掌握复数代数表示式的四则运算. 【解析】i(1i)i 111i 1i+-==---. 2.【答案】D【命题意图】本题考查集合的运算,要求考生理解两个集合的交集的含义,能求两个集合的交集. 【解析】因为{|22,}{0,1,2}x B y y x x A ==-∈=,所以{0,1,2}A B = .3.【答案】A 【命题意图】本题考查向量的数量积,要求考生会用坐标表示平面向量的加、减运算与数乘运算,能用坐标表示平面向量的数量积.【解析】2(1,2)(4,2)(3,4)a b -=--=-- ,(2)1(3)(2)(4)5a a b ∴⋅-=⨯-+-⨯-=.4.【答案】C 【命题意图】本题考查椭圆,要求考生掌握椭圆的定义、标准方程及简单几何性质. 【解析】依题意,甲:5a =.乙:4b =.丙:45c a =.丁:8a c +=.可知甲、乙、丁为真命题,丙为假命题. 5.【答案】B【命题意图】本题考查圆柱与球的表面积,要求考生认识圆柱与球及简单组合体的结构特征,知道球与圆柱的表面积的计算公式,能用公式解决简单的实际问题.【解析】由题意得222408122R -⎛⎫-= ⎪⎝⎭,得20cm R =,20164cm h =-=,所以两个球冠的表面积之和为224320cm ππS Rh ==,灯笼中间球面的表面积为2243201280cm R πππ-=.因为上下两个圆柱的侧面积之和为22244192cm ππ⨯⨯=,所以围成该灯笼所需布料的面积为212801921472cm πππ+=. 6.【答案】D【命题意图】本题以泊松分布为情境,考查离散型随机变量的概率分布,要求考生理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.主要考查考生获取信息、运用所学知识解决问题的能力,体现了逻辑推理与数学运算的学科素养,突出基础性、应用性的考查要求. 【解析】由题可知(2)(3)P X P X ===,即232e 6e λλλλ=,解得3λ=,故33()e (0,1,2,)!k P X k k k -=== ,13333(1)e 1!eP X -===,故两个站台各有1个乘客候车的概率为23639e eP ⎛⎫== ⎪⎝⎭.7.【答案】C【命题意图】本题考查比较大小,要求考生知道两个数比较大小的常用方法,会利用构造法比较大小. 【解析】令ln ()x f x x =,则21ln ()x f x x-'=,当e x >时,()0f x '<,()f x 单调递减,因为2e >73e >>, 所以2(e )(7)(3)f f f <<,22ln e ln 7ln 3e 73<<,即22ln 7ln 3e 73<<,故b c a <<. 8.【答案】C【命题意图】本题考查二面角的最值,要求考生能解决平面与平面的夹角的计算问题.【解析】如图,平面1D MN 平面ABCD PN =,过点D 作DG PN ⊥,垂足为G ,连接1D G ,则1D GD ∠即为平面1D MN 与平面ABCD 所成的锐二面角, 1tan D GD ∠=1D DDG,当DG 最大时,1D GD ∠最小,不妨设4AB =,因为5DG DN ===≤,所以4tan 5θ=,cos θ=. 9.【答案】ABC【命题意图】本题考查异面直线的夹角,要求考生在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.【解析】对于A :因为SD ⊥平面ABCD ,AB ⊂平面ABCD ,所以SD AB ⊥, 因为ABCD 是正方形,所以AB AD ⊥,因为SD AD D = ,,SD AD ⊂平面SAD , 所以AB ⊥平面SAD ,因为SA ⊂平面SAD ,所以AB SA ⊥,故A 项正确;对于B :因为,SD AC AC BD ⊥⊥,因为SD BD D = ,,SD BD ⊂平面SBD ,所以AC ⊥平面SBD ,因为SB ⊂平面SBD ,所以AC SB ⊥,故B 项正确;对于C :AD 与SB 所成的角为SBC ∠,CD 与SB 所成的角为SBA ∠,因为cos cos BC ABSBC SBA SB SB∠===∠,所以AD 与SB 所成的角等于CD 与SB 所成的角,故C 项正确; 对于D :因为//AB CD ,所以CD SA ⊥,则DC 与SA 所成的角为90︒,因为AB 与SC 所成的角为90SCD ∠<︒,所以AB 与SC 所成的角不等于DC 与SA 所成的角,故D 项不正确. 10.【答案】BCD【命题意图】本题考查换底公式,要求考生理解对数的概念和运算性质,知道用换底公式将一般对数转化成自然对数或常用对数.【解析】因为lg 2a =,lg 3b =,所以102a=,103b=,所以21012a b+=,A 项错误;2lg 4lg 3lg12a b +=+=,B 项正确;2lg(29)lg18a b +=⨯=,1811log 102lg18a b ==+,C 项正确;36lg 51lg 21log 5lg 362(lg 2lg 3)22aa b--===++,D 项正确. 11.【答案】ABC【命题意图】本题考查直线与抛物线的位置关系,要求考生掌握抛物线的定义、几何图形、标准方程及简单性质,理解数形结合的思想.【解析】对于A :由题意知(1,0)F ,直线l 的斜率存在且不为0, 设其方程为(1)y k x =-,设11(,)A x y ,22(,)B x y ,00(,)M x y ,联立2(1)4y k x y x =-⎧⎨=⎩,可得22222(2)0k x k x k -++=,216(1)0k ∆=+>,故21222(2)k x x k ++=,121x x =, 则122424x x kAF BF =++=++,1212122244(1)(1)11214x x x x x x k k AF BF =++=+++=+++=+⋅,所以AF BF AF BF +=⋅,故A 项正确.对于B :过点A 作AD x ⊥轴,垂足为D ,因为(1,0)K -,所以11tan 1y AKF x ∠=+, 111cos cos sin 21y y MQF MFQ AFD AF x ⎛⎫∠=-∠=∠== ⎪+⎝⎭,所以tan cos AKF MQF ∠=∠,故B 项正确.对于C :因为1222y y k +=,所以M 点的纵坐标为2k ,故21,N k ⎛⎫- ⎪⎝⎭,212NFk k k==--,1NF AB k k =-⋅,故NF AB ⊥,故//NF MQ ,故C 项正确.对于D :2111212122224()()4()4y x y y y y x x y x ⎧=⇒+-=-⎨=⎩,则121212042y y k x x y y y -===-+,所以MQ 的方程为000()2y y y x x -=--,令0y =,得0000()22yy x x x x -=--⇒=+,所以0(2,0)Q x +,所以00211FQ x x =+-=+,所以1202222AB x x x FQ =++=+=,故D 项错误.12.【答案】ABC【命题意图】本题考查抽象函数的性质,要求考生理解函数的奇偶性与周期性的含义. 【解析】令1x =,可得(1)(3)40f f -+=,所以(3)5f =,A 项正确; 令2x =,可得(0)(4)80f f -+=,因为(0)0f =,所以(4)8f =,B 项正确; 设()()2g x f x x =-,则()g x 为R 上的奇函数,又因为(2)(2)40f x f x x --++=,所以(2)2(2)(2)2(2)f x x f x x ---=+-+,则(2)(2)g x g x -=+,所以()g x 的图象关于直线2x =对称,因为(4)()()g x g x g x +=-=-,(8)(4)()g x g x g x +=-+=,所以()g x 的一个周期为8,因为(2023)(1)(1)1,(2023)(2023)220231g g g g f =-=-==-⨯=,所以(2023)4047f =,C 项正确;因为(2024)(0)0g g ==,则(2024)220240,(2024)4048f f -⨯==,D 项错误.13.【答案】160-【命题意图】本题考查二项式定理,要求考生会用二项式定理解决与二项展开式有关的简单问题.【解析】因为62x ⎛ ⎝的展开式的通项为36662166C (2)(1)C 2rr r r r r r r T x x---+⎛==- ⎝, 所以第四项的系数为3336(1)C 2160-=-.14.【答案】223(3)102x y ⎛⎫-+-= ⎪⎝⎭或223(3)102x y ⎛⎫+++= ⎪⎝⎭【命题意图】本题考查圆的方程,要求考生掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 【解析】设圆心坐标为(,2)a a ,可得2(2)110a +=,解得32a =±,所以圆心坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭,故圆的标准方程为223(3)102x y ⎛⎫-+-= ⎪⎝⎭或223(3)102x y ⎛⎫+++= ⎪⎝⎭.15.【答案】53【命题意图】本题考查三角函数的图象与性质,要求考生了解函数sin()ωϕy A x =+中各参数对图象的影响.【解析】因为6855ππf f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,结合图象可知725πf ⎛⎫= ⎪⎝⎭,所以72()562Z ωππππk k +=+∈,解得510()217Z ωk k =+∈.由图象可知862555283552ππππωππππωT T ⎧-=<=⎪⎪⎨⎪-=>=⎪⎩,可得512ω<<,所以1k =,53ω=.16.【答案】[0,e]【命题意图】本题考查函数的极值,要求考生能借助函数的图象,了解函数在某点取得极值的必要条件和充分条件,能利用导数求某些函数的极大值、极小值,体会导数与极值的关系.【解析】()(1)(e )x f x x ax '=+-.令()e xg x ax =-,因为函数3211()e 32xf x x ax ax =--有唯一一个极值点,且(0)10g =>,所以()0g x ≥恒成立.当0a =时,符合题意;当0a <时,()e 0xg x a '=->,()g x 在(,)-∞+∞上单调递增,且当x →-∞时,()g x →-∞,不合题意,舍去;当0a >时,由()0g x '=,可得ln x a =,()g x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,所以min ()(ln )ln g x g a a a a ==-,由ln 0a a a -≥,解得0e a <≤.综上所述,实数a 的取值范围是[0,e]. 17.