四年级奥数点拨(第9讲)排列组合综合应用(下)
- 格式:doc
- 大小:209.00 KB
- 文档页数:7
排列组合综合应用练习题一.夯实基础:1. 由 0,2,5,6,7,8 组成无重复数字的数.⑴ 四位偶数有多少个?⑵ 四位奇数有多少个?⑶ 四位偶数有多少个?2. 由 0,2,5,6,7,8 组成无重复数字的数.⑴整数有多少个?⑵是 5 的倍数的三位数有多少个?3. 由 0,2,5,6,7,8 组成无重复数字的数.⑴是 25 的倍数的四位数有多少个?⑵大于 5860 的四位数有多少个?4.一个小组共 10 名学生,其中 4 女生,6 男生.现从中选出 3 名代表,其中至少有一名女生共有多少种选法?二.拓展提高:5.正六边形的中心和顶点共 7 个点,以其中 3 个点为顶点的三角形共有多少个?6.从10 件产品中有4 件次品,现抽取3 件检查,(1)恰好有一件次品的取法有种;(2)既有正品又有次品的取法有种.7.圆周上有十个点,任两点之间连一条弦,这些弦在圆内共有多少个交点?8.用 2,4,6 三个数字来构造六位数,但是不允许有两个连着的 2 出现在六位数中(例如626442 是允许的,但226426 就不允许),问这样的六位数有多少个?三. 超常挑战9.有5 个标签分别对应着 5 个药瓶,恰好贴错 3 个标签的可能情况有多少种?10.由 1447,1005,1231 这三个数字有许多相同之处:它们都是四位数,最高位都是 1,都恰有两个相同数字,一共有多少个这样的数?11.某旅社有导游9 人,其中3 人只会英语,2 人只会日语,其余4 个既会英语又会日语.现要从中选6 人,其中3 人做英语导游,另外3 人做日语导游.则不同的选择方法有多少种?ADB12. 在10 名学生中,有5 人会装电脑,有3 人会安装音响设备,其余2 人既会安装电脑,又会安装音响设备,今选派由6 人组成的安装小组,组内安装电脑要3 人,安装音响设备要3 人,共有多少种不同的选人方案?13. 在四位数中,各位数字之和是 4 的四位数有多少?四.杯赛演练:14. (迎春杯初赛)6 个人传球,每两人之间至多传 1 次,那么至多共进行几次传球?15. (华杯赛冬令营培训题)如图,A 、B 、C 、D 为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有几种?C5 2 4 45 46 5 5 5 5 5 5 5 5 5 5 5 5 54 43 34 3 35 46 4 6 4 10 6 10 67 4 6 4 6 4 6 答案:1. (1)注意 0 不能做首位, 5A 3 = 300 个.(2) 个位为特殊位置,只能从 5,7 中选一个;0 是特殊元素,它不能放在千位;综上,四位奇数有C 1C 1 A 2 = 96 个. (3) 位只能在 0,2,6,8 中选择,进一步分成两种情况:若个位为 0,则共有 A 3= 60种;若个位不是 0,则个位从 2,6,8 中选一个,有 3 种方法,然后选择千位,有 4 种方法,最后再选剩余的两位,有 A 2 = 12 种,所以四位偶数有 60 + 3⨯ 4⨯12 = 204 个.2. ⑴包括一位数、二位数、三位数、…、六位数,共有A 1 + A 1A 1 + A 1A 2 + A 1A 3 + A 1A 3 + A 1A 4 + A 1A 5 = 1631个.⑵5 的倍数,则个位为 0 或 5,分两种情况:若个位为 0,则有 A 2 = 20 个;若个位为 5, 则有 A 1 A 1 = 16 个,所以共有 36 个是 5 的倍数的三位数.3. ⑴25 的倍数,在本题的条件下,末两位只可能是 25,50 或 75. 