【命题意图】本题考查数列的通项公式与前n 项和,要求考生掌握数列的前n 项和的求法,能运用等差数列解决相应问题.【解析】(1)当1n =时,31248a =⨯=,12a =,··························································1分 当2n ≥时,3333221232(1)n a a a a n n ++++=+ ,33332212312(1)n a a a a n n -++++=- ,·······2分 两式相减得323248n a n n n =⨯=,即2n a n =,································································4分 当1n =时,也符合上式,故2n a n =.··········································································5分 (2)因为12211122(1)21n n n b a a n n n n +⎛⎫===- ⎪⨯++⎝⎭,····················································7分 所以11111111122231222n S n n n ⎛⎫=-+-++-=- ⎪++⎝⎭ .················································10分 18.【命题意图】本题考查解三角形,要求考生能够运用余弦定理等知识和方法解决一些与几何计算有关的实际问题. 【解析】(1)因为cos cos 2cos bc A ab C ac B +=,由余弦定理可得2222222222222b c a a b c a c b bc ab acbc ab ac+-+-+-+=,·································2分 整理得2222a c b +=,································································································4分所以2a ,2b ,2c 成等差数列.····················································································5分 (2)因为sin 3sin A C =,所以3a c =.·······································································7分 又因为2222a c b +=,所以22292c c b +=,即b =.·················································9分由余弦定理可得222222955cos 2236a cbc c c B ac c c +-+-===⋅.··············································12分19.【命题意图】本题考查面面平行的性质定理与线面角,要求考生能运用面面平行的性质定理解决问题,能用向量方法解决直线与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.【解析】(1)在1BB 上取点M ,使得11B M =,连接1A M ,延长1CC 至点N ,使得11C N =,连接MN ,1A N ,则平面1A MN 与平面α重合.············································································1分理由如下:因为1//A D BM ,且1A D BM =,所以四边形1A DBM 是平行四边形,1//A M BD ,············2分 同理可得//MN BE ,所以平面1//A MN 平面BDE ,又平面α过点1A ,且平面//α平面BDE ,(3分) 所以平面1A MN 与平面α重合,则F 为MN 与11B C 的交点.又易知11FB M FC N ≅△△,所以11FB FC =,即F 为11B C 的中点,··································4分所以1A F ===.·································································5分(2)因为在直三棱柱111ABC A B C -中,AB BC ⊥,所以BA ,BC ,1BB 两两垂直.分别以BA ,BC ,1BB 的方向为x 轴、y 轴、z则(0,0,0)B ,(2,0,2)E ,(0,2,1)D ,(1,0,3)F ,·········6分所以(2,0,2)BE = ,(0,2,1)BD = ,(1,0,3)BF =,······7分设平面BDE 的法向量为(,,)m x y z =,则0m BE ⋅= ,0m BD ⋅= ,即22020x z y z +=⎧⎨+=⎩,令1y =,得(2,1,2)m =- .···············9分 设直线BF 与平面BDE 所成的角为θ,则sin |cos ,|BF m BF m BF mθ⋅=〈〉===⋅ ,······································11分 所以直线BF 与平面BDE .·······················································12分 20.【命题意图】本题以二氧化碳的排放导致全球气候变暖为情境,要求考生运用所学回归分析与正态分布等必备知识解答相关问题,主要考查数学运算与数据分析的学科素养,突出综合性、应用性的考查要求.【解析】1(1)(141721273239)256x =⨯+++++=,····················································1分 1(0.20.30.50.8 1.0 1.4)0.76y =⨯+++++=,·····························································2分61126.6i i i x y ==∑==66?21.60.9970.7521.66i ix y x yr -∴==≈≈>∑,·································4分 故可以用线性回归模型拟合y 与x 的关系.·····································································5分(2)61621()621.6ˆ0.048450i ii ii x y xybx x ==-===-∑∑,······································································7分 ˆ0.70.048250.5a∴=-⨯=-,·····················································································8分 y ∴关于x 的线性回归方程为ˆ0.0480.5yx =-.·····························································9分 (3)~(5,4)Z N ,1(5252)(7)0.158652P Z P Z --<+∴>==≤,···························11分∴该企业每天的二氧化碳排放量Z 超过7吨的概率为0.15865.···········································12 分 21.【命题意图】本题考查导数的几何意义与方程的根,要求考生通过函数图象直观理解导数的几何意义,能利用导数求某些函数的最大值、最小值,体会导数与最大 (小) 值的关系,掌握函数与方程的数学思想. 【解析】 (1)因为()lnx 1af xx =+-',所以()ln f a a '=,又因为()1f a =-,所以曲线()y f x =在x a =处的切线方程为1()ln y x a a +=-,·············································································2分则1ln ln 1a ab a a -=⎧⎨=--⎩,易知1ln a a -≥,当且仅当1a =时取等号,·······································4分所以1a =,1b =-.·································································································6分 (2)当2a =时,由()f x mx =,可得(2)ln 1x x mx --=,(2)ln 1x x m x--=.令(2)ln 1()x x g x x --=,则22ln 1()x x g x x+-'=.························································8分 设函数()2ln 1h x x x =+-,易知函数()h x 为增函数,(1)0h =,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,············································································································10分 所以()g x 的最小值为(1)1g =-,故实数m 的取值范围是(1,)-+∞.···································12分 22.【命题意图】本题考查直线与双曲线的位置关系,要求考生了解双曲线的定义、几何图形和标准方程,以及它们的简单几何性质,通过圆雉曲线与方程的学习,进一步体会数形结合的思想.【解析】(1)由已知可得22b a =224a b +=,又0a >,解得1a b ⎧=⎪⎨=⎪⎩, 所以双曲线C 的方程为2213x y -=.·············································································2分当l x ⊥轴时,直线l 的方程为2x =,则122x x ==,1221212()x y x y y y -=-成立; 当直线l 的斜率存在时,AF BF k k =,121222y y x x =--,整理得1221212()x y x y y y -=-.