若末两位为 25,则这样的四位数有 A 1A 1 = 9 个;若末两位为 50,则这样的四位数有 A 2 = 12 个;若末两位为 75,则这样的四位数有 A 1A 1 = 9 个,因此能被 25 整除的四位数共有 30 个. ⑵千位如果为 5,则前三位为 586,第四位有 2 或 7 两种选择;前三位若为 587,则四位有 0,2,6 三种选择,所以,千位为 5 总共有 5 个数; 千位如果为 6、7、8,则均有 A 3 = 60 个数,因此,大于 5860 的四位数有5 + 3⨯ 60 =185 个.4. “至少有一名女生”意味着存在女生,也就是说不能都是男生.所以,理解这句话的意思至关重要!我们可以从直接与间接两种方法解这道题,同学们可以比较一下.方法一:直接法.由于共有 4 个候选女生,因此至少有一名女生,包括如下几种情况:⑴1 名女生,2 名男生: C 1C 2= 60 种选法;⑵2 名女生,1 名男生: C 2C 1 = 36 种选法;⑶3 名女生, C 3 = 4 种选法.所以,共有60 + 36 + 4 =100 种选法. 方法二:间接法.先从 10 名学生中任意选出 3 名学生,有C 3 种选法;然后从中扣除没有女生的情况( 即全是男生的情况), 有 C 3 种选法. 所以, 至少有一名女生的选法数有C 3 - C 3 = 120 - 20 = 100 .5. 7 个点中选出 3 个点的方法为C 3 = 35 种,其中三条对角线上的 3 点组合是共线的,不合 要求. 35 - 3 = 32 种.6. ⑴ C 1C 2= 60 种;⑵既有正品又有次品分为:1 件次品,2 件正品;2 件次品,1 件正品两类,即: C 1C 2 + C 2C 1= 60 + 36 = 96 种.10 6 5 4 5 9 1 9 4 4 4 4 5 57. 两条弦的交点与四边形的个数一一对应,因而有C 4 = 210 个交点.8. (1)若六位数中没有 2,则每一位只能从 4 或 6 中选一个,这时有26 = 64 个.(2) 若六位数中只有 1 个 2,则 2 有C 1= 6 种位置选择,其余 5 个位置从 4 或 6 中选取,则有6⨯ 25 =192 个. (3) 若六位数中有 2 个 2,这时有24 ⋅ C 2 =160个(插空法). (4) 若六位数中有 3 个 2,这时有23⋅ C 3= 32 个;由题意,不可能在六位数中出现4 个4 个以上的2.于是共有64 +192 +160 + 32 = 448 个.9. 将瓶子命名为 1,2,3,4,5 号,如果是 1,2 号瓶贴对,则其余 3 个瓶子都贴错的, 简单枚举可发现有 2 种贴错的情况;而另选两个瓶子贴对,则剩余 3 个瓶子都贴错也是 2 种情况,因此共有C 2 ⨯ 2 = 20 种.10. 由于首位是 1,因此那两个相同数字应该以是否是 1 而分类:⑴若相同数字是 1:另一个 1 有 3 种位置可以选择,另两位数字不能是 1 且不能相同,故有 A 2 种不同排法,因而有m =3A 2= 216 个. ⑵若相同数字不是 1:这时相同数字有 9 种不同选法,这两个相同数字在后 3 位只 有 3 种不同排法,另一位数字既不是 1,又不能与相同数字相同,因此有 8 种不同取法.因而有m 2 = 9⨯ 3⨯8 = 216 个.综上,满足条件的四位数共有216 + 216 = 432 个.11. 此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:⑴只会日语的 2 人都出场,则还需1 个多面手做日语导游,有 4 种选择.从剩下的只会英语的人和多面手共6 人中选3 人做英语导游,有C 3 = 6 ⨯ 5⨯ 4= 20 种选择.由63⨯ 2 ⨯1乘法原理,有4⨯ 20 = 80 种选择.⑵只会日语的2 人中有1 人出场,有2 种选择.还需从多面手中选2 人做日语导游,有C 2 = 4 ⨯ 3= 6 种选择.