·········4分 综上所述,1221212()x y x y y y -=-成立.······································································5分 (2)设点M 的坐标为(,0)m ,222AMBM AB λ+-=.当l x ⊥轴时,直线l 的方程为2x =,不妨设A ⎛ ⎝⎭,2,B ⎛ ⎝⎭,则2221222(2)2833λm m m ⎡⎤=-+-=-+⎢⎥⎣⎦⎝⎭.当l y ⊥轴时,直线l 的方程为0y =,代入2213x y -=,得x =不妨设(A ,B ,则2222((26λm m m =++-=-. 令222228263m m m -+=-,得53m =,24269m λ=-=-.··········································7分当l 不与坐标轴垂直时,设直线l 的方程为2(x ty t =+≠,代入2213x y -=,得22(2)33ty y +-=,即22(3)410t y ty -++=.设11(,)A x y ,22(,)B x y ,则12122241,33t y y y y t t +=-=--. 对于点5,03M ⎛⎫ ⎪⎝⎭,22222211221255()()133x y x y y y t λ⎛⎫⎛⎫=-++-+--+ ⎪ ⎪⎝⎭⎝⎭ 222221212222222(1)826(1)822(1)()3933(3)93(3)9t t t t t t y y y y t t t ++-=++++=-+=+--- 226222243(3)9399t t -=+=-+=--.·················································································11分 综上所述,存在定点5,03M ⎛⎫ ⎪⎝⎭,使得222AMBM AB +-为定值49-.····························12分。
【热点聚焦】二项展开式定理的问题是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1r n r rr n T C a b -+=;(可以考查某一项,也可考查某一项的系数);(2)考查各项系数和和各项的二项式系数和; (3)二项式定理的应用.【重点知识回眸】1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数rn C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r rn C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点 (1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,nn C . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数rn C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值. 当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012r nn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,(4)常用结论①0n C =1;②1nn C =;③m n m n n C C -=;④11m m m n n n C C C -+=+.4.二项式的应用(1)求某些多项式系数的和; (2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题; (4)近似计算.当x 充分小时,我们常用下列公式估计近似值: ①()11nx nx +≈+;②()()21112nn n x nx x -+≈++;(5)证明不等式.【典型考题解析】热点一 二项式展开式的通项公式的应用【典例1】(2020·全国·高考真题(理))262()x x+的展开式中常数项是__________(用数字作答).【典例2】(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.【典例3】(2022·山西·高三阶段练习)二项式()4x ay +的展开式中含22x y 项的系数为24,则=a ______.【典例4】(2022·全国·高考真题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答). 【总结提升】1.二项展开式中的特定项,是指展开式中的某一项,如第n 项、常数项、有理项等,求解二项展开式中的特定项的关键点如下:①求通项,利用(a +b )n 的展开式的通项公式T r +1=C r n an -r b r (r =0,1,2,…,n )求通项. ②列方程(组)或不等式(组),利用二项展开式的通项及特定项的特征,列出方程(组)或不等式(组).③求特定项,先由方程(组)或不等式(组)求得相关参数,再根据要求写出特定项.2.已知展开式的某项或其系数求参数,可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.3.求解形如()()nma b c d ++的展开式问题的思路 (1)若n ,m 中一个比较小,可考虑把它展开得到多个,如222()()()(2)m m a b c d a ab b c d ++=+++,然后展开分别求解.(2)观察(a +b )(c +d )是否可以合并,如5752252()()[()()11]()11111()()x x x x x x x +-=+--=--;(3)分别得到(),()nma b c d ++的通项公式,综合考虑.4.求几个多项式积的展开式中的特定项(系数)问题,可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 热点二 形如()na b c ++的展开式问题【典例5】(2021·江西南昌·高三阶段练习)5144x x ⎛⎫++ ⎪⎝⎭的展开式中含3x -的项的系数为( ) A .1-B .180C .11520-D .11520【典例6】(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是( ) A .120B .-120C .60D .30【典例7(2022·山东济南·模拟预测)()3221x x -+的展开式中,含3x 项的系数为______(用数字作答). 【规律方法】求三项展开式中某些特定项的系数的方法(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项公式求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量. 热点三 二项式系数的和与各项的系数和问题【典例8】(2022·全国·高三专题练习)已知012233C 2C 2C 2C 2C 243n nn n n n n +++++=,则123C C C C nn n n n ++++=( )A .31B .32C .15D .16【典例9】(2023·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为( ) A .1或3-B .1-C .1-或3D .3-【典例10】(2022·北京四中高三开学考试)设多项式51010910910(1)(1)x x a x a x a x a ++-=++++,则9a =___________,0246810a a a a a a +++++=___________. 【规律方法】赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1). ①奇数项系数之和为a 0+a 2+a 4+…=.②偶数项系数之和为a 1+a 3+a 5+…=.热点四 二项式系数的性质【典例11】(2023·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是( ) A .7B .8C .9D .10【典例12】(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是( )A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1 B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240xC .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32【典例13】(2022·浙江·三模)在二项式4(2)+x 的展开式中,常数项是__________,二项式系数最大的项的系数是__________. 【规律方法】1.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.2.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式(1)(1)2f f +-(1)(1)2f f --组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值. 热点五 二项式定理应用【典例14】(2022·全国·高三专题练习)“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是( )A .222234510C C C C 165++++=B .在第2022行中第1011个数最大C .第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D .第34行中第15个数与第16个数之比为2:3【典例15】(2023·全国·高三专题练习(理))设0122191919191919C C 7C 7C 7a =++++,则a 除以9所得的余数为______.【典例16】(2021·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.【规律方法】1.二项式定理应用的常见题型及求解策略(1)逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.(2)利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.(3) 近似计算要首先观察精确度,然后选取展开式中若干项. 2.特别提醒: (1)分清是第项,而不是第项.