剩下的只会英语的人和多面手共5 人中选3 人做英语导游,42 ⨯1 有C3 = 5⨯4 ⨯ 3= 10 种选择.由乘法原理,有2⨯ 6⨯10 =120 种选择.53⨯ 2 ⨯1⑶只会日语的人不出场,需从多面手中选3 人做日语导游,有C 3 = C 1 = 4 种选择.剩下的只会英语的人和多面手共4 人中选3 人做英语导游,有C 3 = C 1 = 4 种选择.由乘法原理, 有 4⨯ 4 =16 种选择. 根据加法原理, 不同的选择方法一共有 80 +120 +16 = 216 种.12. 按具有双项技术的学生分类:⑴两人都不选派,有C 3 =10 种选派方法;⑵两人中选派1 人,有2 种选法.而针对此人的任务又分两类:若此人要安装电脑,有C 2 = 10 种选法, 而另外会安装音响设备的3 人全选派上,只有1 种选法.由乘法原理,有10⨯1 =10 种选法;若此人安装音响设备,有C 2 = 3 种选法,需从5 人中选3 人安装电脑,有C 3 = 10 种35选法.由乘法原理,有3⨯10 = 30 种选法.根据加法原理,有10 + 30 = 40 种选法;综上 所述一共有2⨯ 40 = 80 种选派方法.⑶两人全派,针对两人的任务可分类讨论如下:① 两人全安装电脑,有5⨯1 = 5 种选派方案;②两人一个安装电脑,一个安装音响设备, 有C 2 ⨯ C 2 = 60 种选派方案;③两人全安装音响设备,有3⨯ C 3 = 30 种选派方案.根据加5356 法原理,共有5 + 60 + 30 = 95 种选派方案.综合以上所述,符合条件的方案一共有10 + 80 + 95 =185 种.13. 设原四位数为 ABCD ,按照题意,我们有 A + B + C + D = 4 ,但是对 A 、 B 、C 、 D 要求不同,因为这是一个四位数,所以应当有 A ≠ 0 ,而其他三个字母都可以等于 0,这样就不能使用我们之前的插板法了,因此我们考虑将 B 、C 、 D 都加上 1,这样 B 、C 、 D 都至少是 1,而且这个时候它们的和为4 + 3 = 7 ,即问题变成如下表达:一个各位数字不为 0 的四位数,它的各位数字之和为 7,这样的四位数有多少个?采用插板法,共有 6 个间隔,要插入 3 个板,可知这样的四位数有C 3= 20 个,对应着原 四位数也应该有 20 个.14. 6 个点间进行连线,共可以连成15 条,但是由题意知这是个一笔画问题,若把这些线全连上,则图形中有 6 个奇点,不能一笔画,因此至少要去掉 2 条线(以去掉 4 个奇点),所以至多共进行15 - 2 =13 次传球.15. 本题考察对应与转化思想.可以这样考虑:先把四个点间所有能连的线都连起来,共有C 2 = 6 种方法,然后从这 6 条线中选择 3 条将其去掉,有C 3 = 20 种选法,但是连在同46一个点上的三条线不能同时去掉,所以必须再去掉 4 种情况,所以共有 16 种.。
四年级奥数竞赛班
A、B、C、D、E五种不同的商品要在货架上排成一排,其中A、B两种商品必须排在一起,而C、D两种商品不能排在一起,则不同的排法共有多少种?
某博物馆要在10天内接待4所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观2天,其余学校均只参观1天,则在这10天内不同的安排方法数是多少种?
如图,A、B、C、D为海上的四个小岛,要建三座桥,将这四个岛连接起来,则不同的建桥方案共有__种。
把10个相同的球放入3个不同的盒子里,若要求
⑴每个盒子里至少有一个球,有多少种放法?
⑵每个盒子里都至少有2个球,有多少种放法?
⑶某些盒子允许空着,有多少种放法?
⑴方程x+y+z=13有多少组正整数解?
排列组合综合应用(下)
(★★★)
(★★★★)(2010华杯赛冬令营培训题)
(★★★)
(★★★★)
(★★★)
⑵方程x+y+z=13有多少组非负整数解?
⑶方程x+y+z=13有多少组x,y,z均不小于2的正整数解?。
排列与组合综合(1)一、选择题1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360种D. 420种2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有()种(用数字作答).A. 720B. 480C. 144D. 3603.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A为“取出的两个球颜色不同”,事件B为“取出一个红球,一个白球”,则P(B|A)等于()A. 16B. 313C. 59D. 234.已知某旅店有A,B,C三个房间,房间A可住3人,房间B可住2人,房间C可住1人,现有3个成人和2个儿童需要入住,为确保安全,儿童需由成人陪同方可入住,则他们入住的方式共有()A. 120种B. 81种C. 72种D. 27种5.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A. 192种B. 216种C. 240种D. 288种6.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A. 36种B. 30种C. 24种D. 20种7.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A. 1080B. 480C. 1560D. 3008.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A. 140种B. 80种C. 70种D. 35种9.若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是()A. 120B. 150C. 240D. 30010.将6本不同的数学用书放在同一层书架上,则不同的放法有()A. 6B. 24C. 120D. 720二、填空题(本大题共4小题,共20.0分)11.某校选定甲、乙、丙、丁、戊共5名教师去3个边远学校支教,每学校至少1人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有______ 种.12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色.则不同取法的种数为______.13.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有______种不同的涂色方法.14.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为______ (用数字回答)三、解答题15.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?16.按下列要求分配6本不同的书,各有多少种不同的分配方式⋅(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本;(7)甲得1本,乙得1本,丙得4本.17.三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?18.晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:(1)3个舞蹈节目排在一起;(2)3个舞蹈节目彼此分开;(3)3个舞蹈节目先后顺序一定;(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.19.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种?(3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?20.用数字0、2、3、4、6按下列要求组数、计算:(1)能组成多少个没有重复数字的三位数?(2)可以组成多少个可以被3整除的没有重复数字的三位数?(3)求2×3×4×6即144的所有正约数的和.(注:每小题结果都写成数据形式)排列与组合综合(1)一、选择题21.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案()A. 180种B. 240种C. 360种D. 420种【答案】D【解析】【分析】本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.【解答】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案.故选D.22.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有()种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】【分析】本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.【解答】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23,∴不同的排法种数共有23×720=480种.故选B.23. 篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出两个球,记事件A 为“取出的两个球颜色不同”,事件B 为“取出一个红球,一个白球”,则P(B|A)等于( )A. 16B. 313C. 59D. 23【答案】B【解析】【分析】本题考查组合数公式、古典概型和条件概率计算公式等知识,属于中档题.利用组合数公式与古典概型公式,分别算出事件A 发生的概率P(A)和事件A 、B 同时发生的概率P(AB),再利用条件概率公式加以计算,即可得到P(B|A)的值. 【解答】解:事件A 为“取出的两个球颜色不同”,事件B 为“取出一个红球,一个白球”, ∵篮子里装有2个红球,3个白球和4个黑球, ∴取出的两个球颜色不同的概率为P(A)=C 21C 31+C 21C 41+C 31C 41C 92=1318.又∵取出两个球的颜色不同,且一个红球、一个白球的概率为P(AB)=C 21C 31C 92=16,∴P(B|A)=P(AB)P(A)=161318=313.故选B .24. 已知某旅店有A ,B ,C 三个房间,房间A 可住3人,房间B 可住2人,房间C 可住1人,现有3个成人和2个儿童需要入住,为确保安全,儿童需由成人陪同方可入住,则他们入住的方式共有( ) A. 120种 B. 81种 C. 72种 D. 27种 【答案】D【解析】【分析】本题考查的是排列问题,并且元素的要求很多,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.