(2)在通项公式中,含有、、、、、这六个参数,只有、、、是独立的,在未知、的情况下,用通项公式解题,一般都需要首先将通式转rn rr n C ab -1r +r 1r n r r r n T C a b -+=1r T +rn C a b n r a b n r n r化为方程(组)求出、,然后代入通项公式求解.(3)求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出,再求所需的某项;有时则需先求,计算时要注意和的取值范围以及 它们之间的大小关系.(4)在中,就是该项的二项式系数,它与,的值无关;而项的系数是指化简后字母外的数.(5)在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要与确定,该项就随之确定; ②是展开式中的第项,而不是第项;③公式中,,的指数和为且,不能随便颠倒位置; ④对二项式展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.【精选精练】一、单选题1.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( ) A .160 B .120 C .90D .602.(2022·全国·高三专题练习)()()52x y x y +-的展开式中的33x y 项系数为( ) A .30B .10C .-30D .-103.(2022·黑龙江哈尔滨·高三开学考试)在812x x ⎫⎪⎭的展开式中5x 的系数为( )A .454B .458-C .358D .74.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为( ) A .0B .120-C .120D .160-5.(2022·全国·高三专题练习)设()011nn n x a a x a x +=++⋅⋅⋅+,若1263n a a a ++⋅⋅⋅+=,则展开式中系数最大的项是( ) A .315xB .320xC .321xD .335x6.(2023·全国·高三专题练习)511x x ⎛⎫+- ⎪⎝⎭展开式中,3x 项的系数为( )n r r n n r 1r n r r r n T C a b -+=rn C a b 1r T +n r 1r T +1r +r a b n a b ()na b -A .5B .-5C .15D .-15二、多选题7.(2023·全国·高三专题练习)62⎛⎫+ ⎪⎝⎭x x 的展开式中,下列结论正确的是( ) A .展开式共6项 B .常数项为160C .所有项的系数之和为729D .所有项的二项式系数之和为648.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则( )A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++9.(2022·河北张家口·三模)已知52(1)(0)b ax x b x ⎛⎫-+> ⎪⎝⎭的展开式中x 项的系数为30,1x 项的系数为M ,则下列结论正确的是( ) A .0a > B .323ab b -=C .M 有最大值10D .M 有最小值10-三、填空题10.(2022·全国·高三专题练习(文))“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.11.(2022·河北·三河市第三中学高三阶段练习)在3nx x ⎛⎫+ ⎪⎝⎭的展开式中,所有二项式系数的和是16,则展开式中的常数项为 ____.12.(2022·全国·高三专题练习)(1)已知()31nx -的展开式中第2项与第5项的二项式系数相等,则n =__________.(2)1921C C n nn n --+=__________.13.(2019·浙江·高考真题)在二项式9(2)x 的展开式中,常数项是________;系数为有理数的项的个数是_______.14.(2022·浙江省春晖中学模拟预测)二项式3nx x ⎫⎝的展开式中共有11项,则n =___________,常数项的值为___________.15.(2022·全国·高三专题练习)在()413x +的展开式中,二项式系数之和为_________;各项系数之和为_________.(用数字作答) 四、解答题16.(2019·江苏·高考真题)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =. (1)求n 的值;(2)设(13)3n a =+*,a b ∈N ,求223a b -的值.。
备战2024年高考数学模拟卷(新题型)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.在ABC 中,三个内角,,A B C 成等差数列,则()sin A C +=()A.12B.2C.2D.12.若()20272i 3i z ⋅+=-,则z 的虚部为()A.1-B.75C.1i 5-D.15-3.已知向量m 和n 都是非零向量,则“0m n > ”是“,m n 为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线C :22322()16x y x y +=为四叶玫瑰线,下列结论正确的有()(1)方程22322()16(0)x y x y xy +=<,表示的曲线在第二和第四象限;(2)曲线C 上任一点到坐标原点O 的距离都不超过2;(3)曲线C 构成的四叶玫瑰线面积大于4π;(4)曲线C 上有5个整点(横、纵坐标均为整数的点).A.(1)(2)B.(1)(2)(3)C.(1)(2)(4)D.(1)(3)(4)5.已知n S 为正项数列{}n a 的前n 项和.若121n n n S a S ++=-,且557S =,则4a =()A.7B.15C.8D.166.如图所示,在边长为1⎫⎪⎪⎝⎭的正方形铁皮上剪下一个扇形和一个圆,使之恰好围成一个圆锥,则圆锥的高为()131517197.甲、乙两人进行一场游戏比赛,其规则如下:每一轮两人分别投掷一枚质地均匀的骰子,比较两者的点数大小,其中点数大的得3分,点数小的得0分,点数相同时各得1分.经过三轮比赛,在甲至少有一轮比赛得3分的条件下,乙也至少有一轮比赛得3分的概率为()A.209277B.210277C.211277D.2122778.已知函数()1ex x f x +=,若过()1,P t -可做两条直线与函数()f x 的图象相切,则t 的取值范围为()A.4,e ⎛⎫+∞ ⎪⎝⎭B.4e ⎧⎫⎨⎬⎩⎭C.40,e ⎛⎫ ⎪⎝⎭D.{}40,0e ⎛⎫⋃ ⎪⎝⎭二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()cos 23cos f x x x x =-,则下列命题正确的是()A.()f x 的最小正周期为π;B.函数()f x 的图象关于π3x =对称;C.()f x 在区间2ππ,36⎡⎤--⎢⎥⎣⎦上单调递减;D.将函数()f x 的图象向左平移5π12个单位长度后所得到的图象与函数2sin 2y x =的图象重合.10.已知圆22:1O x y +=,圆22:()(1)4,R C x a y a -+-=∈,则()A.两圆的圆心距OC 的最小值为1B.若圆O 与圆C 相切,则2a =±C.若圆O 与圆C 222a -<<D.若圆O 与圆C 211.大衍数列来源《乾坤诺》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{}n a 满足10a =,11,,n n na n n a a n n +++⎧=⎨+⎩为奇数为偶数,则()A.46a =B.()221n n a a n +=++C.221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数D.1234567820a a a a a a a a -+-+-+-=-第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.若,a b 均为不等于1的正数,且满足212,82n m a b a b ⎛⎫== ⎪⎝⎭,且,则122n m +=.13.已知椭圆1C :221103x y +=与双曲线2C 有相同的左,右顶点A ,B ,过点A 的直线l 交1C 于点P ,交2C 于点Q .若PBQ 为等边三角形,则双曲线2C 的虚轴长为.14.已知首项为12的正项数列满足{}n a 满足11n n n n a a ++=,若存在*N n ∈,使得不等式()()3(1)(1)0n n n n m a m a +--+-<成立,则m 的取值范围为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xy w 821()i i x x =-∑821()i i w w =-∑81()()i i i x x y y =--∑81()()i i i w w y y =--∑46.6563 6.8289.8 1.61469108.8表中i w =,ˆw =1881i i w =∑(Ⅰ)根据散点图判断,y=a+bx 与y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x、y 的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:16.(15分)已知函数()()22ln f x x a x a x =+--.(1)当1a =时,求函数()f x 的图象在点()()1,1f 处的切线方程;(2)当0a >时,若函数()()()2h x f x a x =+-在[]1,e 上的最小值为0,求实数a 的值.17.(15分)如图所示,在多面体ABCDEF 中,底面ABCD 为直角梯形,AD BC ∥,AB BC ⊥,侧面ABEF 为菱形,平面ABEF ⊥平面ABCD ,M 为棱BE 的中点.(1)若点N 为DE 的中点,求证:MN 平面ABCD ;(2)若12AB BC AD ==,60EBA ∠=︒,求平面MAD 与平面EFD 夹角的余弦值.18.(17分)已知抛物线2:2(0)C x py p =>上任意一点R 满足RF 的最小值为1(F 为焦点).(1)求C 的方程;(2)过点(),1P t -的直线经过F 点且与物线交于M N 、两点,求证:211PF PM PN=+;(3)过F 作一条倾斜角为60 的直线交抛物线于A B 、两点,过A B 、分别作抛物线的切线.两条切线交于Q 点,过Q 任意作一条直线交抛物线于E H 、,交直线AB 于点G ,则QG QE QH 、、满足什么关系?并证明.19.(17分)给定正整数2n ≥,任意的有序数组()12,,,n x x x α=⋅⋅⋅,()12,,,n y y y β=⋅⋅⋅,定义:1122n n x y x y x y αβ⋅=++⋅⋅⋅+,α=(1)已知有序数组()2,1,0,1α=-,()1,0,1,0β=-,求α及αβ⋅;(2)定义:n 行n 列的数表A ,共计2n 个位置,每个位置的数字都是0或1;任意两行都至少有一个同列的数字不同,并且有只有一个同列的数字都是1;每一行的1的个数都是a ;称这样的数表A 为‘n a -表’.①求证:当4n =时,不存在‘n a -表’;②求证:所有的‘n a -表’的任意一列有且只有a 个1.。
上饶市2024届高三二模数学参考答案1. A2.D3.B4.C5.D6.C7.A8.D9. AC 10.BCD 11.ABD.12.13. 14.8.解设双曲线C 的左焦点为1F ,如图,取线段MN 的中点H ,连接2HF ,则2222F M F N F H +=.因为()220MN F M F N ⋅+= ,所以20MN F H ⋅=,即2MN F H ⊥,则22MF NF =.设22MF NF m ==.因为21122MF MF NF NF a −=−=,所以1221114NF NF MF MF NF MF MN a −+−=−==,则2MHNH a ==,从而1HF m =得22222m a c =+.因为直线l 的斜率为13,所以121tan 3HF F ∠=,整理得222219c a a c −=+,即2254a c e =⇒=,11.解: 如图,对于A ,因为,AD SD AD DC ⊥⊥,又,,SD DC D SD DC ∩=⊂面SDC , 所以AD ⊥面SDC , SDC BC 平面⊥ 又因为120,2SDC SD CD ∠=°==,SBC A ABC S V V −−=,得点A 到平面SBC 的距离为1.A 正确。
对于B ,因为SP PB =,所以点P 为棱SB 的中点,取SC 中点为Q ,连接,PQ DQ ,可得平面APQD 即平面α截此四棱锥所得截面, 且由于Q 是SC 的中点,点P 为棱SB 的中点,所以在SBC △中,PQ 是SBC △的中位线,则121==BC PQ ,//PQ BC , 又因为四边形ABCD 是正方形,则//BC AD ,所以/PQ AD , 因为AD ⊥面SDC , AD ⊄面SDC ,QC ⊂面SDC ,所以四边形APQD 是以AD 为下底、PQ 为上底,DQ 为高的直角梯形,因为2SDCD ==,在等腰三角形SCD 中,QD BC ⊥,且QD 平分ADC ∠, 则11cos 2122QD CD SDC =⋅∠=×=,则平面α截此四棱锥所得截面的面积为231)21(21=⋅+,故B 正确; 对于C ,又因为120,2SDC SD CD ∠=°==,所以2cos302cos30SC =+= 所以24sin SC rSDC ==∠,即2r =,其中r 为SCD 外接圆半径, 因为AD ⊥面SDC ,所以四棱锥S ABCD −外接球的半径为5)22(222=+=R , 所以四棱锥S ABCD −外接球的表面积为π20,故C 不正确;对于D ,建立直角坐标系,当P 为靠近S 的三等分点时,线面角有最大值772 故选:ABD.31](60,233−14:解:xx x x x e x x e e x x x e x x a ln ln )1(ln 2)1(ln 2)1(ln 2+++=++=++≥令R x x t ∈+=ln ,te t t g )1(2)(+=,t e tt g 2)('−= 当0)('0,0)('0<>><t g t t g t 时,时,所以)(t g 最大值为2)0(g =,2≥a ,得2=m由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期, 所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos2x+2cos x-2. 令f'(x)=0,可得cos x=或cos x=-1,x ∈[0,2π)时,解得x=或x=或x=π.因为f(x)=2sin x+sin 2x 的最值只能在x=,x=,x=π或x=0时取到,且f=,f=-,f(π)=0,f(0)=0,所以函数f(x)的最小值为. 15.解:(1)有以上的把握认为“脐橙果径与所在基地有关”(2)见解析 【解析】(1)根据题中所给数据可得到如下列联表: 甲基地 乙基地 优质果 250230非优质果5070, (4)分 因此,有以上的把握认为“脐橙果径与所在基地有关”。
鞍山市第一中学2024年全国新课标II 卷高考数学试题最后一模注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =( )A .{}32x x -<< B .{}22x x -<< C .{}62x x -<<D .{}12x x -<<2.执行如图所示的程序框图,则输出S 的值为( )A .16B .48C .96D .1283.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( ) A .41n n S a =- B .21n n S a =+ C .21n n S a =-D .43n n S a =-4.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( ) A .12-B .12C .-8D .85.定义在R 上的函数()()f x x g x =+,()22(2)g x x g x =--+--,若()f x 在区间[)1,-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式不一定成立的是( )A .()2112f t t f ⎛⎫++> ⎪⎝⎭B .(2)0()f f t ->>C .(2)(1)f t f t +>+D .(1)()f t f t +>6.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q ∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( ) A .22B .32C .23D .337.记递增数列{}n a 的前n 项和为n S .若11a =,99a =,且对{}n a 中的任意两项i a 与j a (19i j ≤<≤),其和i j a a +,或其积i j a a ,或其商j ia a 仍是该数列中的项,则( )A .593,36a S ><B .593,36a S >>C .693,36a S >>D .693,36a S ><8.已知函数()222ln 02x x e f x e x x e⎧<≤=⎨+->⎩,,,存在实数123x x x <<,使得()()()123f x f x f x ==,则()12f x x 的最大值为( )A .1eB .1eC .12eD .21e 9.若双曲线22214x y b -=的离心率72e =,则该双曲线的焦点到其渐近线的距离为( ) A .23B .2C .3D .110.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .63C .33D .2311.已知函数2()2f x x x =-,集合{|()0}A x f x =≤,{}|()0B x f x '=≤,则AB =( )A .[-1,0]B .[-1,2]C .[0,1]D .(,1][2,)-∞⋃+∞ 12.已知i 是虚数单位,则( ) A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
一、单选题1. 龙洗,是我国著名的文物之一,因盆内有龙纹故称龙洗,为古代皇宫盥洗用具,其盆体可以近似看作一个圆台.现有一龙洗盆高15cm,盆口直径40cm,盆底直径20cm.现往盆内倒入水,当水深6cm时,盆内水的体积近似为()A.B.C.D.2. 在下列关于直线与平面的命题中,真命题是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则3.过点,作倾斜角为的直线l,则直线l被圆截得的弦长为()A.B.C.D.4. 函数在上的图象大致是()A.B.C.D.5. 风雨桥是侗族最具特色的建筑之一.风雨桥由桥、塔、亭组成.其亭、塔平面图通常是正方形、正六边形和正八边形.如图是风雨桥亭、塔正六边形的正射影.其正六边形的边长计算方法如下:,,,……,,其中,.根据每层边长间的规律.建筑师通过推算,可初步估计需要多少材料.所用材料中.横向梁所用木料与正六边形的周长有关.某一风雨桥亭、塔共5层,若,.则这五层正六边形的周长总和为A.B.C.D.6. 已知,则=()A.B.C.D.57. 设,,,则下列关系正确的是().A.B.C.D.8. 已知函数的局部图象如图所示,则的解析式可以是()A.B.C.D.9. “”的一个充分条件是( )A.B.C.D.10. 已知函数f (x )满足:①对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;②当x ∈(1,2]时,f (x )=2﹣x .若f (a )=f (2020),则满足条件的最小的正实数a 的值为( )A .28B .100C .34D .3611. 已知椭圆E,直线与椭圆E 相切,则椭圆E 的离心率为( )A.B.C.D.12. 在直角△ABC 中,,,,且,分别以BC ,AC ,AB 所在直线为轴,将△ABC 旋转一周,形成三个几何体,其表面积和体积分别记为,,和,,,则它们的关系为( )A .,B .,C .,D .,13.若,则( )A.B.C.D.14. 已知是离心率为的椭圆()的右焦点,过坐标原点O 作直线l 交椭圆于A ,B 两点(点A 位于第一象限),若,则直线BF 的斜率等于( )A.B.C.D.15. 已知定义在上的函数的导函数的图象如图所示,给出下列命题:①函数在区间上单调递减;②若,则;③函数在上有3个极值点;④若,则.其中正确命题的序号是()A .①③B .②④C .②③D .①④二、多选题16. 一个表面积为的圆锥,其侧面展开图是一个中心角为的扇形,设该扇形面积为,则为( )A.B.C.D.17.已知圆,则下列结论正确的有( )A .若圆和圆外离,则B.若圆和圆外切,则C .当时,圆和圆有且仅有一条公切线D .当时,圆和圆相交18.空气质量指数大小分为五级,指数越大说明污染的情况越严重,对人体危害越大,指数范围在;对应“优”、“良”、“轻度污块"、“中度污染”、“重度污染”五个等级,下面是某市连续14天的空气质量指数变化趋势图,下列说法中正确的是()A .从2日到5日空气质量越来越好B .这14天中空气质量指数的极差为195C .