安排住宿时要分四种情况,第一,三个大人一人一间,小孩在A 、B 两个房间排列,第二,三个大人一人一间,两个孩子在A 住,第三空出C 房间,两个大人住A ,一个大人住B ,两个大人住B ,列出算式,得到结果. 【解答】解:由题意知:三个大人一人一间,小孩在A 、B 两个房间排列有A 33A 22=12种住法, 三个大人一人一间,两个孩子在A 住有A 33=6种住法,空出C 房间,两个大人住A ,一个大人住B 有C 32A 22=6种住法,两个大人住B ,空出C 房间,有C 32种住法, 综上所述共有12+6+6+3=27种住法. 故选D .25. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A. 192种 B. 216种 C. 240种 D. 288种 【答案】B【解析】【分析】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.【解答】解:最左端排甲,共有A55=120种,最左端排乙,最右端不能排甲,有C41A44=96种,根据加法原理可得,共有120+96=216种.故选B.26.世博会期间,某班有四名学生参加了志愿工作.将这四名学生分配到A、B、C三个不同的展馆服务,每个展馆至少分配一人.若甲要求不到A馆,则不同的分配方案有()A. 36种B. 30种C. 24种D. 20种【答案】C【解析】【分析】本题考查排列、组合的综合运用,属于中档题.根据题意中甲要求不到A馆,分析可得对甲有2种不同的分配方法,进而对剩余的三人分情况讨论,①其中有一个人与甲在同一个展馆,②没有人与甲在同一个展馆,易得其情况数目,最后由分步计数原理计算可得答案.【解答】解:根据题意,首先分配甲,有2种方法,再分配其余的三人:分两种情况,①其中有一个人与甲在同一个展馆,有A33=6种情况,②没有人与甲在同一个展馆,则有C32·A22=6种情况;则若甲要求不到A馆,则不同的分配方案有2×(6+6)=24种.故选C.27.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A. 1080B. 480C. 1560D. 300【答案】C【解析】【分析】本题考查两种计数原理与排列组合知识的运用,属于中档题.先把6名技术人员分成4组,每组至少一人,再把这4个组的人分给4个分厂,利用乘法原理,即可得出结论.【解答】解:先把6名技术人员分成4组,每组至少一人,若4个组的人数按3、1、1、1分配,则不同的分配方案有C63=20种不同的方法,若4个组的人数为2、2、1、1分配,则不同的分配方案有C62C422!·C212!=45种不同的方法,故所有的分组方法共有20+45=65种,再把4个组的人分给4个分厂,不同的方法有65×A44=1560种.故选C.28.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A. 140种B. 80种C. 70种D. 35种【答案】C【解析】【分析】本题考查组合及组合数公式,考查两个计数原理的综合应用,是基础题.任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数. 【解答】解:甲型电视机2台和乙型电视机1台,取法有C 42C 51=30种;甲型电视机1台和乙型电视机2台,取法有C 41C 52=40种; 共有30+40=70种. 故选C .29. 若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是( )A. 120B. 150C. 240D. 300 【答案】B【解析】【分析】本题考查排列、组合的综合应用,属于中档题.根据题意,分2步进行分析:①:5本不同的书分成3组,②:将分好的三组全排列,对应3人,由排列数公式可得其情况数目,进而由分步计数原理计算可得答案 【解答】解:根据题意,分2步进行分析: ①:将5本不同的书分成3组, 若分成1、1、3的三组,有C 51C 41C 33A 22=10种分组方法; 若分成1、2、2的三组,有C 51C 42C 22A 22=15种分组方法;则有15+10=25种分组方法;②,将分好的三组全排列,对应三人,有A 336种情况, 则有25×6=150种不同的分法. 故选:B .30. 将6本不同的数学用书放在同一层书架上,则不同的放法有( )A. 6B. 24C. 120D. 720 【答案】D【解析】解:6本不同的数学用书,全排列,故有A 66=720种, 故选:D .本题属于排列问题,全排即可.本题考查了简单的排列问题,分清是排列和组合是关键,属于基础题.二、填空题(本大题共4小题,共20.0分)31. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远学校支教,每学校至少1人,其中甲和乙必须在同一学校,甲和丙一定在不同学校,则不同的选派方案共有______ 种. 【答案】30【解析】【分析】本题考查了分类加法和分步乘法计数原理,关键是分类,属于中档题.甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案,再根据计数原理计算结果. 【解答】解:因为甲和乙同校,甲和丙不同校,所以有2,2,1和3,1,1两种分配方案, ①2,2,1方案:甲、乙为一组,从余下3人选出2人组成一组,然后排列,共有:C 32A 33=18种;②3,1,1方案:在丁、戊中选出1人,与甲乙组成一组,然后排列,共有:C21A33=12种;所以,选派方案共有18+12=30种.故答案为30.32.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色.则不同取法的种数为______.【答案】544【解析】【分析】本题考查了组合知识,考查排除法求解计数问题,属于中档题.利用间接法,先选取没有条件限制的,再排除有条件限制的,问题得以解决.【解答】解:由题意,不考虑特殊情况,共有C163种取法,其中每一种卡片各取三张,有4C43种取法,故所求的取法共有C163−4C43=560−16=544种.故答案为544.33.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有______种不同的涂色方法.【答案】732【解析】【分析】本题考查排列组合中的涂色问题,考查分类思想的运用,尽可能多的分类能减少每一类的复杂程度,属于中档题.分三类讨论:A、C、E用同一颜色、A、C、E用2种颜色、A、C、E用3种颜色,利用分步计数原理,可得结论.【解答】解:考虑A、C、E用同一颜色,此时共有4×3×3×3=108种方法.考虑A、C、E用2种颜色,此时共有C42×6×3×2×2=432种方法.考虑A、C、E用3种颜色,此时共有A43×2×2×2=192种方法.故共有108+432+192=732种不同的涂色方法.故答案为732.34.