这14天中空气质量指数的中位数是103.5D .这14天中空气质量指数为“良”的频率为19.已知抛物线的焦点为,准线为,过点的直线与抛物线交于两点,点在上的射影为,则下列说法正确的是( )A .若,则B.以为直径的圆与准线相交C .设,则D .过点与抛物线有且仅有一个公共点的直线有3条20. 抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线为坐标原点,一束平行于轴的光线从点射入,经过上的点反射后,再经上另一点反射后,沿直线射出,经过点,则( )A .平分B.C .延长交直线于点,则三点共线D.21.设为抛物线:()的焦点,为坐标原点,为上一点,且,则( )A.B.C .直线的斜率为D .的面积为22. 在下列函数中,最小值是2的函数有( )三、填空题A.B.C.D.23.设数列前项和为,满足,且,,则下列选项正确的是( )A.B.数列为等差数列C .当时,有最大值D .设,则当或时,数列的前项和取最大值24.关于双曲线,下列说法正确的是( )A .该双曲线与双曲线有相同的渐近线B .过点作直线与双曲线交于,若,则满足条件的直线只有一条C .若直线与双曲线的两支各有一个交点,则直线的斜率D .过点能作4条直线与双曲线仅有一个交点25. 已知函数的部分图象如图所示,将的图象向左平移个单位得到的图象,若不等式在,上恒成立,则的取值范围是 __.26.展开式中含有项的系数为_____________.27. 数据2,3,5,8,8,10的平均数为______________________.28. 袋中有大小相同的黑球和白球各1个,每次从袋中抽取1个,有放回的随机抽取3次,则至少抽到1个黑球的概率是__________.29.已知一个圆锥的侧面展开图是一个圆心角为,半径为的扇形.若该圆锥的顶点及底面圆周都在球的表面上,则球的体积为__________.30. 已知向量,若,则m =___________.31. 已知角的始边与轴的非负半轴重合,顶点与坐标原点重合,终边过点,则____.32. 如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为__________.2024高中数学高考高频考点经典题型模拟卷四、解答题五、解答题33. 已知函数.(1)当时,讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.34. 已知F 是抛物线C :()的焦点,过点F 作斜率为k 的直线交C 于M ,N两点,且.(1)求C 的标准方程;(2)若P 为C 上一点(与点M 位于y 轴的同侧),直线与直线的斜率之和为0,的面积为4,求直线的方程.35. 已知的内角的对边分别为,且,(1)求的大小;(2)若,求的面积.36. 化简:.37. 如图,两射线、均与直线l 垂直,垂足分别为D 、E 且.点A 在直线l 上,点B 、C 在射线上.(1)若F 为线段BC 的中点(未画出),求的最小值;(2)若为等边三角形,求面积的范围.38.已知(1)化简;(2)若,求的值;(3)若,求的值.39. 如图,正方体的棱长为,为棱的中点.(1)画出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求点到该平面的距离.40. 已知函数.(1)画出f(x)的图象,并写出的解集;(2)令f(x)的最小值为T,正数a,b满足,证明:.41. 某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:(1)算出第三组的频数.并补全频率分布直方图;(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)42. 某数学小组从医院和气象局获得今年1月至6月份每月20日的昼夜温差和患感冒人数人的数据,画出折线图.由折线图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;建立y关于x的回归方程精确到,预测昼夜温差为时患感冒的人数精确到整数.参考数据:,,,.参考公式:相关系数:,回归直线方程是,,六、解答题43.如图,在直四棱柱中,各棱长都为的长为为棱上一点,,连接.(1)作出平面与底面的交线,写出作法;(2)证明:平面平面.(3)求平面与平面所成锐二面角的余弦值.44. 已知方程,其中为实数.对于不同范围的值,分别指出方程所代表图形的类型,并画出显示其数量特征的草图.45. 已知椭圆的离心率为,上下顶点分别为,且.过点的直线与椭圆相交于不同的两点(不与点重合).(1)求椭圆的方程;(2)若直线与直线相交于点,求证:三点共线.46. 数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.47. 如图所示,在四棱锥中,底面为直角梯形,∥、、、,、分别为、的中点,.(1)证明:平面平面;(2)若与所成角为,求二面角的余弦值.48.如图,四边形是直角梯形,,,,,四边形为正方形.七、解答题(1)若,求证:;(2)若,求与平面所成角的正弦值.49. 设函数,.(1)求函数的单调区间;(2)若方程有两个不相等的实数根、,求证:.50. 设正整数数列,,,满足,其中.如果存在,3,,,使得数列中任意项的算术平均值均为整数,则称为“阶平衡数列”(1)判断数列2,4,6,8,10和数列1,5,9,13,17是否为“4阶平衡数列”?(2)若为偶数,证明:数列,2,3,,不是“阶平衡数列”,其中(3)如果,且对于任意,数列均为“阶平衡数列”,求数列中所有元素之和的最大值.51. 中国职业篮球联赛(CBA 联赛)分为常规赛和季后赛.由于新冠疫情关系,今年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8的球队进入季后赛.季后赛的总决赛采用五场三胜制(“五场三胜制”是指在五场比赛中先胜三场者获得比赛胜利,胜者成为本赛季的总冠军).下表是队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中信息,依据的独立性检验,能否认为比赛的“主客场”与“胜负”之间有关联?(2)已知队与队在季后赛的总决赛中相遇,假设每场比赛结果相互独立,队除第五场比赛获胜的概率为外,其他场次比赛获胜的概率等于队常规赛60场比赛获胜的频率.记为队在总决赛中获胜的场数.求的分布列.附:,其中.临界值表:()0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82852. 某服装公司经过多年的发展,在全国布局了3500余家规模相当的销售门店.该公司每年都会设计生产春季新款服装并投放到各个门店销售.该公司为了了解2022年春季新款服装在某个片区的销售情况,市场部随机调查了该片区6个销售门店当年销售额(单位:万元,不考虑门店之间的其它差异),统计结果如下:门店编号123456年销售额283330404522(1)请用平均数,中位数分别估计2022年该公司的春季新款服装在这个片区的某个销售门店的年销售额;(2)从以上6个门店中随机抽取2个,求恰好有1个门店的该年销售额不低于40万元的概率.53.为了解某一地区电动汽车销售情况,某机构根据统计数据,用最小二乘法得到电动汽车销量单位:万台关于年份的线性回归方程为,且销量的方差,年份的方差为.(1)求与的相关系数,并据此判断电动汽车销量与年份的相关性强弱;(2)该机构还调查了该地区位购车车主性别与购车种类情况,得到的数据如下表:购买非电动购买电动汽车总计汽车男性女性总计能否有的把握认为购买电动汽车与性别有关(3)在购买电动汽车的车主中按照性别进行分层抽样抽取人,再从这人中随机抽取人,记这人中,男性的人数为,求的分布列和数学期望.参考公式:线性回归方程:,其中,;相关系数:,若,则可判断与线性相关较强;,其中.附表:54. 计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:年入流量发电机最多可运行台123数若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?55. 有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):产品:投资结果获利50%不赔不赚亏损30%概率产品:投资结果获利40%不赚不赔亏损20%概率注:,.(1)若甲、乙两人分别选择了产品、投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围:八、解答题(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.56. 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示.(1)求月销售量(万件)与销售单价(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?57.在下面题目中,补充一个条件,使得有两个不同解,并解答下列问题.设,,则补充的条件为______;这个三角形的面积是否存在最值?如果有,请求出其最值,如果没有请说明理由.58. 近年来,我国加速推行垃圾分类制度,全国垃圾分类工作取得积极进展.某城市推出了两套方案,并分别在,两个大型居民小区内试行.方案一:进行广泛的宣传活动,通过设立宣传点、发放宣传单等方式,向小区居民和社会各界宣传垃圾分类的意义,讲解分类垃圾桶的使用方式,垃圾投放时间等,定期召开垃圾分类会议和知识宣传教育活动;方案二:智能化垃圾分类,在小区内分别设立分类垃圾桶,垃圾回收前端分类智能化,智能垃圾桶操作简单,居民可以通过设备进行自动登录、自动称重、自动积分等一系列操作.建立垃圾分类激励机制,比如,垃圾分类换积分,积分可兑换礼品等,激发了居民参与垃圾分类的热情,带动居民积极主动地参与垃圾分类.经过一段时间试行之后,在这两个小区内各随机抽取了100名居民进行问卷调查,记录他们对试行方案的满意度得分(满分100分),将数据分成6组:,,,,,,并整理得到如下频率分布直方图:(1)请通过频率分布直方图分别估计两种方案满意度的平均得分,判断哪种方案的垃圾分类推广措施更受居民欢迎(同一组中的数据用该组中间的中点值作代表);(2)以样本频率估计概率,若满意度得分不低于70分说明居民赞成推行此方案,低于70分说明居民不太赞成推行此方案.现从小区内随机抽取5个人,用表示赞成该小区推行方案的人数,求的分布列及数学期望.59.已知等比数列的前项和为,,且满足,,成等差数列.(1)求数列的通项公式;(2)记,求.60. 数据显示,2021年双十一网络购物节中,全网交易额达到了9651.2亿元,某地为了了解网购消费者的特点,从本地参与网购的消费者(网购年限不超过11年)中随机抽取了100名进行调查,并将这100名消费者的网购年限制成如下所示的频率分布直方图,将是否理性消费按性别分类形成2×2列联表.理性消费非理性消费男355女4515(1)视频率为概率,估计网购消费者网购年限不超过5年的概率,并求本地网购消费者网购年限的平均数(同一组中的数据用该组区间的中点值为代表);(2)根据列联表,判断能否有95%的把握认为本地网购消费者理性消费与性别有关?附:,.0.0500.0100.0013.841 6.63510.82861. 已知长度为4的线段AB 的两个端点分别在两条直线上运动,线段AB 的中点为M .(1)求点M 的轨迹C 的方程;(2)若过点作圆()的两条切线,与轨迹C 分别交于E ,F (异于D 点)两点,若,求r 的值及直线EF 的方程.62.已知幂函数()的定义域为,且在上单调递增.(1)求m 的值;(2),不等式恒成立,求实数a 的取值范围.2024高中数学高考高频考点经典题型模拟卷2024高中数学高考高频考点经典题型模拟卷。