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为______ (用数字回答)【答案】72【解析】【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题. 【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有A 44=24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个. 故答案为72.三、解答题35. 有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法? 【答案】解:(1)本题要求把小球全部放入盒子, ∵1号小球可放入任意一个盒子内,有4种放法. 同理,2、3、4号小球也各有4种放法, ∴共有44=256种放法.(2)∵恰有一个空盒,则这4个盒子中只有3个盒子内有小球, 且小球数只能是1、1、2.先从4个小球中任选2个放在一起,有C 42种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 43种放法.∴由分步计数原理知共有C 42·A 43=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 41种分法, 再放到2个盒子内,有A 42种放法,共有C 41·A 42种方法;②2个盒子内各放2个小球.先把4个小球平均分成2组,每组2个,有C 42A 22种分法,再放入2个盒子内,有A 42种放法,共有C 42A 22·A 42.∴由分类计数原理知共有C 41·A 42+C 42A 22·A 42=84种不同的放法.【解析】本题考查计数问题,考查排列组合的实际应用,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.(1)本题要求把小球全部放入盒子,1号小球可放入任意一个盒子内,有4种放法,余下的2、3、4号小球也各有4种放法,根据分步计数原理得到结果.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1、1、2.先从4个小球中任选2个放在一起,与其他两个球看成三个元素,在三个位置排列. (3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法:一个盒子内放1个球,另一个盒子内放3个球;2个盒子内各放2个小球.写出组合数,根据分类加法得到结果.36. 按下列要求分配6本不同的书,各有多少种不同的分配方式⋅(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本.【答案】解:(1)无序不均匀分组问题. 先选1本有C 61种选法;再从余下的5本中选2本有C 52种选法; 最后余下3本全选有C 33种选法.故共有C 61C 52C 33=60(种)不同的分配方式; (2)有序不均匀分组问题.由于甲、乙、丙是不同三人,在第(1)题的基础上,还应考虑再分配,故共有C 61C 52C 33A 33=360(种)不同的分配方式; (3)无序均匀分组问题.先分三步,则应是C 62C 42C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了A ,B ,第二步取了C ,D ,第三步取了E ,F ,记该种分法为(AB,CD ,EF),则C 62C 42C 22种分法中还有(AB 、EF 、CD),(CD,AB ,EF),(CD,EF ,AB),(EF,CD ,AB),(EF,AB ,CD),共有A 33种情况, 而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法, 故分配方式有C 62C 42C 22A 33=15(种);(4)有序均匀分组问题.在第(3)题的基础上再分配给3个人, 共有分配方式C 62C 42C 22A 33·A 33=C 62C 42C 22=90(种);(5)无序部分均匀分组问题. 共有分配方式C 64C 21C 11A 22=15(种);(6)有序部分均匀分组问题.在第(5)题的基础上再分配给3个人,共有分配方式C 64C 21C 11A 22·A 33=90(种);(7)直接分配问题.甲选1本有C 61种方法,乙从余下5本中选1本有C 51种方法,余下4本留给丙有C 44种方法.共有分配方式C 61C 51C 44=30(种).【解析】本题考查排列、组合及简单计数问题,考查计算能力,理解能力.正确区分无序不均匀分组问题、有序不均匀分组问题、无序均匀分组问题,是解好组合问题的一部分.37. 三个女生和五个男生排成一排.(1)如果女生须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果男生按固定顺序,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?【答案】解:(1)女须全排在一起,把3个女生捆绑在一起看做一个复合元素,再和5个男生全排,故有A 33A 66=4320种;(2)女生必须全分开,先排男生形成了6个空中,插入3名女生,故有A 55A 63=14400种;(3)两端都不能排女生,从男生中选2人排在两端,其余的全排,故有A 52A 66=14400种;(4)男生按固定顺序,从8个位置中,任意排3个女生,其余的5个位置男生按照固定顺序排列,故有A 83=336种,(5)三个女生站在前排,五个男生站在后排,A 33A 55=720种【解析】本题考查排列的应用,相邻问题一般看作一个整体处理,不相邻,用插空法,属于中档题.根据特殊元素优先安排,相邻问题用捆绑,不相邻用插空法,即可求解.38. 晚会上有5个不同的歌唱节目和3个不同的舞蹈节目,分别按以下要求各可以排出多少种不同的节目单:(1)3个舞蹈节目排在一起;(2)3个舞蹈节目彼此分开;(3)3个舞蹈节目先后顺序一定;(4)前4个节目中既要有歌唱节目,又要有舞蹈节目.【答案】解:(1)根据题意,3个舞蹈节目要排在一起,可以把三个舞蹈节目看做一个元素,三个舞蹈节目本身有A 33种顺序,再和另外5个元素进行全排列,则有A 66A 33=4320不同的节目单.(2)3个舞蹈节目彼此要隔开,可以用插空法来解,先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列,有A 55A 63=14400不同的节目单.(3)8个节目全排列有A 88=40320种方法,其中三个舞蹈节目本身有A 33种顺序,若3个舞蹈节目先后顺序一定,则有A 88A 33=6720种不同排法. (4)∵8个节目全排列有A 88=40320种方法,若前4个节目中“既要有歌唱节目,又要有舞蹈节目”的否定是前四个节目全是唱歌有A 54A 44,∴前4个节目中要有舞蹈有A 88−A 54A 44=37440不同的节目单.