2024-2025学年贵州省部分学校高三上学期联考数学模拟试题(适合新高考2卷使用)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知线段是圆的一条长为的弦,则( )AB O 4⃗AO ⋅⃗AB =A. B. C. D. 468162.已知双曲线的焦距为,则该双曲线经过一、三象限的渐近线的斜率为( )x 23−y 2m 2=14A. B. C. D.333633933.贵州省的安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山组成了贵州文旅的拳头产品“黄小西吃晚饭”,也是水乡风貌最具代表的城镇,它们也拥有着历史文化底蕴、清丽婉约的水乡古镇风貌、古朴的吴侬软语民俗风情,在世界上独树一帜,驰名在外这六大景区中,其中在贵阳市周围有处小吴和家人计划今年暑假从这个景.3.6点中挑选个去旅游,则只选一个贵阳市周围的概率为( )2A. B. C. D. 253515454.形如我们称为“二阶行列式”,规定运算,若在复平面上的一个点对∣a b c d ∣∣a b c d ∣=ad−bc A 应复数为,其中复数满足,则点在复平面内对应坐标为( )z z ∣z 1−i 1+2i 1∣=i A A. B. C. D. (3,2)(2,3)(−2,3)(3,−2)5.已知等差数列的前项和为,命题:“,”,命题:“”,则命题{a n }n S n p a 5>0a 6>0q S 7>0是命题的( )p q A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件6.函数是定义在上的奇函数,且在区间上单调递增,若关于实数的不y =xf(x)R f(x)[0,+∞)t 等式恒成立,则的取值范围是( )f(log 3t)+f(log 13t)>2f(2)t A.B.C. D.(0,19)∪(9,+∞)(0,13)∪(3,+∞)(9,+∞)(0,19)7.九章算术中将四个面都是直角三角形的四面体称为鳖臑如图,在鳖臑中,《》.P−ABC 平面,,,以为球心,为半径的球面与侧面的PA ⊥ABC AB ⊥BC PA =AB =2BC =2C 3PAB 交线长为( )A.3π4B.2π4C.3π2D.2π28.已知函数,若在区间内恰好有个零ℎ(x)=cos 2x +asinx−12(a ≥12)ℎ(x)(0,nπ)(n ∈N ∗)2022点,则的取值可以为( )n A. B. C. D. 2025202410111348二、多选题:本题共3小题,共18分。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结39 两条直线的位置关系与距离公式高考概览高考在本考点的常考题型为选择题,分值为5分,中、低等难度考纲研读1.能根据两直线方程判断这两条直线平行或垂直2.能用解方程组的方法求两条相交直线的交点坐标3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离一、基础小题1.已知直线x+a2y+6=0与直线(a-2)x+3ay+2a=0平行,则a的值为() A.0或3或-1 B.0或3C.3或-1 D.0或-1答案D解析由题意知1×3a-a2(a-2)=0,即a(a2-2a-3)=0,解得a=0或a=-1或a=3,经验证,当a=3时,两直线重合.故选D.2.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是() A.[-10,10] B.[-10,5] C.[-5,5] D.[0,10]答案D解析 由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].3.已知直线4x +my -6=0与直线5x -2y +n =0垂直,垂足为(t,1),则n 的值为( )A .7B .9 C.11 D .-7答案 A解析 由直线4x +my -6=0与直线5x -2y +n =0垂直得,20-2m =0,m =10.因为直线4x +10y -6=0过点(t,1),所以4t +10-6=0,t =-1.又点(-1,1)在直线5x -2y +n =0上,所以-5-2+n =0,n =7.4.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895 B .175 C.135 D .115答案 C解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0过定点B ⎝ ⎛⎭⎪⎫-1,25,由两点间的距离公式,得|AB |=135. 5.若两平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是5,则m +n =( )A .0B .1 C.-2 D .-1答案 C解析 因为l 1,l 2平行,所以1×n =2×(-2),解得n =-4,所以直线l 2的方程为x -2y -3=0.又l 1,l 2之间的距离是5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2.故选C.6.直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0答案 D解析 由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎨⎧x +3=0,y -1=0,可得x =-3,y =1,所以M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于点M 对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),所以所求方程为2x +3y +12=0.故选D.7.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( )A.45 B .25 C.255 D .105答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|12+22=255,所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.8.在平面直角坐标系xOy (O 为坐标原点)中,不过原点的两直线l 1:x -my +2m -1=0,l 2:mx +y -m -2=0的交点为P ,过点O 分别向直线l 1,l 2引垂线,垂足分别为M ,N ,则四边形OMPN 面积的最大值为( )A .3B .32 C.5 D .52答案 D解析 将直线l 1的方程变形得(x -1)+m (2-y )=0,由⎩⎨⎧ x -1=0,2-y =0,得⎩⎨⎧x =1,y =2,则直线l 1过定点(1,2),同理可知,直线l 2过定点(1,2),所以,直线l 1和直线l 2的交点P 的坐标为(1,2),易知,直线l 1⊥l 2,如图所示,易知,四边形OMPN 为矩形,且|OP |=12+22=5,设|OM |=a ,|ON |=b ,则a 2+b 2=5,四边形OMPN 的面积为S =|OM |·|ON |=ab ≤a 2+b 22=52,当且仅当⎩⎨⎧a =b ,a 2+b 2=5,即当a =b =102时,等号成立,因此,四边形OMPN 面积的最大值为52.故选D.9.(多选)已知直线l :mx +y -m +1=0,A (1,2),B (3,4),则下列结论正确的是( )A .存在实数m ,使得直线l 与直线AB 垂直B .存在实数m ,使得直线l 与直线AB 平行C .存在实数m ,使得点A 到直线l 的距离为4D .存在实数m ,使得以线段AB 为直径的圆上的点到直线l 的最大距离为17+2 答案 ABD解析 ∵直线l :mx +y -m +1=0,A (1,2),B (3,4),∴直线l 的斜率为-m ,直线AB 的斜率为1,故当m =1时,直线l 与直线AB 垂直;当m =-1时,直线l 与直线AB 平行,故A ,B 正确;直线l :mx +y -m +1=0,即m (x -1)+y +1=0,令⎩⎨⎧x -1=0,y +1=0,求得⎩⎨⎧x =1,y =-1,可得直线经过定点P (1,-1),由于AP =3,故点A 到直线l 的最大距离为3,故C 错误;由于A (1,2),B (3,4),AB =4+4=22,故以AB 为直径的圆的圆心Q (2,3),且PQ =1+16=17,圆的半径为2,圆心Q 到直线l 的最大距离为17,故以线段AB 为直径的圆上的点到直线l 的最大距离为17+2,故D 正确.10.(多选)经过点P (0,1)的直线l 与两直线l 1:x -3y +10=0和l 2:2x +y -8=0分别交于P 1,P 2两点,且满足P 1P →=2PP 2→,则( )A .点P 1的坐标为⎝ ⎛⎭⎪⎫0,103 B .|P 1P 2|=212 C .点P 2的坐标为(7,1) D .直线l 的方程为y =1答案 BD解析 当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 与两直线l 1:x-3y +10=0和l 2:2x +y -8=0的交点P 1,P 2的坐标分别为⎝ ⎛⎭⎪⎫0,103,(0,8),则P 1P →=⎝⎛⎭⎪⎫0,-73,PP 2→=(0,7),不满足P 1P →=2PP 2→,故直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为y =kx +1,则直线l 与两直线l 1:x -3y +10=0和l 2:2x +y -8=0的交点P 1,P 2的横坐标分别为73k -1,7k +2,∵P 1P →=2PP 2→,∴0-73k -1=2⎝ ⎛⎭⎪⎫7k +2-0,解得k =0,则P 1,P 2的坐标分别为(-7,1),⎝ ⎛⎭⎪⎫72,1,∴|P 1P 2|=212,直线l 的方程为y =1.