【解析】(1)要把3个舞蹈节目要排在一起,则可以采用捆绑法,把三个舞蹈节目看做一个元素和另外5个元素进行全排列,不要忽略三个舞蹈节目本身也有一个排列.(2)3个舞蹈节目彼此要隔开,可以用插空法来解,即先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列.(3)使用倍分法分析:先求出8个节目全排列的排法数目,分析三个舞蹈节目本身的顺序,由倍分法计算可得答案,(4)先不考虑限制条件,8个节目全排列有A88种方法,前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44,用所有的排列减去不符合条件的排列,得到结果.本题考查排列、组合的应用,要掌握常见问题的处理方法,如相邻问题用捆绑法.39.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.(1)共有多少种不同的抽法?(2)恰好有一件是次品的抽法有多少种?(3)至少有一件是次品的抽法有多少种?(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?3=161700种不同的抽【答案】解:(1)100件产品,从中任意抽出3件检查,共有C100法,(2)事件分两步完成,第一步从2件次品中抽取1件次品,第二步从98件正品中抽取2件正品,根据乘法原理得恰好有一件是次品的抽法有C21C982=9506种不同的抽法.3种不同的抽法,全是正品的抽法有(3)利用间接法,从中任意抽出3件检查,共有C100C983,则至少有一件是次品的抽法有C1003−C983=9604种不同的抽法.(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有9506×6=57036种不同的排法.3种不同的抽法;【解析】(1)100件产品,从中任意抽出3件检查,共有C100(2)事件分两步完成,第一步从2件次品中抽取1件次品,第二步从98件正品中抽取2件正品,根据乘法原理计算求得;(3)利用间接法,从中任意抽出3件种数,排除全是正品的种数,得到至少有一件是次品的抽法种数;(4)在(2)的基础上,再进行全排,即可得出结论.本题考查计数原理及应用,考查排列组合的实际应用,解题时要认真审题.40.用数字0、2、3、4、6按下列要求组数、计算:(1)能组成多少个没有重复数字的三位数?(2)可以组成多少个可以被3整除的没有重复数字的三位数?(3)求2×3×4×6即144的所有正约数的和.(注:每小题结果都写成数据形式)【答案】【解答】解:(1)根据题意,分2步进行分析:①、对于百位,百位数字只能是2、3、4、6中之一,有C41种选法,②、百位数字确定后,在剩下的4个数字中选取2个,排在十位和个位,则十位和个位数字的组成共有A42种方法,故可以组成没有重复数字的三位数共有N1=C41A42=48个;(2)由题意,能被3整除的且没有重复数字的三位数只能是由2、4、0或2、4、3或2、4、6或0、3、6组成.分4种情况讨论:①、三位数由2、4、0组成,首位数字有2、4两种情况,在剩下的3个数字中选取2个,排在十位和个位,此时共有C21A22种选法;②、三位数由2、4、3组成,将3个数字全排列,排在百位、十位和个位,此时有A33种选法;③、三位数由2、4、6组成,将3个数字全排列,排在百位、十位和个位,此时有A33种选法;④、三位数由0、3、6组成,首位数字有3、6两种情况,在剩下的3个数字中选取2个,排在十位和个位,此时共有C21A22种选法;共有N2=C21A22+2A33+C21A22=20个被3整除的没有重复数字的三位数,(3)根据题意,144=24×32,则144的所有正约数的和为N3=(1+2+22+23+24)(1+3+32)=403.【解析】【分析】本题考查排列、组合的应用,涉及分步计数原理、分类计数原理的应用,以及正确运用约数和公式.(1)根据题意,分2步进行分析:①、对于百位,百位数字只能是2、3、4、6中之一,②、百位数字确定后,在剩下的4个数字中选取2个,排在十位和个位,计算出每一步的情况数目,由分步计数原理计算可得答案;(2)由题意,能被3整除的且没有重复数字的三位数只能是由2、4、0或2、4、3或2、4、6或0、3、6组成,据此分4种情况讨论,求出每一步的选法数目,由分类计数原理计算可得答案;(3)根据题意,分析可得144=24×32,进而由约数和公式计算可得答案.。
四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
四年级奥数:排列组合的综合应用1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?7.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.8.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?9.现有五元人民币2张,十元人民币8张,一百元人民币3张,用这些人民币可以组成多少种不同的币值?参考答案1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成20种加法式子(包括被加数与加数交换位置,例如将1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
排列组合综合应用(4)一、选择题1.4个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有()A. 576种B. 504种C. 288种D. 252种2.某地举办科技博览会,有3个场馆,现将24个志愿者名额分配给这3个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有()种A. 222B. 253C. 276D. 2843.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A. 24种B. 30种C. 36种D. 72种4.有6×6的方阵,3辆完全相同的红车,3辆完全相同的黑车,它们均不在同一行且不在同一列,排列方法种数为()A. 720B. 20C. 518400D. 144005.一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则A. 至多能剪成19块“L”形骨牌B. 至多能剪成20块“L”形骨牌C. 一定能剪成21块“L”形骨牌D. 前三个答案都不对6.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A. 120B. 204C. 168D. 2167.学校安排一天6节课,语文、数学、英语和三节不同的选修课,则满足“数学不排第一节和第六节,三节选修课至少2节相邻”的不同排法数是A. 288B. 324C. 360D. 420二、填空题(本大题共10小题,共50.0分)8.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中至少有3个连在一起,则不同的停放方法有______ 种.9.将4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有2个空盒的方法共有____________种(用数字作答).10.将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有______种.(用数字作答)11.某大学安排4名毕业生到某企业的三个部门A,B,C实习,要求每个部门至少安排1人,其中甲大学生不能安排到A部门工作,安排方法有______种(用数字作答).12.某校高一年级拟开设12门选修课程,规定每位学生从中选择6门.由于课程设置限制,某学生从A,B,C,D四门课程中最多选1门,从E,F两门课程中也最多选1门,则该学生共有______种不同的选课种数.(用数字作答)13.现有7名志愿者,其中只会俄语的有3人,既会俄语又会英语的有4人.从中选出4人担任“一带一路”峰会开幕式翻译工作,2人担任英语翻译,2人担任俄语翻译,共有________种不同的选法.14.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参加该项任务,另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被平均分成两组,一组去远处,一处去近处.则不同的搜寻方案有_______种。
【学生版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
【典例】题型1、特殊元素(位置)问题例1、大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【提示】;【答案】;【解析】;【说明】题型2、相邻、相间问题例2、(1)某大厦一层有A,B,C,D四部电梯,现有3人在同一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有()A.12种B.24种C.18种D.36种【答案】【解析】;(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【答案】【解析】;题型3、分组、分配问题例3、(1)现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,不同分法的种数为()A.36 B.9 C.18 D.15(2)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有种不同的分法.题型4、涂色问题例4、(1)如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给该地区的地图着色,要求相邻区域不得使用同一种颜色.现在有4种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【说明】解决涂色问题,关键还是阅读理解与用好两个计数原理;【归纳】排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素;第二步:排,把选出的元素按照要求进行排列;第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果;均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数;【即时练习】1、有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种2、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C210P48B.C19P59C.C18P59D.C18P583、北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有种A.12种B.24种C.48种D.96种4、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有种5、在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?6、现有7名师范大学应届毕业的免费师范生将被分配到育才中学、星云中学和明月湾中学任教.(1)若4人被分到育才中学,2人被分到星云中学,1人被分到明月湾中学,则有多少种不同的分配方案?(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?【教师版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
四年级奥数讲座综合练习目录第一讲:乘法原理第二讲:加法原理第三讲:排列第四讲:组合第五讲:排列、组合第六讲:排列组合的综合应用第七讲:有趣的数阵第八讲:数学游戏第九讲:简单的幻方及其他数阵图第十讲:数字综合题选讲第十一讲:数字谜第十二讲:数学竞赛试题选讲第一讲:乘法原理基础班1、有五顶不同的帽子,两件不同的上衣,三条不同的裤子。
从中取出一顶帽子、一件上衣、一条裤子配成一套装束。
问:有多少种不同的装束?2、四角号码字典,用4个数码表示一个汉字。
小王自编一个"密码本",用3个数码(可取重复数字)表示一个汉字,例如,用"011"代表汉字"车"。
问:小王的"密码本"上最多能表示多少个不同的汉字?3、"IMO"是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。
现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的"IMO"?4、在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。
问:共有多少种不同的放法?5、要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?6、甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?7、如下图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?8、在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?9、一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?10、由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?11、某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?解答1.30种。