故选BD.11.已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为________,此时a =________,b =________.答案 25 5 5解析 由两直线互相平行可得a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6b a =25,当且仅当a =b=5时取等号.故2a +3b 的最小值为25.12. 如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.答案 (4,+∞)解析 从特殊位置考虑.如图,因为点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),所以kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,所以k FD >kA 1F ,即k FD ∈(4,+∞).二、高考小题13.(2022·新高考Ⅱ卷)抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =( )A .1B .2 C.22 D .4答案 B解析 抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离为d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.14.(2022·全国Ⅲ卷)点(0,-1)到直线y =k (x +1)距离的最大值为( )A .1B . 2 C.3 D .2答案 B解析 由y =k (x +1)可知直线过定点P (-1,0),设A (0,-1),当直线y =k (x +1)与AP 垂直时,点A 到直线y =k (x +1)的距离最大,即为|AP |= 2.故选B.15.(2022·全国Ⅱ卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B .255 C.355 D .455答案 B解析 由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆至少与一条坐标轴相交,不符合题意,所以圆心必在第一象限.设圆心的坐标为(a ,a ),a >0,则圆的半径为a ,圆的标准方程为(x -a )2+(y -a )2=a 2.由题意可得(2-a )2+(1-a )2=a 2,可得a 2-6a +5=0,解得a =1或a =5.所以圆心的坐标为(1,1)或(5,5).点(1,1),(5,5)到直线2x -y -3=0的距离均为d =25=255,所以圆心到直线2x -y -3=0的距离为255.故选B.16.(2022·江苏高考)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.答案 4解析 解法一:由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0),则动点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.解法二:设P ⎝ ⎛⎭⎪⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的动点到直线x +y=0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4. 三、模拟小题17.(2022·济南模拟)若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -(5-3x )-1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故点P 的坐标为(1,2)或(2,-1).18.(2022·河北省实验中学高三开学考试)若直线l 1:y =kx -k +1与直线l 2关于点(2,3)对称,则直线l 2一定过定点( )A .(-3,5)B .(3,-5)C .(3,5)D .(5,3)答案 C解析 直线l 1:y =kx -k +1可化为y -1=k (x -1),故一定经过点(1,1);点(1,1)关于点(2,3)的对称点的坐标为(3,5),由于直线l 1:y =kx -k +1与直线l 2关于点(2,3)对称,所以直线l 2一定过定点(3,5).故选C.19.(2022·吉林省梅河口市第五中学月考)已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A.51313 B .91326 C.41313 D .71326答案 D解析 ∵直线3x +2y -3=0和6x +my +1=0互相平行,∴m =4,将直线3x +2y -3=0的方程化为6x +4y -6=0,则两条平行直线之间的距离d =|1-(-6)|62+42=71326.故选D.20.(多选)(2022·河北省实验中学高三开学考试)瑞士数学家莱昂哈德·欧拉(Leonhard Euler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是( )A .(2,0)B .(0,2)C .(-2,0)D .(0,-2)答案 AD解析 设C (x 1,y 1),AB 的垂直平分线为y =-x ,△ABC 的欧拉线方程为x -y +2=0,与直线y =-x 的交点为M (-1,1),∴|MC |=|MA |=10,∴(x 1+1)2+(y 1-1)2=10①,由A (-4,0),B (0,4),得△ABC 的重心为⎝ ⎛⎭⎪⎫x 1-43,y 1+43,代入欧拉线方程x -y +2=0,得x 1-y 1-2=0 ②,由①②可得x 1=2,y 1=0或x 1=0,y 1=-2.故选AD.21.(多选)(2022·湖南永州高三复习检测)已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的可能取值为( )A.43 B .23 C.-43 D .-23答案 BCD解析 设l 1:2x -3y +1=0,l 2:4x +3y +5=0,l 3:mx -y -1=0,易知l 1与l 2交于点A ⎝ ⎛⎭⎪⎫-1,-13,l 3过定点B (0,-1).因为l 1,l 2,l 3不能构成三角形,所以l 1∥l 3或l 2∥l 3或l 3过点A .当l 1∥l 3时,m =23;当l 2∥l 3时,m =-43;当l 3过点A 时,m =-23,所以实数m 的可能取值为-43,-23,23.故选BCD.22.(2022·安徽四校联考(二))已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧ b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 23.(2022·山东省历城二中上学期学情检测)已知m ∈R ,动直线l 1:x +my -1=0过定点A ,动直线l 2:mx -y -2m +1=0过定点B ,则B 点坐标为________;若直线l 1与l 2相交于点P (异于点A ,B ),则△P AB 周长的最大值为________.答案 (2,1) 2+2解析 由条件知直线l 1过定点A (1,0),直线l 2过定点B (2,1),所以|AB |=12+12=2,又因为1×m +m ×(-1)=0,所以l 1⊥l 2,即P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=2,|P A |+|PB |≤2 |P A |2+|PB |22=2,当且仅当|P A |=|PB |=1时取等号,所以|P A |+|PB |+|AB |≤2+2,故△P AB 周长的最大值为2+ 2. 24.(2022·岳阳模拟)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m )且Q (4,0)到动直线l 的最大距离为3,则m =________,12a +2c 的最小值为________.答案 0 94解析 因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0,设点Q (4,0)到直线l 的距离为d ,当d =|PQ |时取最大值,所以(4-1)2+(-m )2=3,解得m =0.所以a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12×⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12×⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94,当且仅当c =2a =43时取等号.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·陕西榆林质量检测)已知两条不重合的直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解 (1)因为l 1⊥l 2,所以a (a -1)-b =0.又因为直线l 1过点(-3,-1),所以-3a +b +4=0.故a =2,b =2.(2)因为直线l 2的斜率存在,且l 1∥l 2,所以直线l 1的斜率存在.所以a b =1-a .①又因为坐标原点到这两条直线的距离相等,所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .②联立①②,可得a =2,b =-2或a =23,b =2.2.(2022·深圳调研)已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解 (1)设A ′(x ,y ),由题意知⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧ x =-3313,y =413. 所以A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3). 又因为m ′经过点N (4,3), 所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为直线l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 所以直线l ′的方程为2x -3y -9=0.。